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Fractality of wave functions on a Cayley tree:
Difference between tree and locally treelike graph without boundary
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We investigate analytically and numerically eigenfunction statistics in a disordered system on a finite Bethe
lattice (Cayley tree). We show that the wave-function amplitude at the root of a tree is distributed fractally in a
large part of the delocalized phase. The fractal exponents are expressed in terms of the decay rate and the velocity
in a problem of propagation of a front between unstable and stable phases. We demonstrate a crucial difference
between a loopless Cayley tree and a locally treelike structure without a boundary (random regular graph) where
extended wave functions are ergodic.
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I. INTRODUCTION

Anderson localization [1]—one of most fundamental and
ubiquitous quantum phenomena—remains in the focus of
current experimental and theoretical research. Of particular
interest are Anderson transitions between delocalized and
localized phase [2]. A disordered quantum system can be
driven through such a transition by changing one of control
parameters such as, e.g., disorder strength or energy. For a
conventional situation in d spatial dimensions, an analytical
study of the transition requires approximations (such as the ε

expansion in d = 2 + ε dimensions). Remarkably, for models
on the Bethe lattice (a tree with constant connectivity),
the problem of the Anderson transition allows for an exact
solution, making it possible to establish the transition point
and the corresponding critical behavior [3–8]. These findings
have been corroborated and supplemented by mathematically
rigorous results [9–11].

It is worth emphasizing that the analysis in Refs. [3–8]
was performed on an infinite Bethe lattice. This formulation is
appropriate for determination of the position of the transition
point and for investigation of properties of localized wave
functions and of finite-frequency correlation functions in the
delocalized phase. The obtained results are also valid (up to
small corrections) for a finite system, assuming the number
of sites N is sufficiently large. For correlation functions in
the delocalized phase, the precise condition on N depends
on the frequency and on the distance to the transition point.
This means that, for given parameters of the problem and for
a given frequency ω, there is a certain characteristic size Nω

such that for N � Nω the correlation functions are essentially
independent on N , i.e., the system can be considered as
infinite. In this situation, the correlation functions are also
independent on boundary conditions. The physical reason for
this independence of finite-frequency correlation functions
on N and on boundary conditions is quite transparent. The
frequency ω sets a characteristic spatial scale Lω (which is a
typical displacement of a particle in a time ∼1/ω). Once a
“linear size” (∼ ln N ) of the lattice becomes much larger than
Lω, the system becomes effectively infinite and the boundary

conditions do not play a role, since the particle simply has
no time to find out what is the system size and the boundary
conditions.

There is a class of important observables, however, for
which the situation is more intricate. These include the
statistics of eigenfunctions and energy levels on the delocalized
side of the transition. Contrary to finite-frequency correlation
functions, such observables simply cannot be defined on an
infinite lattice, i.e., their mere definition requires a considera-
tion of a finite system. On the other hand, for a Bethe lattice
of finite size (also known as Cayley tree) most sites are on the
boundary (at variance with finite-d problems). Thus one can
expect (and we will show in this paper that this expectation
is correct) that the presence of boundary may affect the wave
function and level statistics in the delocalized phase in a crucial
way.

In view of expected influence of the boundary, it is
natural to consider a modification of the model that allows
one to eliminate boundary effects. One such generalization
is provided by the sparse random matrix (SRM) ensemble
(known in mathematical literature as Erdös-Rényi graphs)
studied analytically in Ref. [12]. Another, closely related,
possibility, is to consider a random regular graph (RRG),
which is essentially a finite portion of Bethe lattice wrapped
onto itself. The RRG and SRM ensembles are very similar
treelike models without boundary (and with loops of typical
size ∼ ln N ). The difference between them (in the connectivity
being fixed in RRG and fluctuating around its average value
in SRM) is immaterial for our discussion. These ensembles
can be viewed as describing a tight-binding model on a lattice
that has locally a treelike structure but does not possess a
boundary. It was found in Ref. [12] that in the delocalized
phase and in the limit of large number of sites N (i) the
level statistics takes the Wigner-Dyson form, and (ii) the
inverse participation ratio (IPR) P2 = ∑

i |ψi |4 characterizing
fluctuations of an eigenfunction ψ on the infinite cluster (with
ψi being the wave-function amplitude on site i) scales with
N as P2 � C/N . Here the prefactor C(W ) depends on the
disorder strength W , approaching its Gaussian-ensemble value
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3 deeply in the metallic phase (W → 0) and diverging as
ln C ∝ (Wc − W )−1/2 at the localization transition (W = Wc).
Numerical results of Refs. [13,14] for the model on random
regular graphs supported the transition from the Poisson to the
Wigner-Dyson statistics at the Anderson transition.

In recent years, the Anderson localization on RRG has
attracted a renewed attention, in particular, in view of its
connections with the problems of many-body localization in
quantum dots [15–30] and in spatially extended systems with
localized single-particle states and with short-range [31–59]
or long-range [60–64] interactions. Biroli et al. [65] explored
the level and eigenfunction statistics in the RRG model on the
delocalized side of the transition (disorder W smaller than the
critical disorder Wc). It is well understood that for conventional
disordered systems (i.e., in a finite spatial dimensionality d)
the level and eigenfunction statistics have three distinct types
of behavior at the localized, critical, and delocalized fixed
points [2,66]. These statistics have been thus efficiently used
to locate the Anderson transition and to study the associated
critical behavior [67–73]. The authors of Ref. [65] interpreted
the data for matrix sizes N between 512 and 8192 as a possible
indication of the intermediate “nonergodic delocalized” phase
(between the conventional delocalized phase and the localized
phase, i.e., in a disorder range WT < W < Wc with a certain
WT ). They argued that this phase is characterized (in the limit
N → ∞) by Poisson level statistics and by the IPR that does
not scale as 1/N . Subsequently, the problem of Anderson
localization on RRG graphs was considered numerically by De
Luca et al. [74]. These authors focused on the eigenfunction
statistics for systems with N in the range from 2000 to 16 000.
On this basis, they conjectured that eigenstates are multifractal
in the whole delocalized phase, i.e., for all 0 < W < Wc.
This would imply, in particular, that the IPR scales in the
large-N limit as P2 ∝ N−μ with the exponent μ(W ) satisfying
μ(W ) < 1 for all W < Wc.

Clearly, the conclusions of Refs. [65,74] based on numerical
data are in conflict with the analytical predictions of Ref. [12].
This apparent contradiction was resolved in a recent work of
the present authors with Skvortsov [75]. In that work, we per-
formed a numerical investigation of level and eigenfunctions
statistics on the delocalized side of the Anderson transition on
RRG, for system sizes N from 512 to 262 144. Our results fully
support the analytical prediction of Ref. [12] that states in the
delocalized phase are ergodic in the sense that their IPR scales
as 1/N and their level statistics is of Wigner-Dyson form in the
limit N → ∞. We showed that the data can be interpreted in
terms of a finite-size crossover from relatively small (N � Nc)
to large (N � Nc) system, where Nc is the correlation volume
diverging exponentially at the transition. More specifically,
numerically found values of Nc are in agreement with the
analytical prediction [12] ln Nc ∼ (Wc − W )−1/2. A distinct
feature of this crossover is a pronounced nonmonotonous
behavior of observables as functions of N on the delocalized
side of the Anderson transition. This nonmonotonicity has
a profound origin in the nature of the Anderson-transition
fixed point for a treelike structure (or, equivalently, in the
limit d → ∞). Specifically, for N � Nc the system flows
towards the Anderson-transition fixed point which has on RRG
properties analogous to the localized phase. Only when N

exceeds Nc, the flow changes direction and the system starts to

approach its N → ∞ ergodic behavior. The nonmonotonous
behavior, in combination with exponentially large values of
Nc, makes the finite-size analysis highly nontrivial: taking
data in a limited range of N may mislead one to a conclusion
that the system is “nonergodic” in the delocalized phase.

Thus the analytical theory of the delocalized phase on
RRG [12] (ergodicity manifesting itself on scales N � Nc) is
now supported by numerics [75]. On the other hand, properties
of delocalized eigenfunctions on a finite Cayley tree have
remained largely unexplored. Several years ago, Monthus and
Garel [76] studied numerically the statistics of transmisson
amplitudes on a Cayley tree in the Miller-Derrida scattering
geometry and concluded that it has a multifractal form in
the delocalized phase. This suggest that eigenfunctions of an
isolated Cayley tree may also have peculiar properties. In fact,
some indications of this were obtained in an earlier paper by
the same authors [77].

In the present paper, we show that wave functions in the
Cayley-tree problem have indeed very unusual properties.
We study, both analytically and numerically, the statistics of
eigenfunctions in the root of a (finite) Cayley tree on the
delocalized side of the Anderson transition. We show that,
in stark contrast to ergodicity of delocalized states on RRG,
the eigenfunctions on a tree show a fractal behavior in a large
part of the delocalized phase.

