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We derive a c-number generalized Langevin equation (GLE) describing the evolution of the expectation values
〈xi〉t of the atomic position operators xi of an open system. The latter is coupled linearly to a harmonic bath kept
at a fixed temperature. The equations of motion contain a non-Markovian friction term with the classical kernel
[L. Kantorovich, Phys. Rev. B 78, 094304 (2008)] and a zero mean non-Gaussian random force with correlation
functions that depend on the initial preparation of the open system. We used a density operator formalism without
assuming that initially the combined system was decoupled. The only approximation made in deriving quantum
GLE consists of assuming that the Hamiltonian of the open system at time t can be expanded up to the second
order with respect to operators of atomic displacements ui = xi − 〈xi〉t in the open system around their exact
atomic positions 〈xi〉t (the “harmonization” approximation). The noise is introduced to ensure that sampling
many quantum GLE trajectories yields exactly the average one. An explicit expression for the pair correlation
function of the noise, consistent with the classical limit, is also proposed. Unlike the usually considered quantum
operator GLE, the proposed c-number quantum GLE can be used in direct molecular dynamic simulations of
open systems under general equilibrium or nonequilibrium conditions.
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I. INTRODUCTION

In numerous applications in quantum physics and chemistry
[1,2], phenomena of interest are related to an atomistic
dynamics of a finite fragment of an extended system. The
fragment cannot be treated as isolated as it interacts and
exchanges energy with the rest of the system serving as a heat
bath. As a complete description of the whole system might be
difficult or impossible, one has to look for approaches which
pay specific attention to the fragment (an open system), while
still retaining the existence of the heat bath. This problem lies
within the realm of open quantum dissipative systems [1,2].

In the case of classical systems, molecular dynamics (MD)
simulations have proven to be a powerful, yet simple, tool for
studying their nonequilibrium properties including tribology
[3–5], energy dissipation [6], crack propagation [7], heat trans-
port [8–14], and irradiation [15]. An appropriate theoretical
approach for considering dynamics of open classical systems,
based on calculating trajectories of atoms of the open system
and accounting for dissipation effects with its environment(s),
is provided by the generalized Langevin equation (GLE) [16].
Assuming a rather general Hamiltonian of the open system
and linear coupling to its harmonic heat bath, one arrives at its
non-Markovian classical dynamics with multivariate Gaussian
distributed random forces and the memory kernel that is
proportional to the random force autocorrelation function (the
second fluctuation-dissipation theorem) [17]. Although the
GLE has been around for a while (see Refs. [17–19] and
references therein), its application to realistic systems has only
recently become realized when a powerful implementation of
this method has been proposed [18,19]. It solved two main
obstacles standing in the way of efficient numerical simula-
tions: its non-Markovian character and the colored noise. This
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implementation is also straightforwardly generalized for heat
transport simulations which require more than one heat bath
[20].

Although classical MD simulations for open systems can be
easily justified via GLE, a natural question arises of whether
something analogous to GLE can also be formulated in the
quantum realm. By that we mean equations of motion for the
expectation values of positions of atoms in the open system,
〈xi〉t = Tr(ρ(t)xi) [where ρ(t) is the exact density matrix at
time t of the whole combined system, and xi is the operator
of the coordinate of atom i]; the equations are expected to
contain a nonoperator (or c-number) stochastic force with
certain statistical properties. At high enough temperatures (or
in the � → 0 limit) the c-number quantum GLE must coincide
with the classical one for the same Hamiltonian [17]. Using
such a tool, one will be able to study, via MD-like approaches,
dynamical phenomena of a wide range of systems, e.g., in
quantum optics, condensed matter and chemical physics, and
nanotechnology, accounting for the full quantum nature of
both the bath and the open system.

First attempts to develop a quantum analog of the classical
GLE based on equations of motion for Heisenberg positions
and momenta operators of atoms of an open system were done
by Ford, Kac, and Mazur (FKM) [21]. This method has been
further developed by other authors [22–33] and then applied,
in particular, to heat transport [10,34,35]. In this method, GLE-
like non-Markovian equations for operators of the open system
are obtained assuming a linear coupling to the harmonic bath.
The bath enters these equations via an operator which has a
meaning of a force, the latter contains a linear combination of
initial bath operators. Assuming that initially the bath was at
equilibrium at a certain temperature, and hence the reduced
density matrix of the bath (the density matrix of the whole
system in which open system degrees of freedom are traced
out) is canonical at a certain temperature, one can show that
the statistically averaged operator of the force is zero and its
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correlation function is essentially given by the well-known
displacement-displacement correlation function calculated in
the harmonic approximation. Although this method is exact
within the adopted Hamiltonian, analytical solutions can only
be obtained in simple cases [32]. It is essential that even though
the equations themselves are written only for operators of the
open system, these operators are still defined in the Hilbert
space of the whole system (open system + bath). For harmonic
systems, this approach for heat transport has been shown [10]
to be fully equivalent to the method based on nonequilibrium
Green’s functions [36–38].

Note that equations for quantum operators of an open
system with linearly coupled harmonic bath can also be derived
using path-integral techniques by integrating out the bath
variables [2,39–42]. This method is however based on the
so-called partitioned assumption (initiated by Feynman and
Vernon [39]) that the initial density matrix is a direct product
of independent density matrices of the open system and bath
(the Born approximation [1]) .

Several attempts have also been made to obtain truly
c-number quantum GLE (cQGLE). In a hybrid approach
[43,44] the authors suggested simply to replace, without proper
justification, Heisenberg equations of motion for operators
of positions of atoms of an open system by their classical
analogues keeping, at the same time, the fully quantum
expression for the random force autocorrelation function (note
that in this approach the random force is not an operator).

A more elaborate approach based on a somewhat artificial
distribution function for the bath has also been proposed
[45–48]. The corresponding ansatz of a coherent state repre-
sentation provides a connection with the classical GLE in the
limit of � → 0. However, some ad hoc, not fully justifiable,
assumptions are used for the form of the quantum Hamiltonian
and the way the quantum thermal averages are performed [49].
We also note that in most of the methods mentioned above
the bath Hamiltonian was represented as a set of independent
harmonic oscillators.

Here we offer a fully consistent derivation of cQGLE
for an open system based on the density matrix method.
The Born approximation for the initial density matrix of the
whole system is not used, i.e., the whole system initially
is not assumed to be partitioned. We consider a general
Hamiltonian for the open system which is linearly coupled
to the harmonic bath. One of the advantages of our model is
that, similarly to our classical treatment [17–19], the bath and
the open system are treated as parts of the same whole system.
We show that, using a plausible so-called “harmonization”
approximation, a class of cQGLEs for the mean values 〈xi〉t
of atoms in the open quantum system can be established.
These equations are non-Markovian in nature with a friction
kernel which is identical to that found in the classical GLE
[17], while the random force, contrary to the classical case, is
non-Gaussian. It is shown to have a zero mean with the pair
correlation function being of the same functional form as in
the classical case. Next, we establish a connection with the
previously developed methods and obtain an explicit expres-
sion for the pair correlation function of the random force by
assuming that the order in which the stochastic and quantum-
mechanical averages are performed must not affect the final
result.

II. HAMILTONIAN AND EXACT HEISENBERG
EQUATIONS OF MOTION FOR OPERATORS

Consider a system consisting of two parts: a finite open
system (or region 1) and an infinite heat bath (region 2).
Correspondingly, subscripts 1 and 2 will be used in vectors
and matrices, where appropriate. We assume that the heat bath
is much larger than the system itself and hence can be assigned
to have a fixed temperature T . The Hamiltonian of the whole
system,H = H1 + H2 + H12, contains the Hamiltonian of the
open system,

H1 =
∑
i∈1

p2
i

2mi

+ W (x1) = 1

2
pT

1 M−1
11 p1 + W (x1), (2.1)

which assumes an arbitrary potential energy term W (x1), the
harmonic bath,

H2 = 1

2

∑
i,j∈2

(
q2

i

mi

δij + �ijuiuj

)

= 1

2
qT

2 M−1
22 q2 + 1

2
uT

2 �22u2, (2.2)

and the interaction between the system and bath regions which
is assumed to be linear with respect to atomic displacements
uk of the bath atoms:

H12 =
∑
i∈2

hiui = hT
2 u2. (2.3)

Here x1 = (xi) and p1 = (pi) are vector columns of all
Cartesian coordinates i of the atoms in the system and their
momenta, respectively; u2 = (ui) and q2 = (qi) are vector
columns of all atomic displacements in the bath and their
corresponding momentum operators. �22 = (�ij ) is the bath
force-constant matrix, and M11 = (δijmi) and M22 = (δijmi)
are the diagonal matrices of atomic masses of the system and
bath, respectively. The superscript T means transpose. The
vector h2 = (hi(x1)) defines (minus) forces with which atoms
in the system act on the atoms of the bath; this vector is
assumed to have an arbitrary dependence on x1.

