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We consider the dynamics of an impurity atom immersed in an ideal Fermi gas at zero temperature. We focus
on the coherent quantum evolution of the impurity following a quench to strong impurity-fermion interactions,
where the interactions are assumed to be short range like in cold-atom experiments. To approximately model the
many-body time evolution, we use a truncated basis method, where at most two particle-hole excitations of the
Fermi sea are included. When the system is initially noninteracting, we show that our method exactly captures the
short-time dynamics following the quench, and we find that the overlap between initial and final states displays
a universal nonanalytic dependence on time in this limit. We further demonstrate how our method can be used to
compute the impurity spectral function, as well as describe many-body phenomena involving coupled impurity
spin states, such as Rabi oscillations in a medium or highly engineered quantum quenches.
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I. INTRODUCTION

The coherent evolution of quantum many-body systems out
of equilibrium defines a new frontier in current research, and is
of fundamental importance to a number of fields, ranging from
neutron stars to electronic devices. In fermionic systems, the
investigation of dynamics at the relevant time scale—the Fermi
time τF = �/εF , with εF the Fermi energy—has recently
become available due to advances in the field of ultracold
atoms. The cold-atom system possesses a number of unique
advantages over its solid-state counterparts [1]. Most notably,
the parameters of the governing models are precisely known
and can be rapidly changed; the cold-atom system is well
isolated; and the real-time observation of coherent many-body
dynamics is experimentally accessible. The Fermi time is
typically in the microsecond range, in stark contrast to the
solid-state scenario where τF is shorter by about 10 orders
of magnitude due to the much lighter particles and higher
densities. The possibility of probing the coherent dynamics
of ultracold Fermi gases has stimulated a large theoretical
effort to understand interaction quenches in the crossover
from Bardeen-Cooper-Schrieffer (BCS) type superfluidity to a
Bose-Einstein condensate (BEC) of tightly bound pairs [2–4].

A particularly clean realization of coherent dynamics on the
Fermi time scale is afforded by population-imbalanced Fermi
gases [5–13]. Here, it is possible to investigate the dynamical
response of a many-fermion system to the sudden introduction
of an impurity. This response plays a central role in important
phenomena such as the orthogonality catastrophe [14]. A
recent experiment employed Ramsey interferometry on heavy
40K impurity atoms immersed in a 6Li Fermi sea, revealing
both the real-time formation of impurity quasiparticles as well
as the interference between attractive and repulsive polaron
branches [15]. The Ramsey protocol provides a direct measure
of the time-dependent overlap function at time t [16,17]

S(t) = 〈ψ0|eiĤ0t e−iĤintt |ψ0〉, (1)

where |ψ0〉 is the initial noninteracting state of the total system,
t = 0 defines the point where the impurity starts interacting
with the Fermi sea, and Ĥ0 and Ĥint correspond to the Hamilto-
nians in the absence and presence of interactions, respectively.
As such, Ramsey interferometry provides detailed information

on the time evolution of the impurity wave function. Through-
out this article, we focus on the purely quantum evolution at
zero temperature, and we work in units where �, the Boltzmann
constant kB , and the volume are all set to 1.

The dynamical response of a strongly interacting quantum
many-body system is a challenge to determine theoretically
since the interactions cannot be treated perturbatively. Here, we
present a theoretical approach to determine the coherent impu-
rity dynamics based on truncating the Hilbert space of impurity
wave functions at a fixed number of particle-hole excitations of
the Fermi sea. As we demonstrate, this truncated basis method
(TBM) allows us to capture the Ramsey response exactly at
times t � τF , where two-body correlations dominate. We also
consider the challenging scenario of an infinitely heavy (static)
impurity, where one has the orthogonality catastrophe [14],
and the overlap in Eq. (1) exhibits a power-law decay at long
times arising from the multiple low-energy excitations of the
Fermi sea. In this case, we show that the TBM provides results
that are essentially exact to several τF . Hence, the TBM likely
provides a near-exact solution up to several τF for coherent
impurity dynamics in the strongly interacting regime, even
when the impurity mass is finite. Furthermore, we argue that
the TBM also captures the long-time Ramsey response in cases
where the attractive polaron [18,19] is well defined.

A key result of the present work is the exact short-time
evolution of the Ramsey response, which is dominated by
two-body physics for t � τF . In the case where the short-range
interaction of the |↑〉 impurity with the Fermi sea is described
by a single parameter, the scattering length a, the Ramsey
response takes the form

S(t) � 1 − 8e−iπ/4(m/mr )3/2

9π3/2

(
t

τF

) 3
2

. (2)

Here, m (mim) is the mass of a majority (impurity) particle, and
mr = mmim/(m + mim) is the reduced mass. Note that Eq. (2)
does not depend on the scattering length and, furthermore,
it does not display the short-time behavior expected from
a simple expansion of the time-evolution operators, where
we have 1 − S(t) ∝ t2. Such a quadratic dependence on
time is also expected for a Loschmidt echo [20], which is
defined as a time-dependent wave function overlap similar
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to Eq. (1) and which yields information about an imperfect
time-reversal procedure applied to a quantum system. Instead,
the nonanalytic behavior of S(t) is a direct consequence of
the renormalization of the contact interactions. For resonances
where the effective range reff greatly exceeds the van der Waals
range of the interatomic interactions, reff must be taken into
account in the short-time evolution. In this case, we find

S(t)�1− (m/mr )2

3πkF R∗

(
t

τF

)2

+ 16eiπ/4(m/mr )5/2

45π3/2(kF R∗)2

(
t

τF

) 5
2

, (3)

where kF = √
2mεF is the Fermi momentum and we define

the positive range parameter R∗ = −reff/2. Again, the Ramsey
response is independent of scattering length, and while
the leading-order contribution has the expected form of a
Loschmidt echo, the next-order correction is nonanalytic.

The TBM provides us with a framework in which impurity
dynamics can be explored systematically. To illustrate this
point, we apply it to two scenarios of coherent impurity
dynamics beyond the Ramsey response: Rabi oscillations
between quasiparticle branches, and the dynamical preparation
of strongly interacting quantum states. We also show how the
TBM allows the straightforward calculation of the impurity
spectral function.

The paper is organized as follows. In Sec. II, we describe the
model Hamiltonian, while in Sec. III we outline the truncated
basis method. In Sec. IV we present our results for the Ramsey
response, including the analytic short- and long-time behavior,
as well as for the impurity spectral function. Sections V and VI
discuss, respectively, Rabi oscillations and how the initial
quantum state can be modified. Section VII then examines
the role played by multiple particle-hole excitations, focusing
for simplicity on a static impurity. We conclude in Sec. VIII.