II. WAVE-FUNCTION STATISTICS AT THE ROOT OF
CAYLEE TREE: ANALYTICAL APPROACH

A. Model

We study noninteracting spinless fermions hopping over
a Cayley tree with connectivity K = m + 1 in a potential
disorder,

H = t
∑
〈i,j〉

(c+
i cj + c+

j ci) +
∑
i=1

εic
+
i ci , (1)

where the sum is over the nearest-neighbour sites of the
Cayley tree. The energies εi are independent random variables
sampled from a uniform distribution on [−W/2,W/2]. The
investigation of this model was pioneered by Abou-Chacra
et al., Ref. [3]; its solution in the framework of supersymmetry
approach was obtained in Ref. [8]. It is useful to consider
also an n-orbital generalization of the problem (with n � 1)
which can be viewed as describing an electron hoping between
metallic granules located at the nodes of the same Cayley tree.
The Hamiltonian of such a granular system reads

H = t
∑
〈i,j〉

n∑
p,q=1

(c+
ipcjq + c+

jqcip) +
∑

i

n∑
p=1

εipc+
ipcip . (2)

For large n, the n-orbital problem can be mapped onto a
supersymmetric σ model [4–7]. While the n = 1 Anderson
model and its n � 1 generalization (σ -model) turn out to
exhibit the same gross features, analytical calculation are
somewhat simpler within the σ model. For this reason, we find
it instructive to carry out the analysis first within the n � 1
model (i.e., the σ model). Later we will return to the n = 1
Anderson model and discuss corresponding modifications.

We will assume free boundary conditions (which means
that we consider an isolated system) and study statistics of
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i = 0

FIG. 1. Cayley tree with branching number m = 2 and s0 = 3
generations. In this paper, we study the eigenfunction statistics at the
root of the tree, i = 0.

wave-function amplitudes ui = |ψi |2. Contrary to RRG, the
sites of a Cayley tree are clearly not equivalent, and distribution
function of ui depends on the distance from the site i to the
boundary of the tree. For simplicity, we fix i to be at the root,
u ≡ u0 and study the distribution function PN (u) as a function
of both u and the size of a tree N . As an example, in Figs. 1
and 2, we show a Cayley tree with the connectivity m = 2 and
s0 = 3 generations and a representative of the RRG ensemble
withe the same connectivity and the same number of vertices,
N = 22.

A convenient tool to explore analytically the eigenfunction
statistics in a noninteracting disordered system is the super-
symmetry method. The moments of wave-function amplitudes
can be expressed in terms of Green functions GR(A) at
coinciding points (in our case, at the root) as follows [66]:

〈|u|q〉 = iq−2

2πνN
lim
η→0

(2η)q−1
〈
G

q−1
R GA

〉
(3)

with

GR(A) = 〈0|(ε − Ĥ ± iη)−1|0〉. (4)

FIG. 2. Random regular graph with the same connectivity (m =
2) and the same number of vertices (N = 22) as the Cayley tree in
Fig. 1.

Here, Ĥ is the single-particle Hamiltonian, ε the energy, and
ν the density of states (at energy ε).

B. Sigma model

Let us start with the case of n � 1 orbitals per each lattice
site as described by Eq. (2). In this situation, the theory can be
reduced [4] to the supersymmetric σ model with the action

S[Q] = −J
∑
〈i,j〉

Str(Qi − Qj )2 + πη

2δ0

∑
i

Str(�Qi). (5)

Here, Qi are 8 × 8 supermatrices satisfying the condition
Q2 = 1, the symbol Str denotes the supertrace (defined as
trace of the boson-boson block minus trace of the fermi-
fermi block), δ0 = ν−1 = W/n is the mean level-spacing on
a granule, and J = (t/δ0)2 is the dimensionless coupling
constant. The microscopic model (2) belongs to the orthogonal
(AI) symmetry class, determining the corresponding symmetry
of the σ model. When the time-reversal symmetry is broken
(e.g., all hopping amplitudes t

pq

ij are complex with random
phases), the symmetry class becomes unitary (A). The physics
that we discuss in this paper is essentially the same in
both cases. Since the unitary-symmetry case is somewhat
simpler technically, we will focus on it below for the sake of
transparency of exposition. In this case, Qi in Eq. (5) become
4 × 4 supermatrices, and the action (5) acquires an additional
overall factor of two.

The average product of Green functions in Eq. (3) can be
represented as a σ -model correlation function of the following
form [66]:

〈|u|q〉 = − q

2N
lim
η→0

(2πη/δ0)q−1

×
∫

DQ Q
q−1
0;11,bbQ0;22,bb e−S[Q], (6)

where the preexponential factor depends only on the matrix
Q0 at the root of the Cayley tree (which is the point where
we study the eigenfunction statistics). The first two indices of
Q correspond to the advanced-retarded and the last two to the
boson-fermion decomposition.

To evaluate the functional integral in Eq. (6), it is convenient
first to integrate out all degrees of freedom Qi with i �= 0
and, at the last step, to take the integral over the matrix Q0

associated with the root of the tree. The tree structure of
the lattice greatly simplifies the task: the matrices Qi can be
consecutively integrated out, starting from the boundary (the
“leaves” of the tree) and proceeding layer by layer towards
the root. This iterative procedure can be described in terms of
functions �s(Q) (with s = 0,1,2, . . .) defined in the following
way. Consider a site i of the Cayley tree. Consider one of m

branches of the tree that start at this site and do not contain the
root. Perform the integration over the variables Qj associated
with this branch, with the corresponding part of the weight
e−S[Q]. Clearly, the result depends only on the matrix Qi (since
the action does not couple sites on the branch to any sites of
the remaining lattice other than i), and we denote it �(i)(Qi).
In view of the symmetry of the Cayley tree, the function �(i)

will be identically the same for all sites i located on a given
distance s from the boundary. (Here s = 0 corresponds to
leaves of the tree, s = 1 to sites separated by one link from the
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boundary, etc.) Hence the � functions can be naturally labeled
by an index s, yielding a sequence of functions �s(Q) with
s = 0,1,2, . . ..

It is easy to see that the functions �s(Q) satisfy the
following recurrence relation:

�s+1(Q) =
∫

e
− Str[−2J (Q−Q′)2+ πη

δ0
�Q′]

�m
s (Q′)DQ′, (7)

with the initial condition �0(Q) = 1 at the boundary. After

s0 = ln N

ln m
(8)

iterations of this recurrence relation, we obtain the function
�s0 (Q) at the root. To proceed further, we note that, in view
of the symmetry of the σ -model action, the functions �s(Q)
in the unitary symmetry case depend only on two variables
1 � λ1 < ∞ and −1 � λ2 � 1, which are the eigenvalues of
the retarded-retarded block of the matrix Q, see Ref. [66]. The
variables λ1 and λ2 correspond to the noncompact (hyperbolic)
and compact (spherical) sectors of the σ -model coset space.
As we are interested in the limit of η → 0 at fixed N (and
hence at fixed s0), we can further simplify the equation (7).
Specifically, in this limit only the dependence on λ1 persists:

�s(Q) ≡ �s(λ1,λ2) → �(a)
s (2πηλ1/δ0), (9)

where the superscript (a) indicates that we are dealing with
the asymptotic, small-η form of the function �s .

As is clear from Eq. (6), the distribution function of the
wave function intensity u0 at the root is fully determined by
the asymptotic form of the function

Y (Q0) = �m+1
s0

(Q0) (10)

resulting from integrating out all degrees of freedom on the tree
except for the matrix Q0 at the root. Specifically, evaluating
the integral over Q0, one gets [66]

P(u) = N−1∂2
uY (a)(u), (11)

where Y (a)(u) = [�(a)
s0

(u)]m+1.
Let us emphasize that the order of limits (first η → 0 at

fixed N , after which arbitrarily large N can be considered) is
of crucial importance for properly extracting the eigenfunction
statistics. We will return below several times to this important
point and related issues.