The above Hamiltonian is exactly the same as in the recent
classical formulation of the GLE equations [17]. It is more
general than the Caldeira-Leggett Hamiltonian [50] containing
independent harmonic oscillators in the bath and the coupling,
which is linear in both bath and system coordinates (the
bilinear coupling), that is normally used in quantum theories of
GLE [2,21–23,25,32,35,43]. Our Hamiltonian can be obtained
from the full Hamiltonian of the whole combined system
by expanding it until the second order in terms of atomic
displacements in the bath. Hence, its parameters can be taken
directly from the adopted Hamiltonian of the realistic system
under study [19]. Note thatH1 includes the interaction between
atoms in the system and their counterparts in the bath which
are clumped at their equilibrium positions; any variation of the
system-bath interaction due to the bath atoms vibrating around
these positions is accounted for by the rest of the combined
bath Hamiltonian Hb = H2 + H12.

Next we introduce the density matrix operator ρ(t) for
the system and bath, which satisfies the appropriate Liouville
equation with the full Hamiltonian. We recall [51] that the
general solution of the Liouville equation for time-independent
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Hamiltonian H is ρ(t) = Uρ0U †, where U ≡ U (t,t0) and
U (t1,t2) = exp [−iH(t1 − t2)/�] is the evolution operator, and
ρ0 is the density matrix at the initial time t0. Correspondingly,
an operator A in the Heisenberg picture (to be denoted with the
tilda in the following), Ã(t) = U †AU , satisfies the equation
of motion i�∂t Ã(t) = U †[A,H]U .

Our goal is to obtain a closed set of equations for the ex-
pectation values of the atomic positions, 〈xi〉t = Tr(ρ(t)xi) =
Tr(ρ0x̃i(t)) for i ∈ 1, by eliminating the degrees of freedom
of the bath atoms. Ideally, we would like these equations
to resemble classical GLE with a friction memory term
and stochastic forces. To this end, instead of the operators
of the bath u2 and q2, it is convenient to introduce their
mass-scaled counterparts x2 = (xi ; i ∈ 2) = M1/2

22 u2 and p2 =
(pi ; i ∈ 2) = M−1/2

22 q2, which satisfy the same commutation
relations, [xi,pj ] = i�δij (i,j ∈ 2). Then the combined bath
and interaction Hamiltonian takes on the following form:

Hb = H12 + H2 = 1
2 pT

2 p2 + 1
2 xT

2 D22x2 + VT
2 x2, (2.4)

where V2 = h2M−1/2
22 are the appropriately rescaled coeffi-

cients explicitly depending on x1.
By calculating commutators of the operators of coordinates

and momenta of both regions (x1, x2, p1, and p2) with the
Hamiltonian H, the equations of motion for the operators x̃1,
x̃2, p̃1 and p̃2 in the Heisenberg representation are obtained.
For the system we have:

M11∂t x̃1 = p̃1, ∂t p̃1 = −h1(̃x1) − V12(̃x1)̃x2 ≡ M11∂
2
t x̃1,

(2.5)

where h1(x1) = ∂W/∂x1 = (∂W/∂xi ; i ∈ 1) and

V12(x1) = ∂V2(x1)

∂x1
=

(
1√
mj

∂hj (x1)

∂xi

; i ∈ 1,j ∈ 2

)
and hence h1(̃x1) = U †(∂W/∂x1)U = ∂W (̃x1)/∂ x̃1 and
V12(̃x1) = ∂V2(̃x1)/∂ x̃1. Similarly for the bath:

∂t x̃2 = p̃2, ∂t p̃2 = −D22̃x2 − V2(̃x1) ≡ ∂2
t x̃2, (2.6)

where D22 = M−1/2
22 �22M−1/2

22 is the dynamical matrix of the
bath.

The equations (2.6) for the coordinates x̃2(t) of the bath
atoms are solved in exactly the same way as in the classical case
[17] by first defining normal coordinates ξλ = ∑

i∈2 eλixi =
eT
λ x1 of the bath expressed via the eigenvectors eλ of the

dynamical matrix, D22eλ = ω2
λeλ, where ωλ are frequencies of

the bath’s normal vibrational modes. In the new coordinates we
obtain decoupled differential equations for each normal mode
λ as ¨̃ξλ + ω2

λξ̃λ = −Vλ(t) (dots above the symbols denote time
derivatives), where Vλ(t) = eT

λ V2, so that their solutions are
readily obtained (i ∈ 2):

x̃i(t) =
∑

λ

eλi ξ̃λ(t)

=
∑

λ

eλi

[
Aλe

iωλt + Bλe
−iωλt

− 1

ωλ

∫ t

t0

Vλ(τ ) sin[ωλ(t − τ )]dτ

]

p̃i(t) =
∑

λ

eλi
˙̃ξλ(t)

=
∑

λ

eλi

[
iωλ(Aλe

iωλt − Bλe
−iωλt )

−
∫ t

t0

Vλ(τ ) cos[ωλ(t − τ )]dτ

]
,

where Aλ and Bλ are two operators to be determined from the
initial conditions: x̃i(t0) = xi and p̃i(t0) = pi . Some simple
algebra yields the following expression for the (rescaled)
atomic positions of the bath atoms:

x̃2(t) = �̇22(t − t0)x2 + �22(t − t0)p2

−
∫ t

t0

�22(t − τ )V2(τ )dτ, (2.7)

where

�22(t) =
∑

λ

eλeT
λ

ωλ

sin(ωλt) (2.8)

and

�̇22(t) =
∑

λ

eλeT
λ cos(ωλt) (2.9)

are two square bath matrices (cf. Ref. [17]). The time integral
in Eq. (2.7) can be calculated by parts. Defining one more bath
matrix [17]

�22(t) =
∑

λ

eλeT
λ

ω2
λ

cos(ωλt) (2.10)

and noticing that D−1
22 = ∑

λ ω−2
λ eλeT

λ ≡ �22(0), we obtain:

x̃2(t) = [�̇22(t − t0)x2 + �22(t − t0)p2

+�22(t − t0)V2(t0)] − D−1
22 V2(t)

+
∫ t

t0

�22(t − τ )

[
d

dτ
V2(τ )

]
dτ.

The time derivative of the operator V2(τ ) is

∂τ V2(τ ) = 1

i�
U †[V2(x1),H]U

= 1

i�
U †

[
V2(x1),

1

2
pT

1 M−1
11 p1

]
U

= V21(x1)∂τ x̃1(τ ) − i�

2
V̄2(τ ), (2.11)

where V̄2(τ ) = (V̄j (τ ); j ∈ 2) with V̄j (τ ) =∑
i∈1 m−1

i ∂2Vj (̃x1)/∂x̃2
i . Note that the last term in Eq. (2.11)

vanishes in the � → 0 limit. As we shall see immediately, it
will be responsible for a contribution to the force which does
not have the form of the friction force. Correspondingly,

x̃2(t) = [�̇22(t − t0)x2 + �22(t − t0)p2 + �22(t − t0)V2(t0)]

− D−1
22 V2(t) +

∫ t

t0

�22(t − τ )V21(τ )∂τ x̃1(τ )dτ

− i�

2

∫ t

t0

�22(t − τ )V̄2(τ )dτ.
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Substituting this expression into the equation of motion (2.5)
for the system atoms, we obtain the quantum GLE (the
differential equation for Heisenberg position operators of the
open system):

M11 ¨̃x1(t) = −h1(t) + V12(t)D−1
22 V2(t) + R1(t)

−
∫ t

t0

K11(t,τ ) ˙̃x1(τ )dτ

+ i�

2

∫ t

t0

V12(t)�22(t − τ )V̄2(τ )dτ (2.12)

where

K11(t,τ ) = V12(t)�22(t − τ )V21(τ ) (2.13)

is the friction kernel (cf. [17]) and

R1(t) =−V12(t)[�̇22(t − t0)x2 + �22(t − t0)p2

+�22(t − t0)V2(t0)] (2.14)

The obtained (operator) quantum GLE is exact for the
Hamiltonian we adopted. We first note that the first integral
term in the GLE (2.12) has exactly the same form as the
classical friction force [17]; however, there is also a second
integral term, which does not have the form of a friction
force. This is a purely “nonclassical” term as it disappears
in the classical limit of � → 0. More importantly, the obtained
GLE is highly nonlinear with respect to the Heisenberg
positions x̃1(t) as h1, V2, V21 and V̄2 all depend on it (and
hence on time). Therefore, when multiplying both sides of
this equation by the initial density matrix ρ0 and taking
the trace over the Hilbert space of the whole combined
system, it will not be possible to obtain a self-containing
equation for the averages 〈x1〉t . This is because the average
of a function is not generally equal to the function of the
average, e.g. 〈h1(̃x1)〉t = Tr[ρ0h1(̃x1)] �= h1(〈x1〉t ). Only for
linear operators h1(x1) = h0

1 + h0
11x1 we would have the

equality, 〈h1(̃x1)〉t = h1(〈x1〉t ). Therefore, there is a certain
difficulty in formulating a self-contained c-number quantum
GLE in this rather general case. This situation is fully resolved
within the harmonization approximation to be introduced next.