II. MODEL

In the following, we consider the dynamics of a single
impurity immersed in a Fermi gas. For this purpose, it is
convenient to consider two impurity spin states, σ =↓ , ↑,
of which one (↑) is strongly interacting with the Fermi sea,
while the other (↓) is noninteracting. To model interactions,
we employ a two-channel Hamiltonian. Restricting ourselves
at first to the part of the Hamiltonian describing the interacting
↑ impurity state and the medium, we have

Ĥint =
∑

k

εk,imĉ
†
k↑ĉk↑ +

∑
k

εkf̂
†
k f̂k +

∑
k

[εk,M + ν]d̂†
kd̂k

+ g
∑
k,q

(d̂†
qf̂q/2+kĉq/2−k,↑ + ĉ

†
q/2−k,↑f̂

†
q/2+kd̂q). (4)

The first line of Eq. (4) corresponds to the noninteracting
Hamiltonian Ĥ0, where ĉ

†
kσ (ĉkσ ) creates (annihilates) an

impurity particle with momentum k, spin σ , mass mim, and
single-particle energy εk,im = k2

2mim
. Likewise, the operators f̂

†
k

and f̂k respectively create and annihilate a majority fermion
with momentum k, mass m, and single-particle energy εk =
k2

2m
. The spin-↑ impurity interacts with the fermions by forming

a closed channel molecule described by the creation and anni-
hilation operators d̂

†
k and d̂k with momentum k, single-particle

energy εk,M = k2

2M
, and mass M = m + mim. The detuning

of this closed channel molecule from the impurity-fermion
scattering threshold is denoted ν. The interaction—second line
of Eq. (4)—has a coupling strength g for relative momenta with
magnitude |k| < 	, where 	 is a UV cutoff.

Using standard techniques (see, e.g., Ref. [21]), we relate
the bare interaction parameters g,	, and ν to renormalized
quantities by calculating the low-energy spin-↑ impurity-
fermion scattering amplitude at a relative momentum k within
the model (4). We then compare the resulting expression with
the standard low-energy expansion of the scattering amplitude

f (k) = − 1

a−1 − 1
2 reffk2 + ik

, (5)

where a and reff are the scattering length and effective range,
respectively. This procedure yields the scattering length a

through

mr

2πa
= − ν

g2
+

	∑
k

1

εk + εk,im
. (6)

In particular, we see how the model allows us to tune the
scattering length to resonance, 1/a = 0. For resonances where
|reff| greatly exceeds the range of the bare interaction, reff is
negative and we instead define the range parameter [22]

R∗ = −reff/2 = π

m2
r g

2
. (7)

We emphasize that the model (4) reduces to the commonly
used single-channel model with R∗ = 0 by taking g,ν → ∞
in such a way that ν/g2 = mr	/π2 − mr/(2πa).

The presence of the auxiliary ↓ state enables one to probe
impurity dynamics starting from a noninteracting state. For
instance, interactions between the impurity and the medium
can suddenly be switched on by using a radio-frequency (rf)
pulse which couples the ↓ and ↑ impurity states. The total
Hamiltonian is then Ĥ = Ĥint + Ĥaux with

Ĥaux =
∑

k

(εk,im + δ)ĉ†k↓ĉk↓

+ �0

2i

∑
k

(eiϕĉ
†
k↓ĉk↑ − e−iϕ ĉ

†
k↑ĉk↓). (8)

Here, �0 and ϕ are the Rabi frequency and phase of the rf pulse,
respectively, and δ ≡ ω − ω0 is the detuning of the rf pulse
with frequency ω from the bare ↓ - ↑ transition frequency, ω0.
Note that we have applied the rotating-wave approximation,
assuming |δ/(ω + ω0)| � 1. For the remainder of this paper,
we set ω0 to zero.

III. TRUNCATED BASIS METHOD

To formulate our approach to the many-body dynamics,
we start from the time-dependent variational principle, which
is applicable to any many-body system and is not limited
to impurity dynamics. Here, we wish to determine the time
evolution of an approximate variational wave function ψ(t)
that best describes that of the actual system. To this end, we
consider the action of the operator ε̂ = i∂t − H, where H
is the Hamiltonian that governs the dynamics of the system.
Clearly, if ψ were the exact wave function, then ε̂ψ = 0.
More generally, if we know ψ(t) at time t and we wish to
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approximately determine ψ(t + δt), we must minimize the
“error” quantity [23]

� =
∫

|ε̂ψ(t)|2dV, (9)

with respect to the unknown function ∂tψ , where the above
integral is over all space. There are also other formulations of
the time-dependent variational principle that give equivalent
results [24].

In what follows, we will consider wave functions of the form
|ψ〉 = ∑

j γj |j 〉, where {|j 〉} represents a subset of a complete
orthonormal set of states. Within this truncated basis, Eq. (9)
becomes

� = i
∑

j

(γ̇ ∗
j 〈j |H|ψ〉 − γ̇j 〈ψ |H|j 〉)

+
∑
j,l

〈j |l〉γ̇ ∗
j γ̇l + 〈ψ |H2|ψ〉, (10)

where γ̇j = dγj

dt
. Imposing the condition ∂�

∂γ̇ ∗
j

= 0 then gives

〈j |ε̂|ψ〉 = 0. (11)

Exploiting the orthonormality of the basis states, 〈j |l〉 = δjl ,
finally yields the equations of motion:

i
dγj

dt
=

∑
l

〈j |H|l〉γl ≡
∑

l

Hj lγl . (12)

Note that the norm of the wave function is preserved in this
case since we have 〈ψ |ε̂|ψ〉 = 0, i.e.,

d

dt
〈ψ |ψ〉 = i(〈ψ |H|ψ〉 − 〈ψ |H|ψ〉) = 0. (13)

Equivalently, we can see this from the fact that the time-
evolution operator within this subspace is unitary.

A. General solution for a quench

To determine the approximate time evolution of a system,
one must in general solve the set of coupled differential
equations (12) directly. However, the situation simplifies when
the system evolves under a time-independent Hamiltonian.
This includes the scenario where there is an abrupt change in
the parameters of the Hamiltonian at time t = 0; i.e., starting
from some initial state, the system undergoes a quench, which
is the focus of this paper.