In the η → 0 limit, in which the functions �s depend on a
single scalar variable [see Eq. (9)], the recurrence relation (7)
can be substantially simplified. It is convenient to introduce
t = ln(2πηλ1/δ0) and to perform the change of variable

�(a)
s (et ) = �s(t). (12)

One gets then the asymptotic recurrence relation

�s+1(t) =
∫

L(t − t ′)e−et ′
�m

s (t ′)dt ′, (13)

where the kernel L(t) is given by

L(t) = 2g ch g + (2g ch t − 1) sh g

2
√

2πg
et/2−g ch t , (14)

with g = 8J .
Equation (13) was obtained by Efetov [4] and Zirnbauer [5]

in course of the analysis of the stability of the insulating phase

with respect to the symmetry breaking perturbation (the term
in the action proportional to η). It is useful to remind the
reader about the essence of this analysis. For small g (in the
localized phase), the recurrence relation (13) yields a kink that
stabilises after a few iterations. This means that the asymptotic
self-consistency equation [obtained from Eq. (13) by setting
�s+1 = �s ≡ �] has a nontrivial solution �(t). Such a
solution corresponds to the function �(Q) depending on λ1

only on the scale λ1 ∼ η−1δ0 set by the symmetry breaking
term. The function �(Q) can be viewed as an order-parameter
function, and the fact that deviates from unity only on the scale
set by 1/η corresponds to the absence of symmetry breaking.
This is the characteristic feature of the localized phase. On
the other hand, for sufficiently large g (delocalized phase), the
drift of the kink, as described by the asymptotic recurrence
relation (13), continues indefinitely, see Fig. 3. This signifies
the absence of a nontrivial solution of the asymptotic self-
consistency equation and thus an instability of the localized
phase. The self-consistency equation corresponding to the
general recurrence relation (7) does have a solution which
has a form of a kink with a position independent of η for
small η. Thus the delocalized phase is characterized by broken
symmetry from this point of view. Let us stress, however,
that this self-consistent solution is not related to the problem
we are considering in this work, since it corresponds to the
opposite order of limits N → ∞ and η → 0. Specifically, to
reach the stable solution by the iterative procedure (7), one
should consider the limit N → ∞ at fixed (although small) η.
On the other hand, our problem of eigenfunction statistics on
a finite Cayley tree is described by an opposite procedure: we
should consider the limit η → 0 at fixed (although large) N .
In this situation, we are always in the range of applicability of
the asymptotic recurrence relation (13) which describes, in the
delocalized phase, a drift of the kink without saturation.

In order to study the evolution of the kink, we consider
Eq. (13) in the region of t < 0 and sufficiently large |t | (on
the left side of the front in Fig. 3) where deviations from the
“localized” value �(t) = 1 are small. In this region, one can
linearise Eq. (13) in δ�s(t) = 1 − �s(t) and drop the factor
e−et ′

. This yields

δ�s+1(t) = m

∫
L(t − t ′) δ�s(t

′) dt ′. (15)

FIG. 3. Evolution of the kink �s(t) on iterating the asymptotic
recurrence relation Eq. (13) deeply in the delocalized phase (g = 1)
for s = 0,1,2,3,4.
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FIG. 4. Eigenvalue εβ of the kernel L̂ entering the recurrence
relation (13) and its linearized form (15), as a function of the exponent
β, for two values of the coupling g.

Thanks to translational invariance of the kernel, the eigen-
functions of the integral operator L̂ in the right-hand side of
this equation are of the form ψβ(t) = eβt . The corresponding
eigenvalues can be readily found:

εβ = 2gKβ+1/2(g) sh g + 2Kβ−1/2(g)(g ch g − β sh g)√
2πg

.

(16)

The function εβ is shown in Fig. 4 for two values of
the coupling g. Since δ� → 0 at t → −∞, only β > 0 are
allowed. As this decay can not be faster than et in view of
the form of the symmetry-breaking term in Eq. (13), β also
satisfies β � 1. As we discuss below, the relevant values of
β satisfy 1/2 � β � 1. This follows from the fact that the
function εβ (with 0 < β < 1) has the following properties:
(i) ε1 = 1, (ii) εβ increases monotonously on the interval
1/2 � β � 1, and (iii) εβ = ε1−β . These features (which imply
that εβ takes its minimum value at β = 1/2) are clearly seen
in Fig. 4.

Before turning to the investigation of the delocalized phase,
it is instructive to briefly recall the implications of the above
form of the function εβ for the analysis of stability of the
localized phase [4,5]. The system is in the localized phase if
there exists a stationary solution of Eq. (13). If this solution
is characterized, in the asymptotic range of negative t , by an
exponent β, then the following condition should be fulfilled
according to Eq. (15):

mεβ = 1. (17)

In the limit of infinitely strong disorder g → 0, this is fulfilled
for β = 1. For g > 0, one has mε1 > 1, so that the initial
perturbation δ�(t) ∝ et imposed by the symmetry-breaking
term in Eq. (13) grows according to the linear equation
Eq. (15), and the kink starts moving to the left. For not too
small t , this growth is, however, slowed down by nonlinear
effects in Eq. (13). As a result, the exponent β characterizing
the dependence δ�(t) ∝ eβt becomes smaller, and the kink
moves slower. For sufficiently small g, this process stops when
such β from the interval 1/2 < β < 1 is reached that Eq. (17)
is satisfied. In this situation, a stationary solution of Eq. (13)
is reached, i.e., the system is in the localized phase. It follows
that the critical value gc of the coupling g corresponding to the
Anderson transition between localized and delocalized phases

is determined by the equation [4,5]

mε1/2 = 1. (18)

We are now ready to begin the analysis of the delocalized
regime, g > gc, when no stationary solution exists. In view of
the above arguments, we expect that, after some evolution on
a short time scale, the solution �s will reach a steady regime
characterized by a certain exponent β and a drift velocity vβ .
The reduction of β in comparison to its initial value β = 1
has the same origin—slowing down by nonlinear terms—as
in the localized phase. Assuming δ�i(t) ∝ eβt , we get from
Eq. (15) the following form of the solution on the leading
edge of the front:

δ�s(t) = ceβt+s ln mεβ . (19)

Thus the front moves to the left with the velocity

vβ = ln mεβ

β
. (20)

When speaking about the velocity, we consider the variable t as
playing a role of spatial coordinate, and the recurrence-relation
step s as a representing a time. Clearly, here these notions
of “space” and “time” are fictitious and introduced only
for terminological convenience. However, as we discuss
below, the present problem has much in common with a
variety of nonlinear problems where the time and the space
corresponding to our s and t are real.

A question of central importance is how the exponent β,
and thus the velocity vβ , Eq. (20), is selected. As discussed
above, the nonlinear terms in Eq. (15) reduce β compared to
its initial value β = 1, thus reducing the velocity vβ . This may
happen until the minimal possible velocity is reached. Thus the
value β∗ of the exponent β characterizing the steadily moving
kink is determined by the condition of minimal velocity:

vβ∗ < vβ for 1/2 � β � 1, β �= β∗ (21)

As we show below, for a part of the delocalized phase this
minimum is reached at the boundary, β∗ = 1, while for the
rest of the delocalized phase β∗ is located strictly inside the
interval, 1/2 < β∗ < 1, and is thus determined by the equation

dvβ

dβ

∣∣∣∣
β=β∗

= 0. (22)

The arguments in favor of the selection of minimal velocity—
out of those provided by the linear equation (15)—due to
nonlinearities in Eq. (15) can be supported by more formal
analysis of stability of the solution. In fact, such an analysis
is available in the literature in context of a broad class of
problems that are closely related mathematically although
have very different origin. Specifically, these problems deal
with nonlinear equations describing propagation of a front
between an unstable (in our case, � = 1) and stable (in our
case, � = 0) phases. The simplest partial differential equation
of this type is known as Fisher-KPP equation, as it was first
introduced by Fisher [78] and by Kolmogorov, Petrovskii, and
Piskunov [79] in the context of propagation of advantageous
genes. Later, it has been realized that similar problems of
traveling waves in reaction-diffusion systems arise in a great
variety of further areas, including, in particular, fluid dynamics,
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propagation of domain walls in liquid crystals, chemical
reactions, bacterial growth, propagation of combustion fronts,
etc., see Refs. [80–83] and references therein. A connection
between the problem of statistical properties of various
observables in Anderson localization at Cayley tree and that
of traveling wave propagation was emphasized in Ref. [77].
The stability analysis [81] shows that the selected velocity is
determined by so-called marginal stability condition, which
exactly corresponds to minimization of drift velocity, i.e.,
minimization of vβ in our notations.

Thus β∗ and v∗ are determined by the minimum-velocity
condition. Before turning to the evaluation of the dependence
β∗ and v∗ on the coupling constant g, let us analyze how these
quantities manifest themselves in the wave function statistics.
We write the obtained function �s(t) in the form

�s(t) �
⎧⎨
⎩

1 − et+s ln m, t � t−;
1 − c eβ∗(t+sα∗ ln m), t− � t � t+;
0, t � t+ ,

(23)

where c is a numerical constant, and we have introduced

α∗ = vβ∗

ln m
= ln(mεβ∗)

β∗ ln m
. (24)

The reason for introducing α∗ (which, as we show below,
satisfies 0 < α∗ � 1) according to Eq. (24) will become clear
momentarily.

