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Molecular dynamics study on β-phase vanadium monohydride with machine learning potential
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The formalism to construct the machine learning potentials (MLPs) is presented. We introduce the spilling factor
for the simultaneous error estimation and the recursive bisection method for the reduction of the computational
cost. The formalism is applied for the β-phase vanadium monohydride. The first-principles calculations based on
density functional theory (DFT) are used to prepare the sample data set from which the MLP for the vanadium
monohydride (VH) system is constructed. In the molecular dynamics simulation with the MLP, the time-averaged
structure of β-VH is predicted correctly to be the body-centered tetragonal structure with the octahedral (O) site
occupation of H. The average lattice constants are in good agreement with the experimental data which are not
able to be reproduced by the static DFT calculation. The O-site occupation of H observed in the average structure
is, however, a saddle point on the potential-energy surface, and the actual hydrogen occupation is found to be the
4T configuration.
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I. INTRODUCTION

Molecular dynamics (MD) simulations have successfully
been applied in a wide variety of research fields [1], which
provide the microscopic dynamical behavior of a system by
solving the time evolution of motions for constituent atoms. In
addition to the dynamical properties, MD can also be utilized
as a sampling scheme for statistics to determine equilibrium
properties. The crucial issue for the MD simulations is
how to represent the interatomic potentials. First-principles
calculations based on density functional theory (DFT) [2,3]
allow us to describe the atomic interactions with an accurate
quantum-mechanical treatment, which is known as an ab initio
MD simulation. On the other hand, because of high computa-
tional demands of DFT calculations, the empirical interatomic
potentials [4–9] have also been used to perform large-scale
simulations. The accuracy of these methods strongly depends
on the potential functions and their parameters which have
to be determined carefully. Large effort and time are often
required to construct the potentials.

In this context, machine learning approaches have recently
been adopted to construct the interatomic potentials [10–13].
In the machine learning potentials (MLPs), the total energy of
a system is expressed by simple and flexible functions which
are chosen from a mathematical viewpoint rather than physical
motivation. Different types of bonding can be treated on the
same footing. Well-established training procedures are also
available. In this paper, we construct the MLP for the vanadium
hydrogen (VH) system and apply it for the β-phase vanadium
monohydride to investigate its structural property.

It is known that the β-phase vanadium monohydride β-VHx

has a body-centered tetragonal (bct) structure where H atoms
occupy the octahedral (O) sites of the V sublattice [14,15]. The
axial ratio c/a for the tetragonal distortion has been reported to
be 1.11, 1.12, and 1.13 for VH0.68 [14], VH0.82 [15], and VH0.90

[16], respectively: Although the β-phase hydride has some
composition range, the axial ratio is nearly constant regardless
of the composition. A static DFT calculation cannot reproduce
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this axial ratio which is overestimated to be c/a � 1.3. In order
to take into account the effect of the thermal fluctuation, we
carry out the MD simulation with the MLP.

The rest of this paper is organized as follows: In Sec. II,
our formalism for the machine learning potential is presented.
Section III gives the results in which we validate the formalism
and discuss the structural property of vanadium monohydride.
Section IV summarizes the main results of this paper and gives
brief comments for future work.

II. METHODOLOGY

A. Descriptor

In the MLP, atomic configurations are represented by
the descriptors [17] which should be invariant with respect
to atomic permutations, uniform translations, and rotations
because the energy of a system is also invariant under these
operations. Let us consider an atomic configuration around the
I th atom in a system located at RI . Fourier transform of the
atomic distribution function around RI , ρI (r) = ∑′

iδ(|r −
RI

i |) in the spherical coordinates is given by∫
ρI (r)e−ıq ·r d r

= 4π
∑

l

(−ı)l
l∑

m=−l

[∑
i

′jl

(
qRI

i

)
Ylm

(
R̂

I

i

)]
Ylm(q̂), (1)

where RI
i = Ri − RI , RI

i = |RI
i |, jl are the spherical Bessel

functions, and Ylm are the real spherical harmonics. The prime
in the summation excludes the i = I term. The quantity in
the square brackets in Eq. (1) is closely related to angular-
dependent radial distribution functions. Therefore, we use
it with the finite number of sampling wave-vectors q to
characterize the local atomic configuration,

f I
tnlm =

∑
i∈t

′fcut
(
RI

i

)
jl

(
qnR

I
i

)
Ylm

(
R̂

I

i

)
, (2)

where indices t for atom types are introduced to distinguish
the distribution of different types of atoms and fcut is a smooth
radial cutoff function with compact support. The sampling
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wave-vector lengths are set to be qn = 2πn/Rcut, where Rcut

is a cutoff radius of fcut. The function f I
tnlm is invariant with

respect to atomic permutations and translations but not under
rotations since Ylm depends on the choice of an azimuthal axis.
A uniform rotation Ŝ transforms Ylm into