III. QUANTUM GLE WITHIN THE HARMONIZATION
APPROXIMATION

In order to obtain a closed set of equations for the
expectation values of the atomic positions, 〈xi〉t for all i ∈ 1,
we shall expand all operators in the Hamiltonian into a power
series of the displacement operators. To explain the meaning
of this kind of expansion, consider an arbitrary operator A(x1)
that explicitly depends on the atomic positions of atoms in
region 1. Introducing displacements operators ui = xi − xref

i

for all atoms i ∈ 1, calculated with respect to some (in general,
arbitrary) reference atomic positions, xref

1 (t), which are not
operators (i.e. are c-numbers) and may also depend on time,
one can expand the operator A in a Maclaurin series as follows:

A(x1) = A0 +
∑
i∈1

A0
i ui +

∑
i,j∈1

A0
ij uiuj + . . . (3.1)

where A0 = A(xref
1 ) and the linear and second order expansion

coefficients,

A0
i = ∂A

(
xref

1

)
∂xref

i

and A0
ij = ∂2A

(
xref

1

)
∂xref

i ∂xref
j

(3.2)

are not operators, but rather real functions of the reference
atomic positions. Since the latter may depend on time, the
expansion coefficients will also be time dependent.

In our case only the terms W (x1) and h2(x1) in the
components H1 and H12 of the Hamiltonian, respectively,
depend on the operators x1 of the atomic positions. We expand
these terms up to the second order in the displacements ui =
xi − xref

i . This method, which we shall call a harmonization
approximation, is inspired by the expansion method used
in the CEID theory [52,53]. We will see later that there is
an obvious and straightforward way to choose the reference
atomic positions, xref

1 (t); until then, they remain arbitrary.
In the harmonization approximation (HA) we obtain:

H1 	 HHA
1 (t) = 1

2 pT
1 M−1

11 p1 + W (t) + hT
1 (t)u1

+ 1
2 uT

1 �11(t)u1 (3.3)

H12 	 HHA
12 (t) = hT

2 (t)u2 + uT
1 h12(t)u2 (3.4)

where the expansion coefficients are: W (t) = W (xref
1 ), h2(t) =

(hi(xref
1 ); i ∈ 2),

h1(t) = (hi ; i ∈ 1) = ∂W
(
xref

1

)
∂xref

1

with hi = ∂W
(
xref

1

)
∂xref

i

,

�11(t) = (�ij ; i,j ∈ 1) = ∂2W
(
xref

1

)
∂xref

1 ∂xref
1

with

�ij = ∂2W
(
xref

1

)
∂xref

i ∂xref
j

,

and

h12(t) = (hij ; i ∈ 1,j ∈ 2) = ∂h2
(
xref

1

)
∂xref

1

with

hij = ∂hj

(
xref

1

)
∂xref

i

All of the above expressions are ordinary derivatives of the
interaction W and the (minus) forces h2, both being c numbers,
i.e. they are to be understood as real functions of the reference
atomic positions xref

1 (t). Note that all these coefficients are
explicit functions of time; they are not operators and can be
easily calculated given the explicit functional dependences in
W (x1) and h2(x1).

Next, the equations of motion for the operators need to
be obtained. The method of the previous section can be
applied here with the caviat that now, after the harmonization
approximation, the Hamiltonian depends on time explicitly,
H(t) = HHA

1 (t) + HHA
12 (t) + H2, see Eqs. (3.3) and (3.4).

Hence the time evolution of the density matrix and the
Heisenberg representation of operators are to be obtained using
a more general evolution operator

U (t,t0) = T̂ exp

(
− i

�

∫ t

t0

H(τ )dτ

)
184305-4



c-NUMBER QUANTUM GENERALIZED LANGEVIN . . . PHYSICAL REVIEW B 94, 184305 (2016)

where T̂ is the time-ordering operator (assuming t > t0). The
method of obtaining the equations of motion for the operators
is still straightforward as it requires the calculation of the
commutators of the operators x1, p1, q2 and u2 with the
Hamiltonian. Note that from now on, the dynamics of the atoms
in the open system are calculated with respect to the Hamilto-
nian in the harmonization approximation.

Therefore, introducing again the rescaled variables for the
bath atoms, the combined bath and interaction Hamiltonian
takes on a simpler form:

Hb = HHA
12 + H2 = 1

2 pT
2 p2 + 1

2 xT
2 D22x2 + (V2 + V21u1)T x2

(3.5)

where V2 = h2M−1/2
22 and V12 = VT

21 = h12M−1/2
22 are the

appropriately rescaled coefficients (which depend on the
reference positions xref

1 ). Calculating the commutators with
H, the following equations of motion are obtained for the
operators in the Heisenberg picture:

M11∂t x̃1 = p̃1, ∂t p̃1 = −h1 − V12̃x2 − �11ũ1 ≡ M11∂
2
t x̃1

(3.6)

where ũ1 = x̃1 − xref
1 , and

∂t x̃2 = p̃2, ∂t p̃2 = −D22̃x2 − (V2 + V21ũ1) ≡ ∂2
t x̃2.

(3.7)

The latter equation results in the decoupled differential equa-
tions for each normal mode λ as ¨̃ξλ + ω2

λξ̃λ = −Vλ(t), where
this time Vλ(t) = eT

λ (V2 + V21ũ1). Note that the nonlinear
term we encountered in Eq. (2.11) in the previous section
does not appear here, i.e., it is absent within the harmonization
approximation.

Then, the equations for the bath are easily solved similarly
to the general case considered in the previous section:

x̃2(t) = �̇22(t − t0)x2 + �22(t − t0)p2

−
∫ t

t0

�22(t − τ )[V2(τ ) + V21(τ )̃u1(τ )]dτ. (3.8)

Noticing that ∂τ V2(τ ) = ∂τ V2(xref
1 (τ )) = V21∂τ xref

1 (τ ) and
∂τ ũ1(τ ) = ∂τ x̃1(τ ) − ∂τ xref

1 (τ ), the integral above is calculated
by parts to yield:

x̃2(t) = [�̇22(t − t0)x2 + �22(t − t0)p2 + �22(t − t0)g2]

− D−1
22 [V2(t) + V21(t )̃u1(t)] +

∫ t

t0

�22(t − τ )

× [V̇21(τ )̃u1(τ ) + V21(τ ) ˙̃x1(τ )]dτ, (3.9)

where

g2 = V2(t0) + V21(t0)u1 (3.10)

and u1 = ũ1(t0) = x1 − xref
1 (t0). Substituting this solution into

Eq. (3.6), we arrive at the following differential equation for
the position operators of the system atoms:

M11 ¨̃x1(t) = F1(t)−L11(t )̃u1(t) + R1(t)−
∫ t

t0

V12(t)�22(t−τ )

× [V̇21(τ )̃u1(τ ) + V21(τ ) ˙̃x1(τ )]dτ, (3.11)

where

F1(t) = −h1(t) + V12(t)D−1
22 V2(t) (3.12)

L11(t) = �11(t) − V12(t)D−1
22 V21(t) (3.13)

are the generalized force and the force-constant matrix for
atoms in the open system, respectively. The second terms in
the right hand sides of expressions (3.12) and (3.13) are related
to the contribution of the vibrating baths atoms. Finally,

R1(t) =−V12(t)[�̇22(t − t0)x2 + �22(t − t0)p2

+�22(t − t0)g2] (3.14)

is an operator acting in the Hilbert space of the open system
[due to g2, Eq. (3.10)] and of the bath (due to x2 and p2). The
meaning of this operator will be clarified later on.

In order to solve Eq. (3.11), we need to close this equation
with respect to the unknown functions xref

1 (t). The most
obvious way to proceed is to choose these functions to be
the instantaneous positions 〈x1〉t of atoms at time t , which are
precisely the quantum averages of the position operators x̃1(t)
whose dynamical equation has just been derived. In the next
section this will enable us to establish a closed set of equations
of motion for the atomic positions 〈x1〉t .

In other words, we substitute xref
i by 〈xi〉t in Eq. (3.11).

Now the terms in Eq. (3.11) depend explicitly on the mean
values 〈x1〉t of the atomic positions in the open system (they
are not operators). Equation (3.11) is now closed, in the sense
that it depends only on the position operators x̃1(t), their time
derivatives ˙̃x1(t), ¨̃x1(t), and their quantum averages 〈x1〉t .

It is important to realize that the harmonization approxima-
tion goes beyond the usual harmonic approximation in which
the interactions in the Hamiltonian are expanded with respect
to fixed atomic positions. The difference is illustrated in Fig. 1
for the interaction W (x1). As the time evolves, the expectation
value of the atomic positions changes and the expansion of
the Hamiltonian changes with them. One may expect that the
approximation we made (the second order expansion of the
Hamiltonian) is appropriate if fluctuations of atomic positions
around the exact expectation values 〈x1〉t are small with respect
to average interatomic distances. This condition is generally
true for atoms at standard pressure and temperature, with the
possible exception of hydrogen.