The first line of Eq. (23) corresponds to the very-far
asymptotics of the kink, which is the range of t where the
nonlinear effects have not developed yet (within the given time
s). In this region the evolution of δ�s(t) is controlled by the
linearized equation (15), in combination with the symmetry
breaking term e−et ′

. Since the corresponding eigenvalue of the
operator L̂ is ε1 = 1, the behavior of �s(t) in this region is
completely universal [e.g., it is the same as it would be in
the limit of infinite coupling g → ∞ when the kernel L(t)
becomes a delta function and the whole system becomes a
GUE ensemble] and is given by the first line of Eq. (23). The
boundary t− between this region of GUE-like behavior and
the nontrivial regime of the type (19) characterized by β∗ < 1
[second line of Eq. (23)] is found from the corresponding
matching condition,

t− + s ln m = β∗(t− + sα∗ ln m). (25)

For t to the right of the front, t > t+, where �s(t) � 1,
Eq. (13) implies a very fast (double exponential) decrease of �s

with t . This region will not thus play any role in the following
analysis of eigenfunction statistics, and we can safely replace
�s there by zero [third line of Eq. (23)]. The boundary t+ is
straightforwardly found by the matching condition,

t+ + sα∗ ln m = 0. (26)

Transforming the function �(s), Eq. (23), into �(a)(u)
according to Eq. (12), substituting the result into Eq. (11) and
using Eq. (8) for the number of iterations needed to reach the
root, we find the distribution P(u) of eigenfunction intensity
at the root. The nontrivial part of this distribution, which is
of interest for us, corresponds to the t− � t � t+ regime of
Eq. (23):

P(u) � c′N−1+α∗β∗uβ∗−2, N
− 1−α∗β∗

1−β∗ � u � N−α∗ , (27)

where c′ is a numerical constant. Thus the eigenfunction
distribution P(u) has a power-law form in a parametrically
broad range of u if α∗ < 1. The behavior of P(u) outside of
this range of u does not affect the moments: the distribution
quickly vanishes at large u > N−α∗ and saturates at small
u < N−(1−α∗β∗)/(1−β∗). It is easy to check that the normalization
condition

∫
duP(u) = 1 is satisfied; the dominant contribution

to the normalization comes from the lower limit of the
power-law behavior (27).

Having in our disposition the distribution function, we can
easily find the scaling behavior of all moments

Pq = N〈ψ2q〉 = N

∫
du uqP(u) (28)

with the system size N . We have included the factor N in
the definition (28) of Pq to make it analogous to the familiar
definition of inverse participation ratios. In the conventional
(ergodic) delocalized phase, one has the scaling Pq ∝ N1−q .

Let us start with the second moment P2 = N〈ψ4
r 〉 =

N
∫
P(u)u2du. Using (27), we immediately see that the value

of this integral is determined by the upper cutoff of the
power-law behavior, u ∼ N−α∗ , yielding

P2 ∝ N−α∗ . (29)

Thus, while for α∗ = 1 we have a conventional 1/N scaling
characteristic for a delocalized phase, in the case of 0 < α∗ < 1
the scaling is of fractal character. We will show below that such
a fractal scaling is realized in a large part of the delocalized
phase in the considered Cayley tree model. Let us emphasize
that Eq. (29) represents a true large-N asymptotic behavior of
the wave function moment. Thus the model of a finite Cayley
tree with a boundary is crucially different from the RRG model
which shows ergodic behavior (in particular, P2 ∝ 1/N) in the
limit N → ∞ in the whole delocalized phase. We will return
to this very important difference below.

Let us now evaluate β∗ and α∗ as defined by
Eqs. (16), (20), (21), and (24). It turns out that the delocalized
phase, g > gc, is subdivided into two parts, see Fig. 5 where
the dependencies β∗(g) and α∗(g) are shown for m = 2.
Specifically, for large values of the coupling, g > ge, the

FIG. 5. Exponent β∗(g) characterizing the drifting kink (dashed)
and the fractal dimension α∗(g) (solid) for the sigma model of
unitary symmetry on Cayley tree with m = 2. Three phases are seen:
(i) g < gc—localized phase (gray), (ii) gc < g < ge—delocalized
fractal (nonergodic) phase with 1/2 < β∗ < 1 and 0 < α∗ < 1, and
(iii) g > ge—delocalized ergodic phase (green) with β∗ = α∗ = 1.
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minimal velocity (21) is achieved at the boundary point,
β∗ = 1. As follows from Eqs. (20) and (24), in this situation
α∗ = 1. Thus the region g > ge is a conventional (ergodic)
delocalized phase. On the other hand, for intermediate range
of couplings, gc < g < ge, we find that β∗ is located strictly
inside the interval 1/2 < β < 1 and is thus determined by
Eq. (22). In this situation, the minimal velocity is smaller than
the one corresponding to β = 1, so that 0 < α∗ < 1. Therefore
the intermediate region gc < g < ge is a nonergodic (fractal)
delocalized phase. The values of gc and ge depend on the
Cayley tree connectivity m; for m = 2 they are gc = 0.068
and ge = 0.65. The picture remains, however, qualitatively
the same for other values of m as well, since it is determined
by general properties of εβ described below Eq. (16).

Having determined the dependencies β∗(g) and α∗(g), we
return now to the analysis of the wave function statistics.
Similarly to the above calculation of the second moment
P2, see Eq. (29), we can find, by using the distribution
function (27), other moments Pq . It is easy to see that all
moments with q > q∗, where

q∗ = 1 − β∗, (30)

are determined by the upper limit of the power-law behavior
in Eq. (27), u ∼ N−α∗ , while all moments with q < q∗ are
determined by the lower limit, u ∼ N−(1−α∗β∗)/(1−β∗). As a
result, we obtain the scaling

Pq ∝ N1−q−�q (31)

with the anomalous exponents �q given by

�q =
⎧⎨
⎩q

(1 − α∗)β∗
1 − β∗

, q < q∗ ;

(1 − q)(1 − α∗), q > q∗ .

(32)

In the region g > ge, we have α∗ = 1, so that all the
exponents (32) vanish, �q = 0, and Eq. (31) reduces to
conventional (ergodic) scaling of wave function moments in
a delocalized phase. On the other hand, in the intermediate
phase, gc < g < ge, where α∗ < 1, all �q (with q �= 0,1)
are nonzero, i.e., all moments show a fractal scaling. More
specifically, we have a situation of bifractality: as discussed
above, there are two types of singularities that control all
moments, and, as a consequence, the spectrum �q is formed
by two straight lines.

It should be mentioned that in our analysis we have
neglected logarithmic corrections to scaling that are known to
arise in the Fisher-KPP model and in further related problems
of front propagation. While these corrections do not affect the
asymptotic (N → ∞) values of fractal exponents �q , they are
quite substantial if one extracts �q from the scaling of wave
function moments by numerically diagonalizing systems of
finite size N . The point is that these finite-size corrections to
�q decay with increasing N very slowly, only as 1/ ln N , thus
remaining quite sizable for Cayley-tree systems with largest
N that are still amenable to exact numerical diagonalization.
We will return to this issue in Sec. III in course of the analysis
of our numerical data.

C. Statistics of eigenfunctions vs statistics of LDOS

It is worth pointing out that the exponents �q , Eq. (32),
characterizing the fractality of eigenstates in the intermediate
phase on the Cayley tree do not satisfy the symmetry relation

�q = �1−q (33)

that is an exact property of multifractal spectra at Anderson-
transition critical points in conventional systems [84]. Since
this fact is a manifestation of an important difference between
the peculiar fractal phase on the Cayley tree and conventional
critical systems at Anderson-transition points, we discuss it
now in some detail.

An obvious question to be asked is: How does the system
manage to violate the symmetry relation (33) if it is exact? To
answer this question, we remind the reader the origin of the
relation (33).