∑
m′ D

l
mm′ (Ŝ)Ylm′

where Dl
mm′ is a unitary matrix (the Wigner matrix [18] in

the case of complex Ylm), (Dl)T = (Dl)−1. Therefore, the
following quantity becomes rotationally invariant:

gI = gI
tt ′nl =

l∑
m=−l

f I
tnlmf I

t ′nlm, (3)

which is the descriptor used in this paper. Our descriptor is
categorized as the power spectrum [17]. The maximum number
nmax for n as well as lmax for l control the resolution of the
descriptor. Because Eq. (1) provides a complete representa-
tion for local atomic configurations, it is expected that the
descriptor can systematically be improved by increasing nmax

and lmax.
Using the descriptors given in Eq. (3), the similarity

measure between two local atomic environments is defined
as follows: When the I th and J th atoms belong to the same
atom type,

d2
l (I,J ) =

∑
n

∑
t

∑
t ′�t

∣∣gI
tt ′nl − gJ

tt ′nl

∣∣2
, (4)

otherwise d2
l (I,J ) = ∞. For later convenience, l dependency

is retained for the similarity measure.

B. Machine learning potential

In the MLP, the total energy of a system is evaluated by
interpolating prepared DFT data sets. Using the similarity
measure of Eq. (4), the total energy is expressed by a sum
of weighted Gaussians,

Etot =
∑

I

∑
J∈ref

αJ exp

[
−

∑
l

d2
l (I,J )

2θ2
t l

]

=
∑
J∈ref

αJ

∑
I

Q(gI ,gJ ), (5)

where α are the regression coefficients, θ are the scale
parameters, and J runs over the reference configurations (see
Sec. II C). In this paper, we assume that θ ’s are anisotropic
and depend on the I th atom type t and the angular momentum
l. The first derivative of the total energy with respect to atomic
displacements and uniform strain provides the forces acting
on atoms F and the macroscopic stress tensor σ , respectively,
which are given by

Fi = −
∑

I

∑
J∈ref

αJ

∂Q(gI ,gJ )

∂ gI

∂ gI

∂ RI
i

=
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J∈ref
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where 	 is the unit-cell volume. Although σ in Eq. (7) is
a symmetric second-order tensor, it is, hereafter, treated as a
vector with the Voigt notation.

In the training process, the potential parameters are deter-
mined so as to reproduce the DFT results calculated for sample
structures. To enhance the quality of the MLP, in addition to the
total energy, the forces acting atoms and the macroscopic stress
tensor also are utilized as the target quantities for training. Let
y is a collective vector for DFT results,

yT = (
E

(1)
tot ,

{
F(1)

i

}T
,{σ (1)}T , . . . ,E

(N)
tot ,

{
F(N)

i

}T
,{σ (N)}T )

,

(8)

where N denotes the number of the sample structures. In
the MLP, since Etot, Fi , and σ are the linear functions
of the same regression coefficients as shown in Eqs. (5)–(7),
the corresponding vector can be expressed by yMLP = Kα with
K = (k1, . . . ,kM ) and

kT
J =

⎛
⎝∑

I

Q(gI (1),gJ ),

{∑
I

�i(gI (1),gJ )

}T

,

{∑
I

ϒ(gI (1),gJ )

}T

, . . .

⎞
⎠, (9)

where M is the number of the reference configurations. Since
y and yMLP are composed of the quantities with different
physical units, it is necessary to make them dimensionless. To
this end, we introduce the diagonal matrix D, whose elements
are chosen to be the inverses of the target criteria for the total
energy, the force, and the macroscopic stress. With the standard
L2 regularization, the squared sum of residuals is given by

Z = ( y − Kα)TDTD( y − Kα) + λαT α, (10)

where λ is the regularization parameter to prevent overfitting.
When the scale parameters θ and the regularization parameter
λ are given, the regression coefficients α can be obtained by
solving the following normal equation:

(KTDTDK + λI)α − KT DTD y = 0, (11)

where I denotes the unit matrix. The minimization of Z with
respect to θ and λ is carried out using the simplex method [19].
When the last term in Eq. (10) for the L2 regularization, λαT α,
is replaced by λαTQα, the corresponding normal equation
coincides with the expression for the predicted value in the
Gaussian process with sparesification [11].