In this case, one proceeds by solving for the eigenstates
of the projected Hamiltonian Hj l , using the equations for the
energy E,

Eγj =
∑

l

Hj lγl, (14)

and then expanding the system’s wave function |ψ(t)〉 in terms
of these eigenstates. To be concrete, suppose we start from
some initial state |ψ(0)〉, and we instantaneously “turn on” the
effect of the Hamiltonian H at time t = 0. The resulting wave
function is

|ψ(t)〉 = e−iHt |ψ(0)〉 �
∑

n

〈φn|ψ(0)〉e−iEnt |φn〉, (15)

where |φn〉 are the eigenstates within the {|j 〉} subspace,
and En are the corresponding eigenenergies. Note that this

implicitly assumes that the eigenstates are orthogonal, but this
is guaranteed from the fact that the Hamiltonian is Hermitian
in this subspace.

B. Impurity wave function

For the specific case of an impurity interacting with a Fermi
medium, we consider wave functions of the form

|ψ〉 = |ψ↑〉 + |ψ↓〉, (16a)

where

|ψ↑〉 =
[
α0ĉ

†
0↑ +

∑
q

αqd̂
†
qf̂q +

∑
k,q

αkqĉ
†
q−k↑f̂

†
k f̂q

]
|FS〉,

(16b)

|ψ↓〉 =
[
β0ĉ

†
0↓ +

∑
k,q

βkqĉ
†
q−k↓f̂

†
k f̂q

]
|FS〉. (16c)

Here, |FS〉 = ∏
|q|<kF

f̂
†
q |0〉 describes the noninteracting

Fermi sea with energy E0 = ∑
|q|<kF

εq. Thus, we require that
|k| > kF and |q| < kF for particle and hole excitations, re-
spectively, in the impurity wave functions. We have implicitly
assumed the impurity to have zero momentum, which is a good
approximation in the limit of a small impurity density and zero
temperature. The wave functions illustrate how the impurity
can excite particles out of the Fermi sea leaving holes behind,
and in both spin channels we truncate the wave function at one
particle-hole excitation. The difference between |ψ↑〉 and |ψ↓〉
arises from the fact that the interacting spin ↑ impurity can bind
a majority fermion to form a closed-channel molecule. Similar
wave functions have been used to describe the equilibrium
properties of an impurity in a Fermi gas: For the ground state,
this includes the attractive quasiparticle [18,25,26] and the
transition to a dressed dimer state [27–29], as well as the
transition to a trimer ground state [30]. Such wave functions
have also been used to describe the metastable upper branch,
i.e., the repulsive polaron [31].

When diagonalizing the Hamiltonian within the truncated
basis spanned by states of the form (16), we note that the
interaction part of the Hamiltonian, Eq. (4), still contains both
the bare coupling g and the detuning ν. While g is related
to R∗ via Eq. (7), it is not possible to immediately trade
the detuning for the renormalized interaction parameter, the
scattering length, as the momentum cutoff cannot be taken to
infinity. Thus, in practice we apply the following procedure:
For a given a and R∗, we first choose a momentum cutoff
	 and adjust ν according to Eq. (6) to obtain the desired
scattering length. Next, we increase the momentum grid to
obtain convergent results at the chosen momentum cutoff,
repeating this step for increasing cutoff to ensure convergence
of the final result.

IV. COHERENT IMPURITY DYNAMICS
FOLLOWING A QUENCH

We now consider Ramsey interferometry and its relation to
the impurity spectral function. To provide illustrations of the
method in this section, we focus on equal masses mim = m.
However, the approach can straightforwardly be extended to a
mass-imbalanced mixture [15].
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N↓
π/2 π/2
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ttrf trf

1/kF a01/kF a0

↑

FIG. 1. Illustration of experimental procedures used to probe
impurities in a Fermi gas. (a) In Ramsey interferometry, the impurities
are initially in the noninteracting |↓〉 state. At time t = 0, they are
in a superposition of |↓〉 and |↑〉 states following a π/2 rf pulse of
duration trf . After a variable time t and a second π/2 rf pulse, the
number of particles, Nσ , in the two impurity spin states is measured as
a function of the phase of the second pulse. The interaction between
the ↑ impurity state and the majority fermions is characterized by
the interaction parameter 1/kF a0 during the rf pulses and 1/kF a

during the evolution time. (b) In inverse rf spectroscopy, the spectral
response of spin ↓ impurities to an rf pulse is measured as a function
of frequency ω relative to the bare ↓ - ↑ transition frequency (vertical
axis).

A. Dynamical response to an interaction quench

We first consider the scenario where an impurity, initially
in the noninteracting spin-↓ state, is suddenly coupled to
an interacting spin-↑ state by an rf pulse. The many-body
response to a rapidly introduced impurity into the Fermi gas
can be probed by means of Ramsey interferometry [16,17],
as illustrated in Fig. 1(a): Following an initial π/2 rf pulse,
which creates a superposition of the impurity in ↓ and ↑ spin
states, the system evolves under the interacting Hamiltonian
for a time t , after which a second π/2 rf pulse is applied.
For simplicity, in this section we consider a “perfect quench”
where no interactions take place during the rf pulses, and
thus at time t = 0 the impurities are in an equal superposition

1√
2
(|↓〉 + |↑〉). In this case, a measurement of the impurity

population difference at the end of the Ramsey procedure
yields [32]

N↑ − N↓
N↑ + N↓

= −Re[eiϕrf S(t)] + nd, (17)

where ϕrf is the phase of the second rf pulse with respect
to the first, nd is the fraction of closed channel molecules
at time t , and we have the overlap between interacting and
noninteracting states

S(t) = 〈ψ0(t)|ψint(t)〉 = eiE0t 〈ψ0|e−iĤintt |ψ0〉, (18)

where |ψ0〉 ≡ ĉ
†
0↑|FS〉 and Ĥ0|ψ0〉 = E0|ψ0〉. By varying the

relative phase ϕrf, one can thus access both the amplitude and
phase of S(t).

According to the variational approach outlined in Sec. III A,
we can determine an approximate Ramsey response S(t) by
diagonalizing the Hamiltonian within the subspace of wave
functions of the form (16). In the perfect quench scenario,
we only need to consider the decoupled spin-up part of the

Hamiltonian, Ĥint; thus we obtain the set of equations [33]

(E − E0)α0 = g
∑

q

αq,

(E − E0)αq = (εq,M − εq + ν)αq + gα0 + g
∑

k

αkq, (19)

(E − E0)αkq = (εq−k,im + εk − εq)αkq + gαq.

Solving these coupled equations yields the set of eigenstates
|φj 〉 with corresponding energies Ej . We then obtain for the
Ramsey response

S(t) �
∑

j

|〈ψ0|φj 〉|2e−i(Ej −E0)t . (20)

This expression has a natural interpretation. Up to a trivial
phase, the contribution from the state |φj 〉 rotates at an angular
frequency Ej , while the magnitude of the contribution is the
squared overlap with the noninteracting ground state, i.e., the
residue of j th state: Zj ≡ |〈ψ0|φj 〉|2.