Let us denote by σ and ρ the real and imaginary parts of
the Green functions (4),

ρ = − Im GR

πν
, σ = Re GR − 〈Re GR〉

πν
, (34)

where ν = −〈Im GR〉/π is the average LDOS. Clearly, ρ

is the (normalized) fluctuating LDOS. The normalization
and the shift of the real part in Eq. (34) are chosen in
such a way that 〈ρ〉 = 1 and 〈σ 〉 = 0. The joint distribu-
tion function of σ and ρ can be expressed through the
order-parameter function Y (Q) = Y (λ1,λ2) in the following
way [85]:

P(σ,ρ) = 1

ρ2

∂

∂λ1

(
λ2

1 − 1
) ∂

∂λ1
Ỹ (λ1)

∣∣∣∣
λ1= σ2+ρ2+1

2ρ

, (35)

where

Ỹ (λ1) = 1

4π

∫ 1

−1

dλ2

λ1 − λ2
Y (λ1,λ2). (36)

Integration of Eq. (35) over σ yields the LDOS distribu-
tion [66,85]

P(ρ) = ∂2

∂ρ2

∫ ∞

ρ2+1
2ρ

dλ1Ỹ (λ1)

(
2ρ

λ1 − ρ2+1
2ρ

)1/2

. (37)

The distribution function (37) satisfies a symmetry relation

P(ρ−1) = ρ3P(ρ), (38)

which is exact for a sigma model independently of the spatial
geometry and coupling strength. An equivalent statement is
the relation in terms of LDOS moments,

〈ρq〉 = 〈ρ1−q〉. (39)

To employ these relations for extracting scaling at Anderson
transition, one should open the critical system in a certain way,
thus broadening energy levels. (For the closed system with
sharp levels the LDOS is a sum of delta functions in energy,
and its moments are not defined.) One possibility to do this is to
consider a d-dimensional critical system of size L coupled at
the boundary to metallic electrode and to study physics in the
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middle of the system. Another possibility is to attribute to all
energy levels an identical width η of the order of the mean level
spacing ∼1/N , where N ∼ Ld is the system volume. It turns
out that in any of these cases the resulting scaling of LDOS
moments 〈ρq〉 at the Anderson transition will be the same as the
scaling of moments of an eigenfunction intensity, 〈(N |ψ2|)q〉.
In view of the symmetry of the LDOS moments, Eq. (39),
this implies the symmetry relation (33) for the exponents
�q characterizing the statistics of wave functions of a closed
system.

The key point in the above argument is thus a connection
between the moments of wave functions of a closed system
and moments of LDOS of an open system. Let us explore how
it gets violated in the present problem.

Consider first the situation when all levels are broadened
with an equal small width η, which yields exactly the action (5).
The LDOS distribution function at the root can be expressed
through the corresponding order-parameter function Y (Q) =
Y (λ1,λ2), Eq. (10). Substituting Eqs. (9), (12), and (23) in

Eq. (10) for the order-parameter function, and the result in
Eq. (36), we find the following form of the function Ỹ (λ1) that
determines the statistics of local Green functions at the root,

Ỹ (λ1) � 1

2πλ1
×

⎧⎪⎪⎨
⎪⎪⎩

1 − 2πηλ1N

δ0
, 1 < λ1 < λ− ;

1 − c′′[ 2πηλ1N
α∗

δ0

]β∗
, λ− < λ1 < λ+ ;

0, λ1 > λ+ ,

(40)

where

λ− = δ0

2πη
N

− 1−α∗β∗
1−β∗ , λ+ = δ0

2πη
N−α∗ . (41)

Analyzing the joint distribution P(σ,ρ), we focus on the range
of ρ > 1. The most interesting part of the distribution is the
one corresponding to the fractal behavior of Ỹ (λ1) represented
by the second line Eq. (40). This corresponds to the region
λ− < (σ 2 + ρ2)1/2 < λ+. Using Eq. (35), we get the following
behavior of the joint ditribution function in this region

P(σ,ρ) ∼ λ
−β∗
+ ×

{
ρ−3+β∗ , ρ > σ and λ− < ρ < λ+ ;
ρ−1−β∗σ−2+2β∗ , ρ < σ and (ρλ−)1/2 < σ < (ρλ+)1/2 .

(42)

We thus see how the exponents β∗ and α∗ show up in the
nontrivial power-law behavior of the distribution function and
in the borders of this behavior. For (σ 2 + ρ2)1/2 > λ+, the
distribution function is strongly (exponentially) suppressed.

We turn now to the LDOS distribution function P(ρ).
Substituting Eq. (40) into Eq. (37), we get

P(ρ) ∼ λ
−1/2
+ ρ−3/2, λ−1

+ � ρ � λ+ . (43)

Outside of the region λ−1
+ � ρ � λ+ the distribution decays

fast. Interestingly, the power-law scaling (43) of the LDOS
distribution is characterized by the exponent 3/2, indepen-
dently of the value of β∗. The fractality of the system enters
however Eq. (43) via the borders of the power-law regime.
The LDOS distribution (43) can be also obtained from the
joint distribution (42) by integrating it over σ . (The σ integral
is given by the upper limit, σ ∼ (ρλ+)1/2 in view of β∗ > 1/2.)

The distribution (43) implies the following scaling of
moments:

〈ρq〉 ∼
{

λ
−q
+ , q < 1/2,

λ
q−1
+ , q > 1/2.

(44)

Clearly, Eqs. (43) and (44) satisfy the relations (38) and (39).
We can now compare this behavior of LDOS moments with
that of wave function moments, Eq. (32). Choosing the level
broadening η of the order of the level spacing in the whole
system, δN = δ0/N , we observe that the scaling of 〈ρq〉 and
〈(Nu)q〉 at q > 1/2 is the same, see Eq. (41). On the other
hand, at q < 1/2 the scaling is different: the moments of LDOS
respect the symmetry (as they should), while the moments of
wave functions scale differently.

We offer the following physical explanation of this dif-
ference in the behavior of the moments 〈ρq〉 and 〈(Nu)q〉
at q < 1/2. These moments are determined by probabilities

of atypically small values of the corresponding variables.
The LDOS get contribution not from a single level but from
many levels around given energy. The probability to have
an anomalously small LDOS will scale in the same way as
a probability to have an anomalously small wave function
intensity only if wave functions at nearby energies are fully
correlated. Such strong correlations are indeed an important
property of the Anderson transition [2,66]. We conclude that
the correlations between different wave functions behave in an
essentially different way (are much weaker for close energies)
in the intermediate fractal phase on Cayley tree.

Another way to broaden the levels is to open the system at
the boundary. As mentioned above, for a conventional critical
(Anderson-transition) system, this would lead (far from the
boundary) to essentially the same result as broadening all levels
by η ∼ δN . The situation is again qualitatively different for the
present problem. Opening the system at the boundary means
supplementing the recurrence relation (7) with a boundary
condition �0(λ1,λ2) having a form of the kink that goes to
zero at a characteristic scale that does not depend on the
system size, λ1 ∼ 1. In this situation, iteration of Eq. (7) will
converge to a solution of the self-consistency equation. The
resulting LDOS distribution P(ρ) and LDOS moments 〈ρq〉
will show at large N an N -independent behavior characteristic
for conventional (ergodic) delocalized systems. Thus, contrary
to Anderson-transition critical points, the fractality of LDOS
in the intermediate phase on a Cayley tree disappears when
one opens the system at the boundary.

Finally, one can consider a situation in which all levels
are broadened with an equal width η, and an order of limits
opposite to the one appropriate for extracting the statictics of an
eigenfunction is considered, i.e., N → ∞ at fixed small η. For
a conventional system at Anderson transition, in this situation
one will find a scaling of LDOS moments 〈ρq〉 ∼ L

−�q

η , where

184203-8



FRACTALITY OF WAVE FUNCTIONS ON A CAYLEY . . . PHYSICAL REVIEW B 94, 184203 (2016)

Lη is a characteristic length set by η. Thus one can probe
the (multi-)fractality at Anderson transition also in this way.
On the other hand, for the present problem, this order of
limits will eliminate the fractality. Indeed, also in this case,
the iteration of Eq. (7) will converge to a solution of the
self-consistency equation which, in the delocalized phase,
does not depend on η for small η. Therefore the LDOS
distribution and moments will be essentially independent of η,
thus showing no trace of fractality characteristic for individual
eigenfunctions.

D. Anderson model with n = 1

As we have demonstrated above, the delocalized phase
of the unitary-class sigma model on a finite Cayley tree is
subdivided into “ergodic” and “nonergodic” (fractal) phases
as judged by the statistics of wave functions at the root.
The obtained results on the phase boundary and the fractal
exponents are determined by the spectrum εβ , Eq. (16), of
the linearised recursive equation describing the integration
over successive layers of the tree. This analysis is rather
general in the sense that it can be applied also to other
models of localization on Cayley trees. The key point is that
the spectrum εβ , although somewhat different for different
models, has exactly the same qualitative properties as listed
below Eq. (16).

In particular, our analysis can be straightforwardly applied
to sigma models of other symmetry classes (orthogonal and
symplectic), corresponding to systems with preserved time-
reversal invariance. The explicit form of the kernel L(t)
and of the corresponding eigenvalues εβ for these models
can be found Refs. [6,7]. All results are qualitatively the
same as in the unitary-symmetry model. Moreover, curves for
different sigma models merge in the large-m limit, as discussed
below.