C. Reference configurations

The selection of all local configurations contained in the
sample structures as the reference configurations is a natural
choice. A large number of the references is, however, computa-
tionally unfavorable because the training cost is proportional
to the cube of this size. When some configurations in the
reference set are highly correlated, one will be able to reduce
the number of the reference configurations without significant
loss of accuracy. In this paper, we adopt a recursive bisection
approach with the k-means clustering [20]. For simplicity, we
consider a monoatomic system in this section: In the case of
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a multiatomic species system, the following procedure should
be repeated for each atom type.

First, the local configurations in the sample structures are
divided into two clusters by the k-means method where the
gravity centers of clusters are defined by arithmetic means
and a distance between two configurations is evaluated by
r = |gI − gJ |. Then, checking the cluster size (defined by
the maximum distance from the center); if the size is smaller
than the predetermined criterion δr , the center is selected as a
new reference configuration, and the cluster is removed from
the iteration; otherwise the configurations in the cluster are
classified into two clusters, and the sizes of these clusters
are checked again. This procedure is iterated until all clusters
are removed.

This approach is computationally efficient, and the number
of the reference configurations can be controlled by a single
parameter δr .

D. Error estimation

The predictive power of the MLP strongly depends on the
distribution of the reference configurations in the configura-
tional space. A poor accuracy is expected if the references
are rarely spanned around a prediction point and vice versa.
Because Q(gI ,gJ ) in Eq. (5) is thought to be an approximated
overlap between two configurations, an error of the MLP at
the prediction point g can be estimated by

s(g) = 1 −
∑
I∈ref

∑
J∈ref

Q(g,gI )Q−1(gI ,gJ )Q(gJ ,g). (12)

Hereafter, we refer this function as the spilling factor, which
is zero when the configuration g is fully projected by the
reference configurations, whereas s = 1 when g has no
overlaps with them.

Equation (12) resembles the expression for the variance of
the joint probability in the Gaussian process [11,21]. Note that
our formalism is not based on the Gaussian process. Unlike the
covariance matrix in the Gaussian process, Q is non-negative
definite, not positive definite. If the reference set includes two
or more identical configurations, Q−1 becomes singular. The
recursive bisection method described in the previous section
is useful not only for reducing the computational cost, but also
for avoiding this problem.

III. RESULTS AND DISCUSSION

A. DFT sample data set

A DFT sample data set has been generated using a variable
cell-shape ab initio MD simulation with the isothermal-
isobaric ensemble. A supercell containing 32 formula units
is used, and the hydrogen content is assumed to be x = 1
for simplicity. Temperature and pressure are controlled to be
T = 300 K and P = 0 GPa with the Nosé-Hoover thermostat
[22,23] and the Wentzcovitch barostat [24], respectively. A
calculation is carried out using the ultrasoft pseudopotential
method [25,26] with the generalized gradient approximation
for the exchange-correlation energy [27,28]. The cutoff en-
ergies are set to be 15 and 120 hartrees for the pseudowave
functions and the charge density, respectively. The Brillouin-
zone integration is performed with a 2 × 2 × 2 k-point mesh

where partial occupation numbers for the states near the
Fermi level are determined from the Fermi-Dirac distribution
function with kBT = 3 × 10−3 hartree.

In order to recover a wide range of the configurational space,
a hypothetical zinc-blende structure is chosen as the initial
configuration in which V atoms form a face-centered cubic
(fcc) sublattice and H atoms occupy half of the tetrahedral (T )
sites between them. Starting from this configuration, we run
20 000 MD steps, and then 100 snapshots are collected as the
sample data.

In the ab initio MD simulation, the phase transition from fcc
to bct occurs during the first 5000 MD steps. The time average
over the last 2000 steps gives the O-site occupation of H in the
bct structure correctly. The average axial ratio is c/a = 1.22:
Although the improvement from the static calculation can be
found, the amount of the correction is still insufficient. This
is probably due to poor statistics (the small cell size and the
short time period for sampling). As shown in Sec. III C, the
MD simulation with the MLP generated from these sample
data reproduces the experimental lattice constants quite well.

B. MLP construction

The parameters for the descriptor are set to be nmax =
12, lmax = 6, and Rcut = 10 bohr. The prepared DFT sample
data set contains 6400 local configurations. From them, we
construct two sets of the reference configurations with the
parameters for the recursive bisection method δr2 = 0.07 and
0.1. The obtained reference sets, the MLP1 and the MLP2, are
composed of 3289 and 1521 configurations, respectively.