The time evolution of the impurity after an interaction
quench is clearly intrinsically connected to the structure of
its energy spectrum. As we discuss in more detail in Sec. IV B,
the spectrum can contain well-defined quasiparticle states (the
attractive and repulsive polarons) as well as a broad continuum
of many-body states which have a vanishing overlap with
the noninteracting system. The interference of these different
states is, in general, expected to generate damped coherent
oscillations in |S(t)| as a function of time.

Figure 2 shows both the amplitude and the phase of
S(t) ≡ |S(t)|e−iφ(t) for different values of the interaction and
the range parameter. The slope of the phase φ(t) gives an
indication of whether the energies in the impurity spectrum are
predominantly positive or negative. In general, we observe that
the amplitude near t = 0 is characterized by an initial descent
that is independent of scattering length and is only sensitive
to R∗. The quantum evolution then displays oscillations on
a time scale which is set by the Fermi time τF = 1/εF . In
panels (c) and (f) and for weak interactions 1/kF a < 0, the
dynamics is dominated by the attractive ground-state polaron,
while for stronger attraction, the evolution can feature roughly
equal contributions from the attractive and repulsive branches
of the system, thus leading to pronounced oscillations in |S(t)|
and φ(t).

To quantify this further, we assume that the attractive and
repulsive branches are well-defined polaron quasiparticles, and
consider the regime where both of their residues—Zatt and
Zrep, respectively—are close to 1/2. We can then analyze the
Ramsey response in terms of the interference between the two
polarons. Assuming that we can ignore the contribution from
the continuum of states, we approximate the Ramsey response
by

S(t) � Zatt e−iEattt + Zrep e−iErept , (21)

with Eatt (Erep) the attractive (repulsive) polaron energy with
respect to the noninteracting state. As illustrated in Fig. 3,
this approximation describes the response—in particular, the
period of the beats—very well. Thus, the effect of 1/kF a

and kF R∗ on the dynamics may be simply estimated from
their effect on the quasiparticle energies and residues. Sharp
jumps in the phase accompany the regions where the amplitude
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FIG. 2. The amplitude (top) and phase (bottom) of the Ramsey signal. We have taken the interaction parameter 1/kF a to be (a), (d) 0.73;
(b), (e) 0.48; and (c), (f) 0. The range parameter is kF R∗ = 0 (solid) and kF R∗ = 1 (dashed). The diamonds indicate the long-time limit of
the Ramsey response in the cases where the attractive polaron is the ground state. The phase for kF R∗ = 0 in (f) is well approximated by
φ(t) � Eattt , where the attractive polaron energy Eatt � −0.607εF [18].

approaches zero, and the direction of these jumps is the
only feature of the dynamics that sensitively depends on
the quasiparticle lifetime. Otherwise, we may assume both
quasiparticles to be infinitely long lived. The validity of the
approximation (21) hinges on the small residue of the states

FIG. 3. (a) Amplitude and (b) phase of the Ramsey signal (dashed
lines) together with the corresponding results from the approximation
Eq. (21) (thin solid lines) for 1/kF a = 0.48 and kF R∗ = 1. For these
interaction parameters, we have Zatt ≈ 0.55 and Zrep ≈ 0.41 [35]. We
have added a small imaginary part iεF /33 to the repulsive polaron
energy to model the finite quasiparticle lifetime.

in the continuum that lies between the attractive and repulsive
peaks. This feature is also observed in recent diagrammatic
Monte Carlo calculations [34]. However, note that this is not
necessarily true for arbitrary impurity mass, and indeed we find
a larger weight in the continuum for a heavy impurity [15].

The behavior of the Ramsey response at times greatly
exceeding τF is determined by the ground state of the impurity
problem. If the attractive polaron is the ground state, this
implies that there is a well-defined quasiparticle peak of
zero width in the impurity spectral function. Hence, while
all contributions to S(t) in Eq. (20) originating from the
higher-lying continuum of states interfere destructively and
thus dephase, this single term becomes dominant. Therefore,
in this limit, |S(t)|→Zatt and φ(t) → Eattt , corresponding to
the formation of the attractive polaron. Since wave functions of
the form (16) provide a good approximation to the residue and
energy of the attractive polaron [27], we therefore expect that
the TBM will accurately describe the long-time behavior of the
Ramsey response for sufficiently weak interaction strengths
where the attractive polaron is the ground state.

B. Spectral function

We now discuss how the dynamical response of the impurity
to an interaction quench is related to the spectral response
obtained using inverse rf spectroscopy. In the latter case, we
start with impurities in the noninteracting spin ↓ state, and then
apply an rf pulse that couples the two impurity spin states, as
described by the Rabi term in the Hamiltonian—see Eq. (8).
Assuming a weak pulse, �0 � εF , such that it can be treated
within linear response theory, the fraction of atoms transferred
is directly proportional to the impurity spectral function. The
protocol is illustrated in Fig. 1(b). The spectral function has
been measured in several ultracold-atom experiments for an
impurity in a fermionic medium [11,12] and in a Bose-Einstein
condensate [36,37]. Theoretically, it has previously been
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treated within the renormalization group [38], in diagrammatic
Monte Carlo [34], and within a T-matrix approach [39]. The
latter approach includes two-body correlations in the impurity
wave function systematically, and is equivalent to the TBM
calculation of the spectral function with one particle-hole
excitation. However, the TBM is easier to extend to other
types of impurity dynamics and to higher-order correlations,
as we show in Secs. V–VII.

For a perfect quench in the dynamical problem, the Ramsey
response (18) corresponds to the overlap between the time-
evolved interacting and noninteracting states of the system.
The spectral function A(ω) is then obtained from the Fourier
transform of S(t) [40]:

A(ω) = Re
∫ ∞

0

dt

π
eiωtS(t). (22)

This clearly illustrates the close connection between the energy
spectrum and the dynamical response of the system to a quench
of the system parameters.

Using Eq. (20), we can find an approximate spectral
function within the TBM,

A(ω) �
∑

j

|〈ψ0|φj 〉|2
∫ ∞

−∞

dt

2π
eiωt e−i(Ej −E0)t

︸ ︷︷ ︸
δ(ω−Ej +E0)

. (23)

The Dirac delta function is easier to handle in the discretized
basis if we first convolve A(ω) with a Gaussian of width σ :

I (ω) =
∫ ∞

−∞
dω′A(ω − ω′)g(ω′)

=
∑

j

|〈ψ0|φj 〉|2g(ω − Ej + E0), (24)

where

g(ω) = 1√
2πσ

e−ω2/2σ 2
. (25)

Indeed, such a convolution mirrors experiment, where the
spectral response is determined using rf pulses of a finite
duration and hence a nonzero width in frequency space. This
width can typically be well approximated by a Gaussian.