Our analysis can be also extended to the original Anderson
model with n = 1 orbital per site [Eq. (1) where we set,
following standard convention, t = 1]. In this model, the
recursion relation that is a counterpart of Eq. (13) involves
a function of two variables, as it is connected with the joint
probability distribution function of real and imaginary parts of
the Green function, see Refs. [3,8]. As a result, the role of εβ

is played by the largest eigenvalue of a certain β-dependent
linear integral operator. While the eigenvalues εβ depend now
on the specific distribution of disorder and cannot be obtained
in a closed analytical form, their gross features are the same
as for the sigma model [see text below Eq. (16) and Fig. 4].
Thus, on the qualitative level, all the conclusions obtained
above for the sigma model remain applicable also for the
n = 1 Anderson model. To obtain explicit analytical results for
the n = 1 model, we consider the limit of large connectivity,
m � 1. In this case, the relevant values of disorder are W � 1,
which allows us to use the large-W approximation for the
eigenvalues εβ . Such an approximation was developed in
Ref. [3] for the eigenvalue ε1/2 determining the position of
the Anderson transition, with the result (for the middle of the
band, ε = 0)

ε1/2 � 4

W
ln

W

2
. (45)

It is not difficult to generalize the corresponding derivation in
Ref. [3] onto the case of β �= 1/2. This yields

εβ � 1

β − 1/2

1

W − 4/W
[(W/2)2β−1 − (W/2)−2β+1]. (46)

The approximation (46) preserves all properties of εβ , includ-
ing the exact symmetry β → 1 − β and the exact identity
ε1 = 1. Using this expression [which is a counterpart of the
sigma model formula (16)], we can evaluate the exponents
β∗ and α∗ that determine, according to Eqs. (27) and (32),
the wave function statistics. Already for m = 2 this gives
quite a decent approximation which is, however, not controlled
parametrically. It becomes controlled in the large-m limit that
we are going to discuss now.

E. Large connectivity: Anderson model and sigma model

As was pointed out in Ref. [19], for large connectivity
of a Bethe lattice one expects a quantitative equivalence
between the n = 1 Anderson model and the sigma models
representing its large-n limit. To verify this prediction for
the present problem, we plot in Fig. 6 the fractal exponent
α∗ for the unitary sigma model and the n = 1 Anderson
model on a Cayley tree with m = 16 as a function of disorder
(normalized to its critical value) W/Wc. For the Anderson
model, we have used the large-W approximation (46). For the
σ model, we have used the expression of the sigma-model
coupling g in terms of the microscopic model, g = n2/W 2,
yielding the identification g/gc = (Wc/W )2. Remarkably,
already for moderately large m, such as m = 16, the disorder
dependencies of the fractal exponent in the Anderson and
sigma models become essentially indistinguishable, see Fig. 6.

In fact, the disorder dependence of the fractal exponents
takes a very simple analytic form in the asymptotic limit m →
∞. Specifically, using Eq. (46) with W � 1 [or Eq. (16) with

FIG. 6. Fractal exponent α∗ controlling the scaling of the second
moment P2 of the wave function intensity (and also of all moments
Pq with q > q∗) for the connectivity m = 16 as a function of
relative strength of disorder W/Wc. Red line: unitary sigma model
(corresponding to the Anderson model with many orbitals per site,
n � 1); blue line: Anderson model with n = 1 for which the large-m
approximation (46) was used. (Two lines are almost indistinguish-
able.) The σ -model coupling is connected to the Anderson-model
disorder via g/gc = (Wc/W )2. The critical points for these models
are Wc = 326 and gc = 2.2 × 10−4, respectively. As in Fig. 5, three
phases are clearly seen: localized (gray) with α∗ = 0, delocalized
fractal with 0 < α∗ < 1, and delocalized ergodic with α∗ = 1 (green).
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g � 1] for the eigenvalue εβ , we find from Eqs. (21) and (24)
a logarithmically slow variation of the exponents β∗ and α∗ in
the nonergodic delocalized phase, We � W � Wc:

β−1
∗ = 2 − 2

2 ln W − ln m
, (47)

α∗ = 2 − 2 ln W

ln m
. (48)

The boundaries of this regime are given on the logarithmic
scale by

ln We � 1
2 ln m, (49)

ln Wc � ln m. (50)

(Here we neglected subleading corrections of the type ln ln m

and const.) As follows from Eqs. (49) and (50), for a Cayley
tree with large m the nonergodic domain occupies, on the linear
scale of disorder, the dominant part of the delocalized phase.
This is well illustrated by the case m = 16 in Fig. 6.

III. WAVE-FUNCTION STATISTICS FROM EXACT
DIAGONALIZATION: CAYLEY TREE VERSUS RANDOM

REGULAR GRAPHS

In the preceding section, we have studied analytically
the statistics of wave functions at a root of a finite Cayley
tree. We have found that, in a large part of the delocalized
phase, the eigenfunctions are fractal and have determined the
corresponding fractal exponents. These results differ crucially
from that obtained analytically [12] and numerically [75] for
the RRG model where the eigenstates are ergodic in the whole

delocalized phase. In this section, we verify our analytical
predictions by performing a detailed numerical analysis of
the eigenfunction statistics in the delocalized phase on Cayley
tree with m = 2. We will compare and contrast these results
with those on RRG. To make this comparison particularly
transparent, we have performed the simulation for the RRG
model fully analogous to that in Ref. [75] but using the RRG
of exactly the same sizes N as Cayley trees studied here. We
study the middle of the spectrum (�1/8 of eigenstates around
the middle of the band, ε = 0) by exact diagonalization of the
Hamiltonian and average quantities of interest over disorder
realizations (typically, over 8000 to 600 wave functions for
number of generations from 9 to 14, respectively).

A. Numerical results

We start with the comparison of the behavior of the second
moment P2 on Cayley tree and on RRG. In Fig. 7, we
show the dependence of NP2 on the system size for several
representative values of disorder. We choose to plot NP2 since
it should saturate in the limit N → ∞ in the conventional
delocalized phase. The numerical results fully support our
analytical fundings, demonstrating clearly two key features:
(i) emergence of intermediate “nonergodic” delocalized phase
on the Cayley tree and (ii) dramatic difference between the
fractal behavior on Cayley tree in this intermediate phase and
the conventional (“ergodic”) behavior in the RRG model.

Let us briefly comment on each of the panels of Fig. 7.
For weak disorder (W = 2.5) we observe that NP2 saturates
in both Cayley tree and RRG models at approximately the
same value which is only slightly higher than that for the
Gaussian orthogonal ensemble (GOE), NP2 = 3. For RRG

FIG. 7. System-size dependence of the second moment of wave functions, NP2, at the root of a Cayley tree (n = 1 Anderson model,
connectivity m = 2; circles) and on RRG (crosses) for disorder W = 2.5, 5, 8, and 14. For the Cayley tree model, the weakest disorder
corresponds to the ergodic phase W < We, the other three to the intermediate delocalized fractal phase (We < W < Wc). For the RRG model,
the whole delocalized phase W < Wc is ergodic.
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this saturation has been shown numerically in Ref. [75]. For
Cayley tree this behavior demonstrates that the point W = 2.5
belongs to the ergodic part of the delocalized phase, W < We,
see Sec. II. It is worth mentioning that oscillations of NP2 on
Cayley tree at relatively small system sizes are not statistical
fluctuations but rather even-odd finite-size oscillations that
are remnants of clean Cayley tree. Another indication of the
“almost clean” character of the system at these small sizes is
the fact that NP2 is substantially smaller than its GOE value.
At the largest studied system sizes (12 to 14 generations), the
oscillations get strongly damped and NP2 saturates.

The behavior on Cayley tree becomes essentially different
for further three values of disorder, W = 5, 8, and 14, shown
in Fig. 7. Here NP2 grows as a power law of N : the Cayley-
tree model is in the intermediate fractal delocalized phase,
We < W < Wc, see Sec. II. This is in stark contrast with the
saturation of NP2 (which is a manifestation of the conventional
“ergodic” behavior) in the RRG model clearly observed for
W = 5 and 8, in full agreement with our earlier results [75].
Thus the W = 5 and W = 8 panels of Fig. 7 visualize in a
particularly clear way the key difference between the Cayley-
tree and the RRG models: the existence of an intermediate
fractal delocalized phase in the former and the ergodicity of
delocalized states in the latter.

For W = 14, which is quite close to the critical disorder
Wc � 17.5, this saturation in the RRG model cannot be
achieved with the studied system sizes. The reason for this was
explained in detail in Ref. [75]: the RRG “correlation volume”
Nc(W ) increases exponentially near the transiton, becoming
comparable to our largest system size at W = 14. For sizes N

smaller than Nc the RRG model is essentially in the critical
state, implying “almost localized” behavior of eigenfunctions.
This explains a similarity of the behavior of NP2 on RRG
to that in the root of Cayley tree where eigenfunctions show
fractal behavior with an exponent α∗ close to zero (which
is its “localized” value). Only for our largest system sizes
the W = 14 data on RRG start to deviate downwards, thus
showing a trend to saturation. (To observe full development of
this saturation for RRG with W = 14, system sizes would be
needed that are beyond our computational capabilities.)