FIG. 1. In the harmonization approximation a general potential
function W (x1) (black) of the coordinates x1 is approximated by
parabolas at different times (colored curves) which are fit around
the reference atomic positions xref

1 (t). The latter, after the dynamics
for the harmonization approximation is calculated exactly, are taken
to be the quantum averages 〈x1〉t themselves, i.e., the instantaneous
positions of the atoms at time t .
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Note that formally equations (3.11)–(3.14) correspond to
the initial Hamiltonian (2.1)–(2.3): Even though the har-
monization approximation was used, the parameters of the
Hamiltonian, Eqs. (3.3) and (3.5), depend on time according
to the actual system dynamics and the shape of the potential
energy terms of the original Hamiltonian.

The obtained equation of motion (3.11) represent what is
sometimes called the quantum GLE and which has been known
(for somewhat simpler Hamiltonians) since the pioneering
work of FKM [21,32]. The main problem associated with
this equation is that it is written for operators acting in the
whole Hilbert space of the open system and bath. Hence,
determination of the expectation values of the atomic positions,
the quantities which represent the actual interest, is an
additional and rather complex task. Instead, our objective here
is to derive an equation directly for these expectation values,
the so-called c-number GLE for the coordinates of the atoms of
the open system, which would enable one to compute average
atomic trajectories 〈x1〉t as a function of time taking full
account of the bath. To achieve this goal, we have to multiply
both sides of Eq. (3.11) by the initial density matrix ρ0 and then
take the trace over the whole Hilbert space (system+bath). To
accomplish this, we need an explicit expression for the initial
density matrix first.

IV. c-NUMBER QUANTUM GLE

We shall start by finding eigenvectors of the bath Hamilto-
nian (3.5) at the initial time t0 in which the displacements
of atoms of the system, ũ1(t0) = u1, are considered as
parameters. The Hamiltonian

H0
b = (HHA

2 + H12)t0 = 1
2 pT

2 p2 + 1
2 xT

2 D22x2 + gT
2 x2 (4.1)

corresponds to a set of displaced harmonic oscillators (the bath
in the presence of the open system) and can be diagonalized
exactly using the canonical transformation:

U†H0
bU =

∑
λ

�ωλ

(
b
†
λbλ + 1

2

)
+ Epol

with U = ∏
λ Uλ = ∏

λ exp (γλb
†
λ − γλbλ) and Epol =

− ∑
λ g2

λ/2ω2
λ, where the constants γλ = −gλ/

√
2�ω

3/2
λ

with gλ = eT
λ g2 were introduced. Here b

†
λ and bλ are

phonon creation and annihilation operators for the mode λ

satisfying usual commutation relations for bosons. Therefore,
the eigenvectors and eigenvalues of H0

b are, respectively:
|ψn〉 = U |n〉 = ∏

λ Uλ|nλ〉 and En = E0
n + Epol , where

E0
n = ∑

λ �ωλ(nλ + 1
2 ), and

|n〉 =
∏
λ

|nλ〉 =
∏
λ

(b†λ)nλ

√
nλ!

|0〉

is a product of the eigenstates |nλ〉 of the undisplaced λ

oscillators, and n = {nλ} is a set of integer numbers nλ =
0,1,2, . . . characterizing excitations of each of the oscillators.
The states |n〉 are orthonormal, 〈n|m〉 = δnm. It is essential
to realize that the eigenstates |ψn〉 depend parametrically on
the displacements u1 of atoms in the open system [via g2,
Eq. (3.10)].

The initial density matrix ρ0 of the whole system,
corresponding to the bath being at equilibrium with the
inverse temperature β = 1/kBT , can be generally written via
eigenstates of the Hamiltonian H0

b as follows:

ρ0 =
∑

n

ρeq
n |ψn〉ρ0

1 〈ψn|, (4.2)

where ρ
eq
n = 1

Z0
2
e−βE0

n is an eigenvalue of the equilibrium

density matrix ρ
eq

2 = 1
Z0

2
e−βH2 of (an isolated) bath and Z0

2 =∑
n e−βE0

n the corresponding partition function.
Tracing out the states of the bath should reduce this density

matrix to the density matrix ρ0
1 of the open system at the initial

time, and with the choice made above, this is indeed the case:

Tr2(ρ0) =
∑
m

〈ψm|ρ0|ψm〉

=
∑
m

〈ψm|
{∑

n

|ψn〉ρeq
n ρ0

1 〈ψn|
}

|ψm〉

=
(∑

m

ρeq
m

)
ρ0

1 = ρ0
1 .

When calculating the trace over the bath, we used the
eigenstates |ψn〉 of H0

b. Note also that
∑

m ρ
eq
m = 1 due to

normalization of the density matrix ρ
eq

2 of the bath.
Note that expression (4.2) is partition-free, i.e., it is not

based on the usually invoked Born approximation [1,39]. This
is because the initial density matrix ρ0

1 of the open system
depends on the atomic positions there and hence cannot be
taken outside the sum over states |ψn〉 which also depend
explicitly on these positions (via g2).

In order to introduce a stochastic field into our formulation,
we realize that generally any density matrix can always
be expanded in terms of the eigenstates of the bath: ρ =∑

nm |ψn〉ρ ′
nm〈ψm|, where ρ ′

nm are operators acting within the
Hilbert space of the open system. This expression is exact and
also partition-free. Inspired by the work of Ref. [54], we choose
the operator coefficients ρ ′

nm in the initial density matrix as

ρ ′
nm = ρnmei(θn−θm) = ρnm

∏
λ

ei(θnλ
−θmλ

), (4.3)

where θnλ
are random numbers (phases) uniformly distributed

between 0 and 2π , and ρnm are operators acting in the Hilbert
space of the open system only. Hence the following ansatz is
proposed for the initial density matrix of the whole system:

ρS =
∑
nm

ei(θn−θm)|ψn〉ρnm〈ψm|. (4.4)

The density matrix written in this way can be thought of as
being expanded in terms of the bath exact oscillatory functions,
|ψn〉eiθn , which contain random phases θn. We have indicated
explicitly with the superscript S that this density matrix is
stochastic in nature.

Averages with respect to the random field of phases will be
denoted with the overbar. Importantly,

eiθn =
∏
λ

eiθnλ =
∏
λ

1

2π

∫ 2π

0
eiθnλ dθnλ

= 0
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so that, when n �= m (i.e., nλ �= mλ for at least one mode λ)

ei(θn−θm) =
⎛⎝ ∏

λ∈{nλ �=mλ}
eiθnλ e−iθmλ

⎞⎠⎛⎝ ∏
λ∈{nλ=mλ}

1

⎞⎠
=

∏
λ∈{nλ �=mλ}

eiθnλ eiθmλ

∗ = 0,

while if n = m (i.e. nλ = mλ for any λ) we have
[ei(θn−θm)]n=m = 1 = ∏

λ
1

2π

∫ 2π

0 dθnλ
= 1. Hence, generally

ei(θn−θm) =
∏
λ

δnλmλ
= δnm. (4.5)

To introduce the temperature into our description, we
postulate that the stochastic field average of ρS ,

ρS =
∑
nm

ei(θn−θm)|ψn〉ρnm〈ψm| =
∑

n

|ψn〉ρnn〈ψn|, (4.6)

coincides with the exact initial density matrix of Eq. (4.2):
ρS ≡ ρ0. This procedure sets up only diagonal elements of
the operators as ρnn = ρ0

1ρ
eq
n ; nondiagonal operators ρnm

still remain undetermined at this stage. Note that Tr2(ρS) =∑
n ρnn = ρ0

1 .
To obtain an equation for the exact averages 〈x1〉St for

atoms in the open system, we multiply both sides of Eq. (3.11)
by ρS from (4.4) and then take the trace over the whole Hilbert
space (using eigenstates of H0

b). The superscript S in 〈x1〉St =
Tr(ρS x̃1(t)) indicates that a particular manifestation of the
stochastic field (a particular set of random phases) is used. Note
that, when calculating a given trajectory, the harmonization ap-
proximation is made with respect to these particular averages
corresponding to the given realization of the stochastic field.
Then, multiplying both sides of Eq. (3.11) by ρS , taking the
trace, and noting that Tr(ρS ũ1(t)) = Tr(ρS x̃1(t)) − 〈x1〉St = 0
for any time, we obtain the desired cQGLE:

M11∂
2
t 〈x1〉St = F1(t) + R1(t) −

∫ t

t0

K11(t,τ )∂t 〈x1〉Sτ dτ,

(4.7)

where K11(t,τ ) is the friction kernel (2.13), F1(t) is the
conservative force (3.12) containing a “polaron”-like
contribution from the bath (cf. [17,18]) elastically responding
to the atomic positions in the open system, and

R1(t) = Tr(ρSR1(t)) = Tr1〈R1(t)〉S2 (4.8)

is the random force, where 〈. . .〉S2 = Tr2(ρS . . .) is the
statistical average over the bath, while Tr1 corresponds to the
trace over the states of the open system.