In Fig. 4, we illustrate the idea behind the method: First
we evaluate the raw spectrum of energy eigenvalues and
corresponding residues, which yields a large number of
discrete peaks of variable heights. The convolved spectral
function, I (ω), on the other hand, is a smooth function of
frequency and is what would be observed in experiment. Such
a spectral convolution is easier to generate using the TBM
compared to the standard T-matrix approach [39].

We show the results of this procedure in Fig. 5 for two values
of kF R∗. We see that the spectrum in both cases is dominated
by the attractive and repulsive polaron quasiparticles at positive
and negative energy, respectively. In between, there is a broad
continuum of states which all have a very small wave function
overlap with the noninteracting impurity state. In particular,
once 1/kF a � 1, the spectral weight of the continuum is
essentially negligible, as was also observed in Ref. [34].

The main effect of the range parameter R∗ is to shift the
energies of the polaron branches closer to zero, especially
in the unitary regime shown in Fig. 5(d), and to increase the

FIG. 4. Illustration of the decomposition of the spectral function
at 1/kF a = kF R∗ = 0. The solid line is the convolved spectral
function I (ω) according to Eq. (24) with a Gaussian width of
σ = 0.15EF (solid) and σ = 0.3EF (dashed). The bars show A(ω)
calculated according to Eq. (23), where the eigenvalues have been
binned and the height of each bin set to

∑
j∈bin |〈ψ0|φj 〉|2.

lifetime of the repulsive polaron such that it can be well defined
even on the attractive side of the resonance [41]. It also affects
the character of the impurity ground state: With increasing
1/kF a, the impurity eventually undergoes a sharp transition
from an attractive polaron to a dressed dimer [27–29], and this
transition occurs at lower 1/kF a for larger kF R∗ [33,35,42].
However, this is not captured by the TBM with one particle-
hole excitation, since the attractive polaron always remains the
ground state at this level of truncation.

C. Short-time dynamics

We now turn to the limiting behavior of S(t) at short times
when t � τF . Away from resonance, the results presented in
the following furthermore require t � 2mra

2 when |kF a| �
1. We start by formally Taylor-expanding the time-evolution
operator in Eq. (18), which yields

S(t) � 1 − i〈ψ0|δĤ |ψ0〉t − 1

2
〈ψ0|(δĤ )2|ψ0〉t2, (26)

where δĤ = Ĥint − E0. From Eq. (22), we have

S(t) =
∫ ∞

−∞
dω e−iωtA(ω).

Thus, we see that the first term in Eq. (26) yields the usual
sum rule for the spectral function:∫ ∞

−∞
dω A(ω) = 1. (27)

For the second term, using the two-channel Hamiltonian (4),
we simply obtain

〈ψ0|δĤ |ψ0〉 = g〈FS|ĉ0↑
∑

q

d̂†
qf̂q|FS〉 = 0. (28)

Thus, the leading-order behavior of S(t) is determined by the
last term

〈ψ0|(δĤ )2|ψ0〉 = g2
∑

|q|<kF

= g2k3
F

6π2
, (29)
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FIG. 5. Spectral function I (ω) calculated within the TBM with one particle-hole excitation for (a) kF R∗ = 0 and (b) kF R∗ = 1. The
Gaussian width is taken to be σ = 0.1EF . The dressed dimer state is the ground state rather than the attractive polaron when 1/kF a � 0.9 in
(a) and 1/kF a � 0.4 in (b). In the bottom panels we show the spectral function for kF R∗ = 0 (solid) and kF R∗ = 1 (dashed), at fixed 1/kF a:
(c) −0.5, (d) 0.5, and (e) 1.5.

which finally gives

S(t) � 1 − k3
F t2

12πR∗m2
r

. (30)

These results yield an additional set of sum rules for the
spectral function of the impurity (see also Ref. [43]):∫ ∞

−∞
dω ωA(ω) = 0, (31)∫ ∞

−∞
dω ω2A(ω) = k3

F

6πR∗m2
r

. (32)

Note that in the limit of a broad resonance where g → ∞,
Eq. (32) diverges and there is no well-defined short-time
parabolic decay of |S(t)|. As such, it does not resemble the
initial decay of the Loschmidt echo expected for quantum
systems in this case. Indeed, even when g is finite, we find that
terms involving higher powers of δĤ are divergent; e.g., for
the next-order term, we obtain

〈ψ0|(δĤ )3|ψ0〉 = g2
∑

|q|<kF

(εq,M − εq + ν), (33)

which clearly diverges for short-range interactions since ν ∼
	 → ∞.

The origin of these divergences is the nonanalytic behavior
of the many-body wave function when the distance between
the impurity and a majority fermion goes to zero. One thus
needs to isolate the high-frequency behavior of A(ω) in order to
address the short-time dynamics in the presence of short-range
interactions.

From the retarded Green’s function G(ω) for an impurity
at zero momentum, we have A(ω) = − Im[G(ω)]/π , where
we can, in turn, write the Green’s function in terms of the
self-energy �(ω):

G(ω) = [ω − �(ω)]−1. (34)

In the limit ω → ∞, we can neglect nontrivial effects of the
Fermi medium; i.e., the self-energy is dominated by two-body
scattering, giving [44]

�(ω) � nT (ω), (35)

where the medium density n = k3
F

6π2 and the two-body T matrix
for ω > 0 is

T (ω) = 2π

mr

(a−1 + 2mrωR∗ + i
√

2mrω)−1. (36)

Thus, the high-frequency limit of the spectral function for
arbitrary R∗ is contained in the expression

A(ω) � k3
F

3π2
√

2m3
r ω5/2

1

1 + 2R∗/a + 2mrωR∗2 . (37)

Focusing first on the case R∗ = 0, the leading-order
correction to S(t) in the limit t → 0 can be determined from
the integral ∫ ∞

ω̃

dωA(ω)(e−iωt − 1 + iωt), (38)

where ω̃ is a large frequency scale that can be sent to infinity
at the end of the calculation. Here we have used the relation
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between S(t) and the spectral function, as well as the sum rules
Eqs. (27) and (31). Inserting Eq. (37), we finally obtain

S(t) � 1 + k3
F t3/2

3π2
√

2m3
r

lim
t→0

[∫ ∞

ω̃t

dω
(e−iω − 1 + iω)

ω5/2

]

= 1 − 2
√

π (1 − i)k3
F

9π2
√

m3
r

t3/2 (39)

for t > 0, with S(−t) = S∗(t). We have thus succeeded
in deriving Eq. (2) from the introduction. This universal,
nonanalytic expression for the short-time behavior is a key
result of this paper.