After having discussed the second moment P2, we turn
to numerical analysis of the whole distribution function of
the eigenfunction intensity, P(u). In the preceding section,
we have found analytically that the dominant part of this
distribution function acquires a power-law form, Eq. (27). It
is convenient to transform Eq. (27) to a distribution of the
logarithm ln u, which yields

lnP(ln u) = (β∗ − 1) ln u + (−1 + α∗β∗) ln N (51)

with a support at

−1 − α∗β∗
1 − β∗

ln N � ln u � −α∗ ln N. (52)

Thus we expect a linear part on the plot of lnP(ln u) with a
slope β∗ − 1 that becomes increasingly more developed with
increasing system size N and moves to the left with a constant
speed with respect to ln N . To verify these predictions, we
plot in Fig. 8 the distribution lnP(ln u) for W = 14 for m =
2 Cayley trees of different sizes (number of generations s0

from 9 to 14). We observe that a region of linear slope indeed

FIG. 8. Distribution function of ln u ≡ ln |ψ |2 for W = 14 at a
root of a Cayley tree with the number of generations s0 from 9 to 14.
A power-law distribution P(u) ∝ uβ∗−2 corresponds to a straight line
in this plot. It is seen that a range of power-law behavior develops
with increasing number of generations and moves to the left with
a constant speed, in agreement with the analytical result (27). The
dashed line corresponds to the value β∗ = 0.72 extracted from the
behavior of moments, Fig. 9.

develops with increasing system size and moves to the left
with a constant speed with respect to s0 (or, equivalently, with
respect to ln N ), in agreement with analytical results, Eqs. (51)
and (52).

As a further characterization of our numerical data, we
study the anomalous fractal dimension �q as function of q.
Our analytical result, Eq. (32), predicts a bifractal behavior. To
verify this, we plot in Fig. 9 numerically extracted values of �q

with q between −0.25 and 1.5 for W = 14 and for systems for
the number of generations from 9 to 12. The results support the
bifractal behavior (32). As expected, the cusp in �q at q = q∗
is rounded due to finite-size effects. The convergence for q in a
close vicinity of q∗ appears to be quite slow, and considerably
larger system sizes would be needed to see it more clearly.
Since the slopes of �q at q > q∗ and q < q∗ are expressed
in terms of β∗ and α∗ via Eq. (32), we can extract the values
of these exponents from the numerically found slopes. This
yields β∗ � 0.72 and α∗ � 0.08. Using this value of β∗, we
have plotted a dashed line in Fig. 8. It is seen that this value

FIG. 9. Anomalous dimensions �q characterizing fractality of
eigenfunction intensity at the root of a Cayley tree with disorder W =
14, as determined for systems of different number of generations s0

(from 9 to 12). Dashed lines represent a fit to Eq. (32) with β∗ � 0.72
and α∗ � 0.08.
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FIG. 10. Disorder dependence of the fractal exponents α∗ (de-
fined in the limit N → ∞) in the delocalized phase of n = 1 Anderson
model with m = 2. CT: Cayley tree; full line: analytical result, see
Sec. II, in combination with the large-W approximation (46); stars:
numerically extracted α(N)

∗ ; dots: asymptotic (N → ∞) value α∗ ob-
tained from α(N)

∗ by taking into account the finite-site correction (53);
dashed line: fit to finite-size-corrected numerical data. RRG: random
regular graphs; solid line: numerically extracted α∗ for RRG (Ref. [75]
and this work); dashed line: extrapolation on the basis of analytical
prediction [12] supported by numerical data of Ref. [75] and of this
work (full saturation of IPR is not achievable for this disorder values
in view of system-size limitations).

of β∗ indeed describes correctly the power-law distribution of
wave function intensities, Eq. (51).

In Fig. 10, we show the disorder dependence of the fractal
exponent α∗ for the n = 1 Anderson model on a Cayley tree
with the connectivity m = 2, as estimated from our numerical
results. Qualitatively, this behavior is the same as in the n � 1
model (sigma model) on a Cayley tree with m = 2, Fig. 5,
as well as is the large-m models, Fig. 6. For comparison, we
also show by a line the value α∗ = 1 corresponding to ergodic
delocalized wave functions in the RRG model.

B. Finite-size corrections to scaling on the Cayley tree

In Fig. 10, we compare the data points for the fractal
exponent α∗ as obtained from exact numerical diagonalization
of the Anderson model on the Cayley tree (star symbols)
with the analytical formula derived in Sec. II combined
with the large-W approximation (46) for the eigenvalues εβ .
While two dependencies are very similar, we observe a clear
downward deviation of numerical data as compared to the
analytical curve. Clearly, the large-W formula (46) is only an
approximation for moderate values of W that are of interest for
the case of connectivity m = 2. While this accounts for a part
of the deviation, this is is not sufficient to explain it completely.
Indeed, it is known that the approximation (46) reproduce with
a very good accuracy the critical value Wc � 17.5 (which is the
point in Fig. 10 where the analytical curve for α∗(W ) reaches
zero). On the other hand, the numerical data appear to suggest
a considerably smaller value Wc � 15. Thus there should be a
reason why our numerical data for α∗ are substantially smaller,
in the range of not too small W , than the actual values of α∗.

A well-known source for deviation of numerical data
for exponents from their true values are finite-size effects.
Usually finite-site effects in critical phenomena (such as, e.g.,
Anderson transition) are not well controlled (since their are

governed by subleading exponents that are usually not known
analytically). However, they usually vanish in a power-law
fashion with the system size N and are thus quite small for
largest available N . As we briefly discuss now, the finite-size
effects in the present problem are essentially different in two
ways. On one hand, they decay very slowly, only as 1/ ln N ,
thus producing a substantial deviation of the exponent even
for largest N amenable to numerical diagonalization. On the
other hand, the leading correction is known analytically and
thus can be taken into account.

The finite-time correction to the position (and thus to the
velocity) of the front was first calculated, for the case of Fisher-
KPP equation by Bramson [86]. Later, it was shown that an
analogous result applies to a broad class of problems of front
propagation [83,87]. It is thus very plausible that the same form
of the correction applies also to the present problem (although
a rigorous proof of applicability of this statement remains a
prospect for future work). When applied to our problem and
translated to our notations, the result of Refs. [83,87] for the
leading-order correction reads

α(N)
∗ = α∗ − 3

2β∗ ln N
, (53)

where α∗ is the true asymptotic (N → ∞) value of the
exponent and α

(N)
∗ is its apparent value as obtained for systems

of size N . Thus the finite-size correction implies a downward
shift of α: eigenstates of a finite system appear to be more
fractal than they would be in the limit of N → ∞. To estimate
the magnitude of the correction for realistic N , we take
ln N � 10 and β∗ � 3/4 (which is in the middle of the full
range of 1/2 < β∗ < 1 in the fractal phase), which yields the
characteristic value α∗ − α

(N)
∗ � 0.2. This perfectly explains

the deviation between the numerical data and the analytical
result in the range of intermediate W , and thus the apparent
shift of Wc.

We have taken into account the finite-size effects according
to Eq. (53); the correspondingly corrected [88] numerical data
are shown by dot symbols in Fig. 10. These corrected data are
fitted well by a dependence α∗(W ) that has essentially the same
shape as the line obtained in high-W approximation, with the
same Wc � 17.5 but with somewhat smaller We, see dashed
line in Eq. (53). This line represent thus our estimate for the
asymptotic behavior of the fractal exponent α∗(W ).

The accuracy of our finite-size-corrected result for α∗(W )
(dot symbols in Fig. 10) can be estimated as ±0.1 on the
basis of the leading-order correction and taking into account
that higher terms are suppressed by additional powers of
1/(ln N )1/2. Since one cannot increase substantially ln N

for matrices amenable to exact diagonalization, it would be
difficult to improve substantially this accuracy by a direct
analysis of statistics of eigenfunctions. On the other hand, one
can find the asymptotic fractal exponent α∗(W ) of the Cayley-
tree problem with a substantially better accuracy by using our
analytical results of Sec. II and studying the front evolution for
the nonlinear equation corresponding to the n = 1 Anderson
model [3,8] with a numerical pool method. Some related
work was done in Refs. [3,77,89]. Very recently, a related
population-dynamics algorithm was implemented in Ref. [90];
we will comment on this work in more detail in Sec. IV. It
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was found in various models of front propagation [91] that
the correction to velocity due to finite size Np of the pool
scales as 1/(ln Np)2. Since the velocity determines our fractal
exponent α∗, we expect that it should be possible to obtain this
exponent by the pool method with the accuracy of order ∼1%.
Once α∗ and β∗ are determined numerically, one can use our
Eq. (32) to obtain the spectrum of fractal exponents charac-
terizing the eigenfunction statistics at the root of the Cayley
tree.