We use fivefold cross validation for training [13,29]. The
target criteria for the diagonal matrix D are chosen as 1 ×
10−4 hartree/atom, 1 × 10−3 hartree/bohr, and 1 GPa for the
energy, force, and stress, respectively. Table I summarizes the
results of training. The quality of fitting is about 10 meV/atom
for both the MLP1 and the MLP2. Because of smaller Z for
the MLP1, the overall quality of the MLP1 is expected to be
somewhat higher than that of the MLP2.

Both potentials are applied for four model structures, zinc
blende (fcc T -site occupation), rock salt (fcc O-site), and T -
site and O-site occupations in the bct structure. Except for zinc
blende, these structures are not included explicitly in the DFT
sample set. Table II shows the results of the MLP calculations
together with the DFT results. The agreement with the DFT
results is fairly good. The lattice constants agree within 2%.
The cohesive energies are reproduced in the correct order,
although the MLPs underestimate them about 15 meV/atom
for the bct phases. Comparing the results between the MLP1
and the MLP2, no remarkable reduction in accuracy is found

TABLE I. Root-mean-square errors for the energy �E

(hartree/atom), force �F (hartree/bohr), and stress �σ (GPa).
Squared sum of residuals Z and the number of the reference
configurations Nref .

Nref �E �F �σ Z

MLP1 3289 3.54 × 10−4 3.24 × 10−3 1.32 8.04
MLP2 1521 3.38 × 10−4 3.51 × 10−3 1.37 8.26
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TABLE II. Comparison of the results given by the MLP and DFT calculations for VH. Lattice constants a (Å), axial ratios c/a, and cohesive
energies Ecoh (eV/atom).

MLP1 MLP2 DFT

a c/a Ecoh a c/a Ecoh a c/a Ecoh

fcc T site 4.075 1 4.543 4.075 1 4.542 4.065 1 4.546
fcc O site 3.940 1 4.636 3.934 1 4.635 3.932 1 4.641
bct T site 3.150 1.007 4.653 3.130 1.034 4.652 3.172 0.998 4.666
bct O site 2.903 1.267 4.638 2.878 1.288 4.640 2.870 1.293 4.654

for the MLP2. The recursive bisection method provides an
efficient way to reduce the size of the reference set.

C. β-phase vanadium monohydride

Using the MLP1 model, a variable cell-shape MD simula-
tion has been performed to investigate the structural property
of β-VH. Temperature and pressure are controlled to be
T = 300 K and P = 0 GPa by the same way as the ab initio
MD. A supercell containing 256 formula units is used. The
bct structure with the O-site occupation of H obtained by the
static DFT calculation is chosen as the starting configuration.
The time step is set to be 0.48 fs. After 10 000 MD steps for
equilibration, the average is taken over 20 000 MD steps.

Figure 1 shows the profiles of the MD run. The conservation
of the constant of motion (the extended Hamiltonian for the
isothermal-isobaric ensemble) is excellent. Temperature and
pressure correctly fluctuate around the target value. During the
first 1000 MD steps, the c axis is shrunk, and the square base
is expanded. The average lattice constants are a = 3.06 Å and
c/a = 1.12, which are in good agreement with experimental
data for VH0.90 [16], a = 3.03 Å, and c/a = 1.13.

The time-averaged crystal structure is shown in Fig. 2(a).
The O-site occupation of H in the bct structure is cleanly seen

  2.8
  3.0
  3.2
  3.4
  3.6

0 5000 10000 15000 20000 25000 30000

a,
 c

 (
an

gm
.)

Number of MD steps

(d)

a

c

   -6

   -3

    0

    3

P 
(G

P
a)

(c)
  200

  250

  300

  350

T 
(K

)

(b)
-86.8

-86.7

-86.6

-86.5

-86.4

E 
(h

ar
tr

ee
)

(a)
Constant of Motion

FIG. 1. Profiles of the MLP MD simulation. (a) Energy,
(b) temperature, (c) pressure, and (d) lattice constants.

(more exactly, the Oz site where H atoms occupy the middle of
the nearest-neighboring V atoms along the c axis). However,
the atom trajectories given in Fig. 2(b) indicate that H atoms
notably fluctuate around the O sites along the basal plane.
From the trajectories, we calculate atom density functions:
All trajectories are folded into the bct primitive cell, and atom
positions are broadened by a Gaussian with a width of 0.1 bohr.
The result is shown in Fig. 3. The thermal vibration of V
is found to be almost isotropic, whereas the distribution of
H shows four peaks which are placed near the T sites on
the basal plane. The displacement of the peaks from the O

site is δ/a = 0.16. This indicates that H atoms have the 4T

configuration which has been proposed as one of the candidates
for the self-trapped state of hydrogen isotopes in bcc metals
[30]. The symmetry of the 4T configuration is the same as the
O-site occupation.