For the case where R∗ > 0, the nonanalytic behavior
appears in the next-order term of S(t), which can be obtained
from the integral

limt→0

∫ ∞

ω̃

dωA(ω)

(
e−iωt − 1 + iωt + 1

2
ω2t2

)

= k3
F t5/2

6π2R∗2
√

2m5
r

lim
t→0

[∫ ∞

ω̃t

dω

(
e−iω − 1 + iω + 1

2ω2
)

ω7/2

]
.

Evaluating the integral, we thus obtain for the short-time
expansion of S(t)

S(t) � 1 − k3
F t2

12πR∗m2
r

+ 2
√

π (1 + i)k3
F

45π2R∗2
√

m5
r

t5/2, (40)

which demonstrates Eq. (3) from the introduction. Note that,
for a given interaction kF a, the range of t over which Eq. (40)
is valid increases with increasing kF R∗.

At first glance, one might expect the short-time behavior
of the Ramsey response (or high-frequency tail of the spectral
function) to be connected to the Tan contact [45]. However,
we emphasize that the Tan contact governs the large-frequency
behavior of the occupied spectral function in the equilibrium
system, not the full spectral function probed here.

In the weak-coupling limit |kF a| � 1, the form of the
T matrix allows us to compute the leading corrections to
Eqs. (39) and (40), which are respectively given by

−2
√

π (1 + i)k3
F

45π2a2
√

m5
r

t5/2, − 4
√

π (1 − i)k3
F

315π2R∗3a
√

m7
r

t7/2.

These corrections yield the lowest orders at which the
scattering length enters the Ramsey response.

Our results (39) and (40) are valid also for a finite
temperature T provided that the time t is shorter than the
characteristic time scale 1/T at which thermal effects become
relevant. Likewise, for a finite impurity momentum p, it is
clear from the form of the T matrix that there always exists
a frequency above which εp,im is negligible and therefore our
results remain unchanged for t � 1/εp,im. On the other hand
our results are, in general, sensitive to the preparation of the
initial state.

V. RABI OSCILLATIONS

Another important example of coherent impurity dynamics
is the Rabi oscillations between ↓ and ↑ impurity states that
are driven by a continuous rf field. The presence of the Fermi
medium has an observable effect on the oscillations when the

FIG. 6. Occupation of the ↑ impurity state, R(t), as a function of time under a rf driving field of strength �0 that couples to the
attractive ↑ polaron [(a), (b)] and the repulsive ↑ polaron [(c), (d)]. (a) The response at unitarity and R∗ = 0 for different Rabi frequencies
�0 = 0.5εF (black solid), 0.75εF (blue dashed), and εF (red dotted). (b) The response at fixed �0 = 0.75εF for different kF R∗ = 0,0.5,1 with
1/kF a = 0, − 0.277, − 0.505 (black solid, blue dashed, and red dotted), respectively. (c) Same Rabi frequencies as in (a), but with kF R∗ = 1
and 1/kF a = 1. (d) The response at fixed �0 = 0.75εF and 1/kF a = 1 for different kF R∗ = 0.1,0.5,1 (black solid, blue dashed, and red
dotted), respectively. The conditions are arranged such that the residue of the ↑ polaron is always Z � 0.784.
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spin-↑ state is strongly interacting with the majority fermions.
For concreteness, we assume that the impurity atom is initially
in the noninteracting ↓ ground state, i.e., |ψR(t = 0)〉 =
ĉ0↓|FS〉. Then, at times t � 0 the spin-↓ impurity is coupled to
the interacting state by the Rabi term in the Hamiltonian—see
Eq. (8). By adjusting the rf detuning δ to match the attractive
or repulsive polaron energy, we can address either of these
quasiparticle branches. Unlike in the perfect quench Ramsey
response, Rabi oscillations require us to take both impurity spin
states explicitly into account, and we thus employ the TBM
with wave functions of the form (16) to describe the dynamics.
Specifically, we are interested in the spin-↑ population N↑ =
〈ψR(t)| ∑k ĉ

†
k↑ĉk↑|ψR(t)〉, where the time-dependent wave

function |ψR(t)〉 = e−iĤ t ĉ0↓|FS〉.
In Fig. 6, we show the relative occupation of the spin-↑

impurity state, R(t) = N↑/(N↑ + N↓), as a function of time
for Rabi frequencies typical in experiment. In panels (a) and
(b), the rf field addresses the attractive polaron, while panels
(c) and (d) show the results for the repulsive polaron. In all
cases, regardless of the interactions or the range parameter,
we observe that the spin-↑ occupation displays a damped
oscillatory behavior with period 2π/(

√
Z�0). In other words,

the angular frequency of the Rabi oscillation in the presence
of the Fermi medium is reduced by a factor

√
Z compared

with that expected for a noninteracting spin-↑ state. This
observation is consistent with the spin-↑ spectral function
being dominated by the quasiparticle peaks, as in Fig. 5.
Specifically, if we assume that the spectrum only contains
the addressed quasiparticle, then one obtains [11]

R(t) � sin2(
√

Z�0t/2). (41)

This reduction of the Rabi frequency has been used as a means
to experimentally access the polaron residue [11].

The manner of damping and the functional form of the Rabi
oscillations appears different in the four panels of Fig. 6. In
panels (a) and (c) we investigate the effect of changing the
Rabi frequency �0 at fixed interaction strength, whereas in
panels (b) and (d) we change the interaction strength while
keeping �0 fixed. We see that when we address the attractive
polaron, the damping is sensitive to the bare Rabi frequency,
but quite insensitive to the precise interaction parameters. The
opposite appears to be the case for the repulsive polaron, where
the finite quasiparticle lifetime dominates the damping and
depends sensitively on the interaction parameters 1/kF a and
kF R∗. This prediction is, in principle, straightforward to test
experimentally for sufficiently low temperatures. In practice,
there will also be damping due to thermal effects once t > 1/T .

VI. QUANTUM-STATE PREPARATION

For the Ramsey response S(t), we have thus far considered
the situation of a perfect quench, where there is no effect
of the medium during the π/2 rf pulses, either because the
pulses are infinitely fast or because the impurity-medium
interactions are switched off during the pulses. However, it
is important to understand how such “residual” interactions
with the medium affect the impurity dynamics since a perfect
quench is challenging to achieve in practice [15]. Furthermore,
one could in principle use the residual interactions to tailor the
initial state and engineer the desired dynamical response.