Importantly, the derived cQGLE is self-contained as all
of the time-dependent terms in it are explicit functions of
the averages 〈x1〉St which this equation defines. At first site,
the cQGLE has the same form as the classical GLE [17,18].
However, the behavior of the random force, as will be shown
below, is very different from the classical case.

V. PROPERTIES OF THE RANDOM FORCE

The random force (4.8) contains the random phases
associated with all harmonic oscillators of the bath; at the
same time, it depends explicitly on time and hence represents

a stochastic process. To define explicitly the cQGLE, it is
necessary to study this stochastic process in more detail. In
particular, we would like to establish whether the random
force R1(t) = (Ri(t); i ∈ 1) is a Gaussian or a non-Gaussian
process. It is known [55] that if the process is Gaussian, then
odd-moment correlation functions must be equal to zero, while
even-moment correlation functions must be equal to a sum of
products of all pair correlation functions. We shall explicitly
show here that if the first statement appears to be true, the
second one is not, proving that the stochastic field, which we
have introduced above, is not Gaussian.

A. Random force

To calculate the random force, we first take the trace of the
operator (3.14) over the bath states:

〈R1(t)〉S2 = −V12(t)
[
�̇22(t − t0)〈x2〉S2 + �22(t − t0)〈p2〉S2

+�22(t − t0)〈g2〉S2
]
, (5.1)

where

〈x2〉S2 =
∑
mn

〈ψm|x2|ψn〉ρnmei(θn−θm) (5.2)

〈p2〉S2 =
∑
mn

〈ψm|p2|ψn〉ρnmei(θn−θm) (5.3)

〈g2〉S2 = 〈V2(t0) + V21(t0)u1〉S2
= ρ0

1 (V2(t0) + V21(t0)u1) = ρ0
1 g2. (5.4)

The matrix elements 〈ψm|x2|ψn〉 and 〈ψm|p2|ψn〉, which are
needed for calculating the averages 〈x2〉2 and 〈p2〉2, are
obtained by making use of the explicit expressions for the
position and momenta operators (written via bath modes
creation and annihilation operators),

x2 =
∑

λ

√
�

2ωλ

eλ(b†λ + bλ) , (5.5)

p2 = i
∑

λ

√
�ωλ

2
eλ(b†λ − bλ) , (5.6)

the fact that |ψn〉 = U |n〉, and also that U†bλU = bλ + γλ and
U†b†λU = b

†
λ + γλ. We have:

〈ψm|x2|ψn〉 =
∑

λ

√
�

2ωλ

eλ〈m|U†(b†λ + bλ)U |n〉

= δnm

∑
λ

√
2�

ωλ

eλγλ+
∑

λ

√
�

2ωλ

eλ〈m|b†λ+bλ|n〉

= −δmnD−1
22 g2 +

∑
λ

√
�

2ωλ

eλ〈m|b†λ + bλ|n〉.

Note that the matrix element in the second term is zero if
m = n. Hence, we obtain

〈x2〉S2 = −ρ0
1 D−1

22 g2 +
∑
m�=n

ρnmei(θn−θm)

×
∑

λ

√
�

2ωλ

eλ〈m|b†λ + bλ|n〉. (5.7)

184305-7



L. KANTOROVICH, H. NESS, L. STELLA, AND C. D. LORENZ PHYSICAL REVIEW B 94, 184305 (2016)

Similarly, one has:

〈p2〉S2 = i
∑
m�=n

ρnmei(θn−θm)
∑

λ

√
�ωλ

2
eλ〈m|b†λ − bλ|n〉. (5.8)

Substituting Eqs. (5.7), (5.8), and (5.4) into Eq. (5.1), and
noticing that �̇22(t − t0)D−1

22 = �22(t − t0) [17], we observe
that the only dependence on the states of the open system
in 〈R1(t)〉2 comes from the operators ρmn. Therefore, taking
the trace over the states of the open system, one obtains the
following equation for the component i ∈ 1 of the random
force:

Ri(t) =
∑
m�=n

ei(θn−θm)Zmn
i (t), (5.9)

where the coefficients

Zmn
i (t) = Amn

∑
λ

[Diλ(t)〈m|b†λ|n〉 + D∗
iλ(t)〈m|bλ|n〉]

(5.10)

do not contain the random phases. Here

Diλ(t) = −
√

�

2ωλ

Viλ(t)eiωλ(t−t0) (5.11)

and

Viλ(t) =
∑
j∈2

Vij (t)eλj , (5.12)

and we have used Eqs. (2.8) and (2.9) for the matrices �22 and
�̇22. It is easy to see that Zmn

i (t)∗ = Znm
i (t). The numbers

Amn = Tr1(ρmn) (5.13)

depend on the unknown operators ρmn which act in the Hilbert
space of the open system and correspond to the initial time
t0. Hence, in principle Amn would depend on the initial
preparation of the open system.

Recall that n and m here represent sets of positive integers
(including zero) corresponding to quantum numbers of all
vibrational modes, i.e., n = {nλ} and m = {mλ}. Two such
sets are considered different if at least for one mode λ1 the
quantum numbers differ, i.e., nλ1 �= mλ1 . In the following, to
simplify the notations, it is convenient to “forget” that n and
m are the sets of numbers and assume that they are simply
integer numbers themselves.

Before considering the correlation functions, we note that
the average of the random force, Ri(t), is zero since according
to Eq. (4.5) the double sum in Eq. (5.9) does not contain the
term m = n. Hence, the first moment of the random process is
zero.

B. Pair correlation function

We next calculate the second order correlation function:

Ri1 (t1)Ri2 (t2)

=
∑

m1 �=n1

∑
m2 �=n2

ei(θn1 −θm1 )ei(θn2 −θm2 )Z
m1n1
i1

(t1)Zm2n2
i2

(t2).

When taking the average of the exponential factors with
the phases, the integers nj and mj (j = 1,2) may take all

FIG. 2. Schematic representation of all nonzero pairings of
phases for second (a), third (b), and fourth (c) order correlation
functions. Numbers 1, 2, etc. correspond to states n1, n2, etc. (they
have the plus sign in the exponential factors), while a number with
the bar on top, 1, 2, etc. (they have the minus sign in the exponentials)
are associated with the states m1, m2, and so on. The pairing
method is somewhat similar to the well-known Wick’s theorem of
the many-body quantum statistical mechanics if numbers without the
bar on top of them are associated with annihilation operators, while
the ones with the bar with creation operators; the only difference is
that pairing of the same numbers is forbidden in our case.

possible values; they can all be different or equal, subject to
the condition that nj �= mj for any j = 1,2 [see Eq. (5.9)].
Because of this condition, three or four integers cannot be
equal; a nonzero value of the average of the exponentials in the
above expression can only be possible if the four integers split
into two pairs of equal integers. Since n1 �= m1 and n2 �= m2,
only two possibilities remain which are: (i) n1 = n2, m1 = m2

and (ii) n1 = m2, m1 = n2. It is easy to see that in the former
case the contribution is zero:

ei(θn1 −θm1 )ei(θn2 −θm2 ) = ei(θn1 −θm1 )ei(θn1 −θm1 ) = e2iθn1 e−2iθm1

= e2iθn1 e−2iθm1 = e2iθn1 (e2iθm1 )∗ = 0.

However, in the second case we obtain a nonzero result,

ei(θn1 −θm1 )ei(θn2 −θm2 ) = ei(θn1 −θm1 )ei(θm1 −θn1 )

= ei(θn1 −θn1 )e−i(θm1 −θm1 ) = 1 1 = 1

yielding

Ri1 (t1)Ri2 (t2) =
∑

m1 �=n1

∑
m2 �=n2

δn1m2δm1n2Z
m1n1
i1

(t1)Zm2n2
i2

(t2)

=
∑
n1n2

Z
n2n1
i1

(t1)Zn1n2
i2

(t2). (5.14)

We conclude that when pairing phases during averaging, the
only nonzero contribution came by pairing phases which have
opposite signs in the exponentials (the second case). This
particular pairing can be associated with a simple diagram
shown in Fig. 2(a).

Next, substituting into the last expression the explicit
formula (5.10) for the Z coefficients, we obtain:

Ri1 (t1)Ri2 (t2) =
∑
n1n2

An2n1An1n2

∑
λ1λ2

[
Di1λ1〈n2|b†λ1

|n1〉

+D∗
i1λ1

〈n2|bλ1 |n1〉
]

× [
Di2λ2〈n1|b†λ2

|n2〉 + D∗
i2λ2

〈n1|bλ2 |n2〉
]
,

184305-8



c-NUMBER QUANTUM GENERALIZED LANGEVIN . . . PHYSICAL REVIEW B 94, 184305 (2016)

FIG. 3. Two elementary graphs and the corresponding expres-
sions associated with them: (a) step “up” and (b) step “down.” In
either case the integer numbers n1 = {n1λ′ } and n2 = {n2λ′ } satisfy the
conditions: n1λ′ = n2λ′ for any λ′ �= λ, and n1λ = n2λ ± 1 otherwise.

where the time arguments have been omitted [they can easily be
restored: the time tj is placed according to Dij λj

→ Dij λj
(t j )].