IV. SUMMARY

In this paper, we have studied analytically and numer-
ically eigenfunction statistics in a disordered system on a
finite Cayley tree. We have shown that the distribution of
eigenfunction amplitudes at the root of the tree is fractal
(“nonergodic”) in a large part of the delocalized phase. We
have determined fractal exponents characterizing the statistics
and the scaling of moments in this peculiar phase. These
exponents are expressed, Eq. (32), in terms of the decay rate
β∗ and the velocity vβ∗ = α∗

ln m
in a problem of propagation

of a front between unstable and stable phases. Our findings
imply a crucial difference between a loopless Cayley tree and
a locally treelike structure without a boundary (random regular
graph, RRG) where extended eigenfunctions are ergodic. We
have also performed numerical simulations of both models
(Cayley tree and RRG) that fully support the analytical
results.

We have emphasized the very peculiar character of fractality
on the Cayley tree whose existence depends on the order of
limits η → 0 and N → ∞, where η is the level broadening and
N the system size. While probing the statistics of individual
eigenfunctions, we take the limit η → 0 first, which results
in a fractal dependence of eigenfunction moments on N .
(More generally, this situation is realized if ηNα∗ → 0.) If
the opposite order of limits is considered (N → ∞ first, or,
more generally, ηNα∗ → ∞), the LDOS moments become
η-independent, contrary to Anderson-transition critical points
where they would scale in a fractal way with η. Similarly,
opening the Cayley tree at the boundary (i.e., connecting the
boundary to a “metallic” system) eliminates the fractal scaling
of the LDOS moments with N .

Before closing the paper, we make several comments. (1)
It is instructive to pinpoint a key distinction between the
analytical calculations of eigenfunction moments for locally
treelike graphs without boundary (RRG or SRM, Ref. [12]), on
one hand, and Cayley tree (this work), on the other hand, that
is responsible for very different behavior (ergodic vs fractal)
in a large part of the delocalized phase. In both cases, one
starts from a general exact formula (3). On the Cayley tree, the
appropriate order of limits (η → 0 at fixed large N ) leads to
the iterative procedure in terms of the recurrence relation (13),
see the analysis in Sec. II. This procedure corresponds to the
far asymptotic domain in terms of the recurrence relation (7).
In other words, the fixed point of Eq. (7) is not reached in
view of the above order of limits and is thus immaterial for
the statistics of eigenfunctions in the intermediate phase on
the Cayley tree. On the other hand, in the case of treelike
graphs without boundary and of size N > Nc(W ), the statistics
is controlled [12] by the saddle-point of the corresponding

supersymmetric action. This saddle point is a solution of
the self-consistency equation analogous to the fixed point
of Eq. (7). Obviously, this argument applies also to many
other observables, such as the level statistics or correlations of
close-in-energy eigenfunctions.

On a more intuitive level, the importance of large-scale
loops (that distinguish the RRG and other treelike models
without boundary from the Cayley tree) for the eigenfunction
statistics can be understood in the following way. To probe the
statistics of a single eigenfunction on a RRG, we have to probe
the physics on an energy scale of the order of level spacing δN ,
i.e., on the time scale of the order of N . On the other hand, the
typical size of the loops is ln N . Therefore it is expected that
the loops may matter.

(2) In the introductory part of the paper (Sec. I), we pointed
out that the interest to models of Anderson localization on tree-
like structures is at present largely motivated by their relation
to problems of many-body localization. In view of the crucial
difference between the Cayley tree and the RRG problems
emphasized in the present work, it is natural to ask which type
of model (Cayley tree or RRG) actually arises (at least within
some approximations) when one characterizes the Fock-space
structure of many-body eigenfunctions. We argue that RRG is
more relevant in this context. Indeed, within the mapping of a
many-body problem onto an effective tight-binding model, the
vertices of an effective lattice represent basis many-body states
of a free theory and the links represent interaction-induced
matrix elements between them. Clearly, all typical basis states
are equivalent, in the sense that each of them is connected to
roughly the same number of other states. Thus the effective
model has no boundary and, in this sense, is analogous to
RRG. It is worth emphasizing that, in a general situation of an
extended system with spatially localized states, the effective
model with be nevertheless essentially different from RRG, in
view of spatial constraints on matrix elements. On the other
hand, for problems of many-body localization in quantum-
dot-type systems [29,64], a mapping to RRG may be a very
good approximation; see, in particular, the corresponding
arguments in Ref. [64]. Clearly, further studies of connections
between RRG (and similar models on treelike structures
without boundary) with models of many-body localization is
of great interest. It would be also interesting to see whether
the Cayley tree problem might also find any application in this
context.

(3) Very recently, a preprint appeared [90], the authors of
which implement numerically an iterative procedure (within
a certain population dynamics scheme) for a distribution
of imaginary part of Green functions (i.e., of LDOS) on a
Bethe lattice, with an idea to explore the limiting case of
η → 0 at fixed N . This procedure is thus analogous to the
one that we implement analytically in Sec. II to study wave
function statistics at a root of a finite Cayley tree with a
boundary. The authors of Ref. [90] do find in this way a
fractal behavior, in consistency with our results. However,
they argue that what is studied in this way is the eigenfunction
statistics on RRG rather than on a Cayley tree. As we have
emphasized above (see the comment 1 in the present Section),
the recurrence-relation analysis describing a finite Cayley tree
is not applicable to the RRG model. Thus the conclusion of
the authors of Ref. [90] that a fractal exponent that they find

184203-13



K. S. TIKHONOV AND A. D. MIRLIN PHYSICAL REVIEW B 94, 184203 (2016)

within a population-dynamics analysis characterizes the RRG
model is erroneous.

(4) The present work opens a way for exploring further
statistical properties of the peculiar fractal delocalized phase
on a Cayley tree. Let us give some examples. First, one
can study the eigenfunction statistics away from the root.
We expect [92] that the fractal exponents depend on the
position of the observation point, in a certain analogy with the
boundary multifractality at Anderson transitions [2]. In fact,
it was found in Ref. [93] that random Schrödinger operators
on certain “canopy graphs” have pure-point spectrum for any
strength of disorder, at least for some models of disorder
distribution. This suggest localization of eigenstates near the
boundary of a Cayley tree. It would be very interesting to
see how this localization manifests itself in the eigenfunction
statistics near the boundary and how this behavior crosses
over to the delocalization (ergodic or fractal) near the root
of the tree. Our preliminary results [92] indeed indicate that
even in the weak-disorder phase, W < We (or g > ge in
the sigma-model language), each eigenstate on the Cayley
tree is localized near a single path connecting a root with
the boundary. Thus even the phase W < We (g > ge) on
the Cayley tree is “ergodic” only from the point of view
of eigenfunction statistics at the root. Second, it would be
interesting to study wave function correlations (in space and
in energy) that are expected to be unusual (see a discussion
in Sec. II C).

(5) While we focused in this work on a vicinity of the
middle of the band, ε = 0 (and thus on sufficiently strong
disorder), our analysis of eigenfunction statistics at the root
of a Caley tree can be extended to the whole parameter plane
spanned by the energy ε and the disorder strength W . This will
subdivide the delocalized phase into a phase of “ergodic” (at
the root) states surrounded by the phase of fractal delocalized
states. In view of results of Ref. [10] (see the note [11]),
there is an interesting question concerning the behavior of
this phase diagram in the weak-disorder regime for models

with bounded disorder. Specifically, it would be interesting to
find out whether in this regime the ergodic phase extends up to
the band edge, or else, an intermediate fractal phase intervenes.

(6) Similarly to the problem of Anderson localization,
various formulations of spin-glass theory on treelike graphs
were discussed [94–96]. This includes, first, a finite Cayley tree
with boundary and with L generation such that correlations are
studied only around the root of the tree (within a distance L′
from the root, with L/L′ → ∞). Second, models on treelike
structures without boundary but with large loops (RRG and
SRM) were studied. It was found that the latter formulation
(RRG or SRM) is advantageous; in this case the problem is
described by the self-consistency equation and the finite-size
correction can be analyzed [95,96]. The problems of Anderson
localization and of spin glass have common property of being
characterized by an order-parameter function, and the analysis
of the spin glass on RRG in Ref. [96] bears certain similarity
with the theory of Anderson localization on SRM in Ref. [12].
As to the model of a spin glass on a Cayley tree with a boundary,
it was found [95] that it suffers from some ambiguity since
the dependence on boundary conditions remains, even in the
limit L/L′ → ∞, because of frustration. Thus there appears
to be a certain similarity between our finding of a qualitatively
different behavior of the eigenfunction statistics at a root of a
Cayley tree, on one hand, and in RRG, on the other hand, and
an analogous difference in spin-glass models. It remains to be
seen whether this analogy has deeper physical roots.
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