To assess this effect in detail, we once again calculate the
response following the rf sequence in Fig. 1, but this time
we consider the full Hamiltonian and wave function (16)

FIG. 7. The Ramsey response S(t) and corresponding convolved Fourier transform I (ω), with frequency broadening σ = 0.1εF . The
interactions in the strongly interacting regime are (a), (c) repulsive with 1/kF a = 0.6, and (b), (d) attractive with 1/kF a = −0.5. The range
parameter is always taken to be kF R∗ = 1. We show the result of a perfect quench to strong interactions (dashed), a state preparation with
trf = 3τF at 1/kF a0 = −2 (solid), and the approximation Eq. (42) (dotted). In the second case, we include a wait time of 0.5τF at 1/kF a0 just
after (before) the first (second) rf pulse to mimic the quantum-state preparation in experiment.
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rather than the decoupled spin-↑ versions. We address the
attractive polaron branch for interaction 1/kF a0 during the
rf pulses by setting the rf detuning δ = Eatt, and then we
extract S(t) as defined in Eq. (17). We use the Rabi frequency
�0/εF = π/6, which is typical in experiment. In a previous
work [15], we employed such an approach for the case of
a heavy impurity and weak interactions, |kF a0| � 1, during
the rf pulses. Here, we consider stronger interactions on the
attractive side of resonance for the case of equal masses, as
shown in Fig. 7. Compared to the result for the perfect quench,
we see that the residual attractive interactions clearly favor the
attractive polaron branch in the spectral function. This results
in a decrease in the amplitude of oscillations in the time domain
and an overall increase in the contrast |S(t)| for the interactions
considered. In principle, one could have a scenario where the
residual interactions increase the amplitude of oscillations,
but this requires a larger 1/kF a, where the TBM with a single
particle-hole excitation becomes increasingly inaccurate for
the attractive branch.

Further insight can be gained by restricting ourselves to the
spin-↑ subspace and considering the approximate expression

S(t) � eiE0t 〈ψatt|e−iĤintt |ψatt〉, (42)

where |ψatt〉 is the attractive polaron state at interaction
parameter 1/kF a0 during the rf pulse. Referring to Fig. 7, we
see that this approximation well reproduces both the dynamical
and spectral response obtained from the full calculation. Thus,
we conclude that the main effect of the interactions during the
rf pulses is to adiabatically prepare attractive polaron states
starting from the noninteracting wave function. We expect this
situation to hold provided the pulse duration is longer than
the Fermi time τF . In the limit � → ∞, where the π/2 rf
pulses become infinitely fast, we should recover the perfect
quench scenario from Sec. IV. In general, one could consider
preparing other initial, or reference, wave functions, which
would shape the final Ramsey response.

VII. MULTIPLE PARTICLE-HOLE EXCITATIONS

We now discuss the role played by multiple particle-hole
excitations in the impurity dynamics, quantified here by the

Ramsey response for the perfect quench. Going beyond the
single particle-hole approximation in the TBM is in general
a complicated problem, as the size of the truncated subspace
grows exponentially with the number of excitations of the
Fermi sea. Thus, in this section we focus on a simpler problem
than what has been described so far, namely that of a static
(infinitely heavy) impurity particle. In this case, the angular
degrees of freedom can be integrated out, allowing us to extend
the wave function (16) to two particle-hole excitations (see the
Appendix for the mathematical details).

The static impurity problem may be solved exactly since it
reduces to the problem of a single particle in the presence of
a fixed potential [40]. At the same time, we expect the static
impurity to constitute a worst-case scenario for the TBM since
it features the orthogonality catastrophe [14], where there is no
well-defined quasiparticle (i.e., the residue Z = 0) and one has
an infinite number of low-energy excitations. We previously
compared the exact solution with the TBM for one particle-
hole excitation and found excellent agreement for short times
up to order 10τF near unitarity [15]. Here, we analyze the
structure of the wave function and estimate the time scale at
which multiple particle-hole excitations appear for different
range parameters kF R∗.

Consider first the Ramsey response at times t � τF . In
this case, the analytic expressions for |S(t)| at short times—
Eq. (39) for R∗ = 0 and Eq. (40) for R∗ > 0—were derived
from the observation that the short-time dynamics is governed
by large frequencies and thus two-body physics. Since the
wave function with one particle-hole excitation, Eq. (16),
explicitly includes the processes constituting the two-body
scattering T matrix, we expect the short-time dynamics to
be well captured by this wave function. In Fig. 8 we show
the Ramsey amplitude at unitarity for kF R∗ = 0,1/2, and
1, and indeed we observe that both the initial t3/2 decrease
of the amplitude for kF R∗ = 0 and the t2 decrease plus t5/2

correction for finite kF R∗ are well captured by the TBM. At
times up to τF , we furthermore find perfect agreement between
the results of diagonalizing the wave functions with one and
two particle-hole excitations, as the results are identical within
our numerical error (which, for t � 4τF , we estimate to be less
than 0.01% in the one particle-hole TBM and less than 1% for
|S(t)| in the two particle-hole TBM).

FIG. 8. Short-time behavior of the Ramsey amplitude |S(t)| at unitarity for different values of the range parameter: (a) kF R∗ = 0, (b)
kF R∗ = 1/2, and (c) kF R∗ = 1. The result of the TBM where the wave functions are restricted to one particle-hole excitation as in Eq. (16)
is shown as a solid line. In (a) this is compared with the short-time expansion for a broad resonance, Eq. (39) (dashed line). In (b) and (c) the
short-time expansion at finite R∗ restricted to the O(t2) correction, Eq. (30), is shown as a dotted line, and the short-time expansion including
the O(t5/2) correction, Eq. (40), as a dashed line. On this scale, the result of the TBM with two particle-hole excitations is indistinguishable
from the solid line.

184303-10



QUANTUM DYNAMICS OF IMPURITIES COUPLED TO A . . . PHYSICAL REVIEW B 94, 184303 (2016)

FIG. 9. Probability of ψ(t) to be in states with 0 (solid), 1 (dashed), and 2 (dotted) holes excited from the Fermi sea. The results are shown
at unitarity for (a) kF R∗ = 0, (b) kF R∗ = 1/2, and (c) kF R∗ = 1.