It is clear that after opening the square brackets, there will
be four terms containing the following product of matrix
elements:

〈n2|b(†)
λ1

|n1〉〈n1|b(†)
λ2

|n2〉,
where the dagger inside the round brackets means that the
dagger either might be there or not. Here the phonon modes
λ1 and λ2 are independent. Clearly, no matter whether the
daggers are present or not, this product of the matrix elements
can only be nonzero if λ1 = λ2. Then, we need to consider
four expressions which contain

〈n2|b(†)
λ |n1〉〈n1|b(†)

λ |n2〉
with the same phonon index λ. Depending on the particular
combination of daggers in the above expression, it can be
either zero or nonzero. It is convenient to associate a simple
graph with each term in the Z coefficient (5.10), see Fig. 3. A
nonzero contribution appears if the appropriate combination
of two elementary graphs like those shown starts and ends at
the same state n2, see Fig. 4(a). If the left graph in Fig. 4(a)
results in the contribution

An2n1D
∗
i1λ

(t1)〈n2|bλ|n1〉An1n2Di2λ(t2)〈n1|b†λ|n2〉

= �

2ωλ

∣∣An1n2〈n1|b†λ|n2〉
∣∣2

Vi1λ(t1)Vi2λ(t2)e−iωλ(t1−t2)

then the right one yields

An2n1Di1λ(t1)〈n2|b†λ|n1〉An1n2D
∗
i2λ

(t2)〈n1|bλ|n2〉

= �

2ωλ

∣∣An1n2〈n2|b†λ|n1〉
∣∣2

Vi1λ(t1)Vi2λ(t2)eiωλ(t1−t2).

FIG. 4. All step graphs which lead to nonzero contributions for
the second order (a) and fourth order (b) correlation functions.

Summing up both terms and changing the summation indices
n1 ←→ n2 in the second term, we arrive at a very simple
result:

R1(t)RT
1 (t ′) = V12(t)

[∑
λ

AλeλeT
λ cos(ωλ(t − t ′))

]
V21(t ′).

(5.15)

By taking the transpose of both sides, it is seen that this
autocorrelation function is symmetric with respect to the
permutation of times:[

R1(t)RT
1 (t ′)

]T = R1(t ′)RT
1 (t). (5.16)

Nothing can be said at this stage about the amplitudes

Aλ = �

ωλ

∑
m�=n

|Anm|2|〈m|bλ|n〉|2 (5.17)

apart from the fact that these must depend on the temperature
and the initial preparation of the system. Note also that here
we basically have a single summation over phonon states of
the bath since

〈m|bλ|n〉 = 〈{mλ′ }|bλ|{nλ′ }〉 = √
nλδnλ−1,mλ

⎛⎝∏
λ′ �=λ

δnλ′ ,mλ′

⎞⎠.

Surprisingly, the pair correlation function (5.15) has the
same structure as the one in the classical GLE [17,18] derived
for the same Hamiltonian H, where Aλ = 1/βω2

λ. Therefore,
the unknown amplitudes Aλ in Eq. (5.15) are expected to tend
to this limit as �,β → 0.

C. Odd order correlation functions

We next consider the third order correlation function

Ri1 (t1)Ri2 (t2)Ri3 (t3)

=
∑

m1 �=n1

∑
m2 �=n2

∑
m3 �=n3

ei(θn1 −θm1 )ei(θn2 −θm2 )ei(θn3 −θm3 )

×Z
m1n1
i1

(t1)Zm2n2
i2

(t2)Zm3n3
i3

(t3).

We ought to analyze the average of the product of the three
exponentials with the phases. In the sum above, the numbers
nj and mj (j = 1,2,3) may all have different values, and also
there will be identical values. Since there are limitations on
the values of the possible integers (recall that nj �= mj for any
j = 1,2,3), then four, five or six integers cannot be identical.
If any three integers are identical, e.g., n1 = n2 = m3, then
the other three must form another triple of identical numbers
as well, m1 = m2 = n3, since otherwise the expression would
contain the average of an exponential of a single phase, eiθ ,
which is zero. So, in this case

ei(θn1 −θm1 )ei(θn2 −θm2 )ei(θn3 −θm3 )

⇒ ei(θn1 −θm1 )ei(θn1 −θm1 )ei(θm1 −θn1 )

= eiθn1 e−iθm1 = eiθn1 (eiθm1 )∗ = 0.

Hence, the only possibility that remains is the one in which the
six integers are split into three pairs of identical integers. We
have to pair up the integers of complex conjugate exponentials

184305-9



L. KANTOROVICH, H. NESS, L. STELLA, AND C. D. LORENZ PHYSICAL REVIEW B 94, 184305 (2016)

(i.e., exponentials with plus and minus signs in their exponents)
as otherwise we have zero again. Indeed, if, for instance, n1 =
n2, then the total average would contain a factor

eiθn1 eiθn2 ⇒ eiθn1 eiθn1 = e2iθn1 = 0.

Thus, pairing only complex conjugate exponentials, we have
two possibilities shown schematically in Fig. 2(b): (i) n1 =
m2, m1 = n3, n2 = m3 and (ii) n1 = m3, m1 = n2, m2 = n3.
Therefore, one can write:

ei(θn1 −θm1 )ei(θn2 −θm2 )ei(θn3 −θm3 )

= δn1m2δm1n3δn2m3e
i(θn1 −θm1 )ei(θn2 −θn1 )ei(θm1 −θn2 )

+ δn1m3δm1n2δm2n3e
i(θn1 −θm1 )ei(θm1 −θm2 )ei(θm2 −θn1 )

= δn1m2δm1n3δn2m3 1 1 1 + δn1m3δm1n2δm2n3 1 1 1

= δn1m2δm1n3δn2m3 + δn1m3δm1n2δm2n3

which results in the correlation function

Ri1 (t1)Ri2 (t2)Ri3 (t3)

=
∑
n1

∑
n2

∑
n3

[
Z

n3n1
i1

(t1)Zn1n2
i2

(t2)Zn2n3
i3

(t3)

+Z
n2n1
i1

(t1)Zn3n2
i2

(t2)Zn1n3
i3

(t3)]. (5.18)

We shall show now that either of the two terms is actually
equal to zero. As the second term is the complex conjugate of
the first, it is sufficient to consider the latter. Using the explicit
expression (5.10) for the Z coefficients and multiplying all
terms out, we arrive at an expression containing eight terms
altogether, each of them being proportional to a product of
three matrix elements:

〈n3|b(†)
λ |n1〉〈n1|b(†)

λ |n2〉〈n2|b(†)
λ |n3〉

where we have already set indices of all the three phonon
modes to be the same and equal to λ, as otherwise the result
would be zero. Going from left to right, in this product we
start from the state n3 and must end at the same state. Clearly,
that should require the same number of steps “up” and “down”
on the step graphs, which is impossible with the three steps
available here. Hence, for any combination of daggers in the
above expression the product of the matrix elements is zero,
leading to the zero contribution to the third order correlation
function. The same is true for the second term in Eq. (5.18).
Thus, the third order correlation function is equal to zero.

Similar analysis can be performed for any odd order
correlation function: The corresponding product of matrix
elements will be zero as there will only be an odd number
of steps available in the step graphs. Hence, any odd order
correlation function is equal to zero.

D. Even order correlation functions

Similarly one can consider higher order even correlation
functions. It follows that, when averaging over phases, that
nonzero contributions arise only by pairing integers belonging
to complex conjugate exponentials (note that integers from
different pairs may coincide as well, however, this falls within
the remit of the pairing scheme, i.e., this case does not need
to be considered separately). However, we find that the final

expression does not contain a sum of products of only pair
correlation functions, see Eq. (5.14), as there will be cross
terms as well.

To illustrate this point, consider the fourth order correlation
function

Ri1 (t1)Ri2 (t2)Ri3 (t3)Ri4 (t4)

=
∑

m1 �=n1

∑
m2 �=n2

∑
m3 �=n3

∑
m4 �=n4

× ei(θn1 −θm1 )ei(θn2 −θm2 )ei(θn3 −θm3 )ei(θn4 −θm4 )

× Z
m1n1
i1

(t1)Zm2n2
i2

(t2)Zm3n3
i3

(t3)Zm4n4
i4

(t4).

When pairing the phases, nine contributions emerge overall,
see Fig. 2(c). They are split into two types of terms. Consider
first the term associated with the pairing 1 in the figure. It leads
to the factor δn1m2δn2m1δn3m4δn4m3 after averaging and hence to
the following contribution to the correlation function:[∑

n1n2

Z
n1n2
i1

(t1)Zn2n1
i2

(t2)

][∑
n3n4

Z
n3n4
i3

(t3)Zn4n3
i4

(t4)

]
= Ri1 (t1)Ri2 (t2) × Ri3 (t3)Ri4 (t4). (5.19)

We see that this particular pairing scheme yields a product of
two pair correlation functions, cf. Eq. (5.14).