Since the hydrogen density at the O site is relatively low,
it is expected to be a saddle point on the potential-energy
surface rather than a local minimum. Figure 4(a) depicts the
total energy of bct-VH as a function of the rigid displacement
of the H sublattice δ along the [100] direction where the
lattice constants are kept fixed at the average values of the
MD run. We can confirm that the O site is a saddle point.
The energy gradually decreases with increasing δ and shows
the minimum at δ/a = 0.18. There is a small deviation
between this value and the peak position of the atom density
because this calculation is imposed on the periodicity of the
bct primitive cell.

Another important point is that, although the energies
obtained by the MLP1 agree very well with the DFT results
for δ/a � 0.35, they deviate from the DFT results for δ/a

larger than it. The structure at δ/a = 0.5 corresponds to the
Oy-site occupation of H, which has a relatively high energy
due to the short V-V distance along the a axis. Because the
high-energy configurations are rarely sampled during the ab
initio MD run, the accuracy of the MLP is expected to become
low for them. The spilling factor given in Fig. 4(b) supports this
consideration, which correlates well with the energy deviation
between the MLP and the DFT results. The results of the
MLP2 are also given in Figs. 4(a) and 4(b). As expected, the
accuracy of the MLP2 is comparable with that of the MLP1,
particularly, in the range of δ/a � 0.35.

Figure 5 shows the profile of the spilling factor during
the MD run with the MLP1. Overall, the maximum value
of the spilling factor at each MD step is smaller than 0.02.
The corresponding error of the energy is estimated as �E �
20 meV/atom from Fig. 4(b). Although several spikes exceed
this tolerance, they are attenuated quickly and so have little
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FIG. 2. Results of the MLP MD simulation. (a) Time-averaged structure and (b) atom trajectories projected onto the (110) plane.

effect on the statistics. The average spilling factors are always
one order of magnitude smaller than the tolerance. Therefore,
good accuracy for the statistics with �E � 20 meV/atom is
expected for the present MD simulation.

(a)
V

H

(b)
V

H

0 0.5

FIG. 3. Contour plots for atom density functions on (a) the (100)
and (b) the (001) planes. The contour spacing is 0.025 bohr−3, and
the lines are omitted for densities higher than 0.5 bohr−3.

IV. SUMMARY

We have developed the formalism to construct the machine
learning potentials, which includes the spilling factor for
the simultaneous error estimation and the recursive bisection
method for the reduction in the computational cost. The
formalism is applied for β-phase vanadium monohydride. In
the MD simulation, the time-averaged structure of β-VH is
predicted to be the O-site occupation of H in the bct structure
as stated in the literature. The average lattice constants are in
good agreement with the experimental data which are not able
to be reproduced by the static DFT calculation. The O-site
occupation of H observed in the average structure is, however,
a saddle point on the potential-energy surface, and the actual
hydrogen occupation is found to be the 4T configuration. Note

FIG. 4. (a) Energy of bct-VH as a function of the rigid displace-
ment of the H sublattice δ and (b) the spilling factor for the MLP
calculations and the energy deviation �E = |EDFT − EMLP|. For the
spilling factor, the values of V are only plotted because those of H
are always smaller than them in this calculation.
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FIG. 5. Profiles of the spilling factor during the MLP MD run.
The red (blue) line indicates the maximum (average) value at each
MD step.

that recent neutron-diffraction experiments for the V-based
alloy also suggest a significant thermal fluctuation of H in the
β-phase hydride [31,32].

The remaining issues for future work are as follows: In this
paper, the DFT sample data are prepared from the ab initio MD
run, which might be computationally prohibitive for complex

systems and/or phenomena. An alternative way is to execute
the MD run with the MLP itself. The spilling factor gives us
useful information, which snapshots should be included in the
sample data set. The DFT calculations are carried out only for
the collected sample structures. The quality of the MLP can
be improved by repeating this training process.

In an application viewpoint, the present calculation treats
H atoms as classical particles. This treatment sometimes
becomes inadequate due to the light mass of hydrogen.
Although the path-integral molecular dynamics (PIMD) [33]
can be used to incorporate the nuclear quantum effect, a
large-scale simulation with the DFT-based PIMD is still a
challenging task. A PIMD simulation combined with the MLP
will provide an efficient way to treat the quantum-mechanical
effect for hydrogen with the accuracy comparable to DFT.
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