At times exceeding τF , eventually multiple particle-hole
excitations become important. In order to quantify the contri-
bution from the different terms in the variational wave func-
tion, we project ψ(t) including two particle-hole excitations
(Appendix) onto basis states with a fixed number—0, 1, or
2—of holes excited from the Fermi sea:

ν0 = |〈FS|ĉ0↑|ψ(t)〉|2,
ν1 =

∑
q

|〈FS|f̂ †
q d̂q|ψ(t)〉|2 +

∑
k,q

|〈FS|f̂ †
q f̂kĉq−k↑|ψ(t)〉|2,

ν2 = 1

2

∑
k,q1,q2

|〈FS|f̂ †
q1

f̂ †
q2

f̂kd̂q1+q2−k|ψ(t)〉|2

+ 1

4

∑
k1,k2,q1,q2

|〈FS|f̂ †
q1

f̂ †
q2

f̂k1 f̂k2 ĉq1+q2−k1−k2↑|ψ(t)〉|2.

As previously, k, k1, k2 denote particles above the Fermi
sea and q, q1, q2 holes. Note that we have ν0 = |S(t)|2 and
ν0 + ν1 + ν2 = 1. In Fig. 9 we display these quantities at
unitarity for various values of the resonance range. We clearly
see that two particle-hole excitations remain insignificant even
at several times the Fermi time. Furthermore, this result is
independent of the resonance range, and thus it is insensitive
to the precise power-law behavior at short times.

Since the static impurity is a worst-case scenario, we expect
the TBM for wave functions (16) to accurately describe the
short-time dynamics also for a mobile impurity.

VIII. OUTLOOK

In this work, we have shown how the truncated basis
method can be used to determine the coherent quantum
evolution of an impurity for a variety of scenarios, including
the dynamical response to a suddenly introduced impurity,
and the Rabi oscillations between a polaron quasiparticle and
a noninteracting impurity state. We have furthermore explored
the connection between impurity dynamics and the spectral
function, as well as the possibility of preparing different
quantum many-body states. We emphasize that the method is
quite general, and allows one to investigate more complicated
dynamical protocols. For instance, a spin-echo sequence can
be efficiently modeled as a series of time-evolution operators,
each of which are evaluated within the truncated basis.

A key result is the exact short-time Ramsey response,
i.e., for t � τF . Surprisingly, this was found to depend

nonanalytically on time, which is a direct consequence of the
need to renormalize the short-range interactions. Additionally,
the response to leading order does not depend on the scattering
length, although the regime of validity of the short-time
expansion does. We also note that our short-time expansion
is not affected by temperature in a degenerate gas, since the
time scale associated with thermal excitations is longer than
the Fermi time. Therefore, our predictions can be tested in
current precision experiments on ultracold-atomic gases out
of equilibrium [15].

In the long-time limit t � τF (but still t � 1/T ), we have
argued that if the ground state of the interacting impurity is a
well-defined attractive polaron, the Ramsey response will be
dominated by the corresponding single peak in the spectral
function. In turn, this limit will be well captured by the TBM,
as it describes both the energy and residue of the attractive
polaron very well [27]. While the TBM thus captures both
the short- and the long-time coherent impurity dynamics well,
the evolution at intermediate times presents an outstanding
challenge to theories of strongly correlated quantum matter.

For a static impurity, we have shown that multiple particle-
hole excitations only become prominent in the Ramsey
response at time scales significantly exceeding the Fermi time.
Thus, while we expect a power-law decay of the amplitude
|S(t)| due to the orthogonality catastrophe, this is driven by
low-energy excitations which are only relevant at long times.
In the opposite limit of a light impurity, the Ramsey response
will likely develop exotic few-body correlations. In this case,
for sufficiently large mass ratio, the system is predicted
to feature universal trimers [46] with associated resonant
few-body interactions [47], or even Efimov trimers [48] and
tetramers [49]. The theoretical description of such systems
would thus require one to go to a truncated Hilbert space
featuring multiple excitations of the medium.

An open question is how to extend the present work to
nonzero temperature, where one requires a thermal average
over all initial states. In particular, it would be interesting
to understand how the impurity dynamics evolves from the
quantum short-time regime to the thermal long-time limit.
When the interactions are weak |kF a| < 1, the long-time
decoherence due to thermal fluctuations is well described using
a Fermi liquid calculation for quasiparticle scattering [50]. A
major simplification is to approximate the impurity as being
effectively fixed by the thermal excitations of the medium,
in which case the Ramsey response may be obtained exactly
using a functional determinant approach [15]. However, such
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an approximation is only expected to be reasonable when
εF m/mim < T < εF , i.e., for sufficiently heavy impurities and
sufficiently high temperatures [51].

Finally, the framework developed here is not limited to a
single-component fermionic medium. As an example, we have
recently calculated the spectral response to an rf pulse for an
impurity in a Bose-Einstein condensate: Here we obtained a
very good agreement between the TBM, containing up to two
Bogoliubov excitations of the condensate, and the experimen-
tal measurements [36]. Likewise, the TBM could be applied
to the problem of an impurity in a two-component Fermi
gas across the BCS-BEC crossover [52,53]. A particularly
interesting future application would be to the investigation of
three-body correlations in a Bose-Einstein condensate that is
suddenly quenched to unitarity, as in experiment [54].
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APPENDIX: VARIATIONAL WAVE FUNCTIONS WITH
TWO PARTICLE-HOLE EXCITATIONS

In this appendix, we present the variational equations for a
wave function with two particle-hole excitations:

|ψ〉 =
[
α0ĉ

†
0↑ +

∑
q

αqd̂
†
qf̂q +

∑
k,q

αkqĉ
†
q−k↑f̂

†
k f̂q +

∑
k,q1,q2

αkq1q2 d̂
†
q1+q2−kf̂

†
k f̂q1 f̂q2

+
∑

k1,k2,q1,q2

αk1k2q1q2 ĉ
†
q1+q2−k1−k2↑f̂

†
k1

f̂
†
k2

f̂q1 f̂q2

]
|FS〉, (A1)

which provides a natural extension of the wave function (16). The variational equations then become

(E − E0)α0 = g
∑

q

αq,

(E − E0)αq = (εq,M − εq + ν)αq + gα0 + q
∑

k

αkq,

(E − E0)αkq = (εq−k,im + εk − εq)αkq + gαq + g
∑

q′
αkqq′ , (A2)

(E − E0)αkq1q2 = (εq1+q2−k,M + εk − εq1 − εq2 − ν)αkq1q2 + gαkq1 − gαkq2 + g
∑

k′
αk′kq1q2 ,

(E − E0)αk1k2q1q2 = (εq1+q2−k1−k2,im + εk1 + εk2 − εq1 − εq2 )αk1k2q1q2 + g(αk2q1q2 − αk1q1q2 ),

where we have used αkq1q2 = −αkq2q1 and αk1k2q1q2 =
−αk2k1q1q2 = −αk1k2q2q1 . For a static impurity, we have εk,im =

εk,M = 0, and thus the equations become independent of the
angles between vectors.
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