There are two more pairing schemes, 6 and 9 in Fig. 2(c),
which lead to a product of pair correlation functions as well.
This can be seen, e.g., by permuting pairs of numbers in the
schemes. For instance, after permuting 22 ←→ 33 in pairing
scheme 6, it becomes identical to the pairing scheme 1. Hence,
the contribution of scheme 6 can be obtained from the above
expression (5.19) by the permutation i2,t2 ←→ i3,t3.

The second type of terms is provided by the other six pairing
schemes 2, 3, 4, 5, 7, and 8 in Fig. 2(c). Scheme 2 yields the
factor of δn1m2δn2m4δn3m1δn4m3 and hence the contribution∑

n1n2n3n4

Z
n3n1
i1

(t1)Zn1n2
i2

(t2)Zn4n3
i3

(t3)Zn2n4
i4

(t4) (5.20)

to the correlation function. This term cannot be split into a
simple product of two pair correlation functions since all four
Z coefficients are coupled. Other pairing schemes 3, 4, 5, 7,
and 8 can be related to this one by an appropriate permutation
of the pairs of numbers. For instance, pairing scheme 3 is
brought into 2 by the permutation 44 ←→ 33, and hence the
final contribution of pairing 3 is obtained from Eq. (5.20) by
the permutation i4,t4 ←→ i3,t3. The same can be done for all
other pairing schemes belonging to this second type of pairing.

Therefore, it is sufficient to consider just one pairing scheme
of this type. We shall consider the scheme 2. First, we reorder
terms in the product (5.20) of the Z coefficients:

Z
n3n1
i1

(t1)Zn1n2
i2

(t2)Zn2n4
i4

(t4)Zn4n3
i3

(t3).

This ensures the continuous flow of the state numbers, n3 →
n1 → n2 → n4 → n3, when reading from left to right. Hence,
we can now turn to step graphs which start and end at the
same state n3. There are four Z coefficients and hence we
can make four steps overall; two steps up and two steps
down would give nonzero contributions. There are six such
step graphs possible, all shown in Fig. 4(b), and any of them

184305-10



c-NUMBER QUANTUM GENERALIZED LANGEVIN . . . PHYSICAL REVIEW B 94, 184305 (2016)

gives a nonzero contribution. The graphs in the Figure are
arranged in pairs horizontally which provide contributions that
are complex conjugate to each other. The top left graph in
Fig. 4(b) is associated with the contribution∑

λ

∑
n1n2n3n4

δn1n4An3n1An1n2An2n1An1n3D
∗
i1λ

D∗
i2λ

Di3λDi4λ

× |〈n1|b†λ|n3〉〈n2|b†λ|n1〉|2

=
∑

λ

A
(a)
λ Vi1λ(t1)Vi2λ(t2)Vi3λ(t3)Vi4λ(t4)e−iωλ(t1+t2−t3−t4),

where

A
(a)
λ =

(
�

2ωλ

)2 ∑
n1n2n3

|An3n1An1n2〈n1|b†λ|n3〉〈n2|b†λ|n1〉|2

is a positive real factor. Note that because of the matrix
elements, the states in the triple sum above are constrained
by the conditions: n1 �= n2,n3.

The step graph on the right of the one we have just
considered results in a complex conjugate contribution, leading
therefore to the following real contribution from both these
graphs:

2
∑

λ

A
(a)
λ Vi1λ(t1)Vi2λ(t2)Vi3λ(t3)Vi4λ(t4)

× cos (ωλ(t1 + t2 − t3 − t4)). (5.21)

Similarly the other two pairs of the step graphs can be
considered, resulting in the following contributions:

2
∑

λ

A
(b)
λ Vi1λ(t1)Vi2λ(t2)Vi3λ(t3)Vi4λ(t4)

× cos (ωλ(t1 − t2 − t3 + t4)) (5.22)

is associated with the two graphs in the middle of Fig. 4(b),
while

2
∑

λ

A
(a)
λ Vi1λ(t1)Vi2λ(t2)Vi3λ(t3)Vi4λ(t4)

× cos (ωλ(t1 − t2 + t3 − t4)) (5.23)

is attributed to the two graphs at the bottom. Here

A
(b)
λ =

(
�

2ωλ

)2 ∑
n1n2

|An1n2〈n2|b†λ|n1〉|4.

The sum of the three contributions (5.21)–(5.23) corresponds
to pairing scheme 2 in Fig. 2(c).

Other pairing schemes 3, 4, 5, 7, and 8 in the figure
are obtained by permuting indices ij and the times tj as
was explained above. As can be seen from the formulas
(5.21)–(5.23), each contribution is symmetric with respect to
the permutations of the indices ij , so only times need to be
permuted. The final expression for the correlation function,
containing contributions from all pairing schemes, becomes
fully symmetric with respect to permutations of times. The
correlation function depends on two unknown coefficients A

(a)
λ

and A
(b)
λ for each normal mode λ of the bath.

Hence, the fourth order correlation function, apart from
the three terms corresponding to a product of all possible
pair correlation functions, contains additional nonzero terms

which cannot be represented as a product of pair correlations
functions. The method developed above can be applied without
difficulty to higher (even) order correlation functions if
necessary.

E. Are the stochastic forces Gaussian?

We conclude that the higher order correlation functions do
not fully satisfy the properties of a Gaussian stochastic process:
Although correlation functions of any odd order are zero, even
order correlation functions do not split solely into a sum of
products of pair correlation functions; there are additional
nonzero terms as well. This property of the stochastic forces
poses a certain difficulty in numerical simulations as, at
variance with the Gaussian stochastic forces of the classical
case, a two-force correlation function is not sufficient for
numerical simulations in the quantum case, i.e., higher order
correlation functions need also be considered when generating
the stochastic forces in actual numerical simulations. As the
simplest approximation, one can assume that the stochastic
forces in the c-number quantum GLE equations are Gaussian
in which case only the lowest order (pair) correlation function
suffices.

VI. SAMPLING OVER THE STOCHASTIC FIELD

Because of the way the stochastic field has been introduced,
exact results can only formally be obtained by averaging
the calculated trajectories using different sampling of the
stochastic field. This follows from the fact that we obtain
the same equations of motion for the exact mean values
〈x1〉t = Tr(ρ 0̃x1(t)) after averaging over the stochastic field
and after calculating the expectation values of the position
operator x1 without the stochastic field in it, i.e., using directly
the density matrix (4.2).

Indeed, let us first perform the stochastic averaging of the
equations of motion (4.7). Since ρS = ρ0, the averaged mean

values 〈x1〉St = Tr(ρS x̃1(t)) can be replaced with the exact
ones, 〈x1〉t = Tr(ρ 0̃x1(t)). Next, since the stochastic average
of the random force is zero, the equation for the mean values
of the positions reads:

M11∂
2
t 〈x1〉t = F1(t) −

∫ t

t0

K11(t,τ )∂t 〈x1〉τ dτ. (6.1)

It is easily checked that the same equation is obtained
directly by performing quantum statistical average of the
Heisenberg equations (3.11) using the exact density matrix
ρ0 of Eq. (4.2). To this end, we multiply both sides of this
equation by ρ0 and take the trace over the whole system. The
average of the random force operator R1(t) reads

〈R1(t)〉t = Tr1〈R1(t)〉2 = −V12(t)
[
�̇22(t − t0)〈x2〉t

+�22(t − t0)〈p2〉t + �22(t − t0)〈g2〉t
]
,

where 〈g2〉t = V2(t0) (see the definition (3.10)). Using
Eq. (4.2), we write:

〈x2〉t = Tr1

∑
n

ρeq
n ρ0

1 〈ψn|x2|ψn〉

=−D−1
22 Tr1

(
ρ0

1 g2
) = −D−1

22 〈g2〉t
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and 〈p2〉t = 0, cf. the derivation of Eqs. (5.7) and (5.8), and
we obtain 〈R1(t)〉t = 0. Hence, multiplying both sides of
Eq. (3.11) by ρ0, taking the trace over the whole system, and
using the fact that Tr(ρ0ũ1) = 0, we arrive at the same Eq. (6.1)
for the exact mean values. We conclude that exact results
can only formally be obtained by averaging the calculated
trajectories over different realizations of the stochastic field.

VII. THE CLOSURE RELATIONSHIP

Until now we have demonstrated that there exists a class
of cQGLEs of the form similar to the classical GLE and
containing generally non-Gaussian random forces. If one
assumes that the forces are approximately Gaussian, then
the pair correlation function is sufficient to generate them.
However, in order to know the pair correlation function,
according to Eq. (5.15), one needs to determine the unknown
amplitudes Aλ. Here we shall propose a heuristic argument that
yields an explicit expression for Aλ with the correct classical
limit. It is based on an assumption that the correlation function
of the random force does not depend on the order in which the
averages are taken.

Equation (5.15) was derived with the trace over both
regions (the quantum statistical average) taken first to yield
R1(t) = Tr(R1(t)), and only after that the average over the
stochastic field was applied when calculating the correlation
function over the stochastic field of the phases. However, the
calculation can also be done in a different order: first, we
average with respect to the stochastic field (which results in
the initial density matrix since ρS ≡ ρ0), and only then the
trace with the averaged density matrix ρ0 is performed. Our
hypothesis states that the correlation functions calculated in
both ways must coincide. Since the correlation function (5.15)
is symmetric with respect to the time permutation, t ↔ t ′ (and
is real), the required condition (which we shall call the closure
relationship) is:

R1(t)RT
1 (t ′) = 1

2

[〈R1(t)R†
1(t ′)〉av + 〈R1(t ′)R†

1(t)〉av

]
.

(7.1)

Here the operator R1(t) is defined by Eq. (3.14). In calculating
the averages 〈. . .〉av = Tr1Tr2(ρ0 . . .) = Tr1〈. . .〉2, we use the
explicit expression (4.2) for ρ0.

When calculating the whole trace 〈. . .〉av , it is convenient
to perform the trace over the bath first:

〈R1(t)R†
1(t ′)〉2 = ρ0

1

∑
m

ρeq
m 〈ψm|R1(t)R†

1(t ′)|ψm〉

= ρ0
1

∑
m

ρeq
m 〈m|U†R1(t)R†

1(t ′)U |m〉

= ρ0
1

∑
m

ρeq
m 〈m|R̃1(t)R̃T

1 (t ′)|m〉,

where R̃1(t) = U†R1(t)U . To calculate the latter force opera-
tor, it is useful first to simplify the expression for the force.

From Eq. (3.14)

R1(t) =−
∑

λ

√
�

2ωλ

V12(t)[(�̇22(t − t0) + iωλ�22(t − t0))

× eλb
†
λ + (�̇22(t − t0) − iωλ�22(t − t0))eλbλ]

− V12(t)�22(t − t0)g2.

Using Eqs. (2.8) and (2.9), we find that

(�̇22(t − t0) + iωλ�22(t − t0))eλ = eλe
iωλ(t−t0)

so that we finally obtain for the force operator an expression:

R1(t) =
∑

λ

[D1λ(t)b†λ + D∗
1λ(t)bλ] − V12(t)�22(t − t0)g2,

(7.2)

where the elements of the vector D1λ(t) = (Diλ,i ∈ 1) are
given by Eq. (5.11).

Then using the fact that U†bλU = bλ + γλ and U†b†λU =
b
†
λ + γλ, we easily obtain:

R̃1(t) =
∑

λ

[D1λ(t)b†λ + D∗
1λ(t)bλ]. (7.3)

We see that the third term in Eq. (7.2) disappears completely,
which renders the tilde-force operator R̃1(t) to be independent
of the displacement vector u1. Hence, the trace over the
open system is trivially calculated resulting in the following
expression for the correlation function:

〈R1(t)R†
1(t ′)〉av =

∑
m

ρeq
m 〈m|R̃1(t)R̃T

1 (t ′)|m〉

= 〈R̃1(t)R̃T
1 (t ′)〉eq2 .

This is nothing but the trace over the bath using its equilibrium
density matrix. Therefore, from Eq. (7.3) it is clear that, upon
multiplication of the tilda forces, only products of annihilation
and creation operators will contribute:〈

R̃1(t)R̃T
1 (t ′)

〉eq
2 =

∑
λλ′

{
[D1λ(t)D†

1λ′(t ′)]〈b†λbλ′ 〉eq2

+ [D1λ(t)D†
1λ′(t ′)]∗〈bλb

†
λ′ 〉eq2

}
. (7.4)

Since

D1λ(t)D†
1λ′

(
t ′

) = V12(t)

[
�

2ωλ

eλeT
λ eiωλ(t−t ′)

]
V21(t ′)

and 〈b†λbλ′ 〉eq2 =〈bλb
†
λ′ 〉eq2 − δλλ′ = δλλ′nλ = δλλ′(eβ�ωλ − 1)

−1
,

we obtain:

〈R1(t)R†
1(t ′)〉av = V12(t)

[∑
λ

�

ωλ

(
nλ + 1

2

)
eλeT

λ

×cos(ωλ(t − t ′)) − i�

2
�22(t − t ′)

]
V21(t ′),

(7.5)

where Eq. (2.8) was also used. Note that the second term
is purely imaginary and is antisymmetric with respect to the
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time permutation. This term disappears when using the above
expression in the closure relationship, Eq. (7.1), which yields:

R1(t)RT
1 (t ′) = V12(t)

[∑
λ

�

ωλ

(
nλ + 1

2

)
eλeT

λ

× cos(ωλ(t − t ′))

]
V21(t ′). (7.6)

The expression on the right hand side has the same form as
expression (5.15), where we used a different ordering for the
averages (i.e., first the quantum statistical average and then
the stochastic average). Comparing these two expressions, we
obtain the following formula for the amplitudes we have been
looking for:

Aλ = �

ωλ

(
nλ + 1

2

)
= �

2ωλ

coth

(
1

2
β�ωλ

)
. (7.7)

It can be seen that this expression for the amplitude tends to
the correct classical limit, Aλ → 1/βω2

λ, when either � → 0
or β → 0. It is highly encouraging that the same form of the
pair correlation function has been obtained by the two methods.
Moreover, the second method enabled us to propose an explicit
expression for the previously unknown amplitudes Aλ. The
result we obtained basically coincides with the expression from
[21,22,25,32] for the correlation function that was used in [45–
48] without a proper justification (and for a more simplified
Hamiltonian).

Unfortunately, an analogous procedure does not seem to
exist for higher order correlation functions. This is because an
average of a product of the force correlations functions,〈

Ri1 (t1)Ri2 (t2)Ri3 (t3) . . .
〉
av

= 〈
R̃i1 (t1)R̃i2 (t2)R̃i3 (t3) . . .

〉eq
2 ,

(7.8)

is given by the quantum-statistical average over the equilibrium
bath, as given above, and hence the Wick’s theorem can be used
to calculate it. An appropriate calculation shows that odd order
averages are all zero, but even order ones split into a sum of
products of only pair correlations (7.4). Hence, the extra terms
we encountered in Sec. V D do not appear at all in the averages
(7.8). So the question of obtaining unknown amplitudes in the
extra terms in the even order correlation functions (as, e.g.,
A

(a)
λ and A

(b)
λ from Sec. V D), still remains open. One must

expect that these extra terms that cannot be represented as
a product of pair correlation functions, must tend to zero in
the classical limit of �,β → 0. This would ensure that in the
classical limit the random forces correspond to a Gaussian
stochastic process.

VIII. CONCLUSIONS

In conclusion, in this paper we offer a derivation of a fully
quantum c-number GLE which is a self-contained equation
for the expectation values of the positions of atoms in the open
system. Our method is based on a rather general Hamiltonian
of the combined system (the open system and bath) which
possesses a surprising similarity with its classical analog [17]:
an identical friction kernel and a similar structure of the
random force autocorrelation function. Our derivation is based

on the harmonization approximation whereby a harmonic
expansion is made around the exact instantaneous mean values
of the positions of atoms in the open system which evolve
in time. A possible direction for future research is to go
beyond this approximation, e.g., along the lines proposed in
Refs. [29,46]. No product approximation was assumed in our
treatment for the initial density matrix of the combined system
as done, e.g., in the Feynman-Vernon method [39,42] and
some of the traditional quantum (operator) GLE approaches
[32]. Our equations contain non-Gaussian stochastic forces,
which have zero mean and appropriate correlation functions,
and perform as a colored noise. The simplest pair correlation
function has the same functional form as in the classical case
[17] but contains amplitudes Aλ which may depend on the
initial preparation of the open system and, of course, on the
temperature. It is also shown that after sampling over many
trajectories due to different realizations of the stochastic field,
our approach converges to the exact trajectory for the mean
values 〈x1〉t of the open system atomic positions.

In the first approximation, stochastic forces may be consid-
ered as Gaussian. To offer a practical computational scheme,
an explicit expression for the amplitudes of the pair correlation
function was offered. It is based on a conjecture that no matter
in which order the stochastic and statistical averages are taken
when calculating the random force autocorrelation function,
the same result is to be expected. The obtained expression for
the amplitudes has the correct classical limit.

Our method sets a foundation for a practical “classical”-like
computational technique, which could be used for calculat-
ing atomic trajectories in an open system under arbitrary
nonequilibrium conditions—these would be fully quantum
MD simulations for mean atomic positions. Note that quantum
MD simulations based on path integrals [56,57] are designed
only for thermodynamic equilibrium.

One may ask: Why perform quantum MD simulations
with stochastic forces with subsequent averaging over many
realizations of the stochastic field instead of solving directly
the equations for the mean atomic positions that do not contain
the stochastic force? There are at least two advantages in using
stochastic methods: (i) stochastic equations of motion give
access to fluctuations of atomic trajectories from the mean
trajectory, and (ii) there exist powerful numerical techniques
for solving stochastic differential equations with the memory
and random forces [18–20] which can be exploited (assuming
that stochastic forces are Gaussian). Of course, further work is
needed in designing a computational scheme which accounts
for the non-Gaussian character of the random force.
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