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Fermi liquid theory applied to a film on an oscillating substrate
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We consider a film of a normal-state Fermi liquid on a planar substrate. Landau’s Fermi liquid theory is
applied to calculate the linear response of the film to transverse oscillation of the substrate. The response consists
of a collective transverse zero-sound mode, as well as incoherent quasiparticle excitations of the degenerate
fermions. We calculate numerically the acoustic impedance of the film under a wide range of conditions relevant
to normal-state 3He at millikelvin temperatures. Some cases of known experiments are studied but most of the
parameter range has not yet been tested experimentally.
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I. INTRODUCTION

Let us consider a layer of liquid on a planar substrate.
Assume the substrate oscillates harmonically in its plane.
The liquid is dragged into motion by the moving substrate.
A measurable quantity is the transverse acoustic impedance
of the liquid layer. It is defined as the ratio of the force on
the liquid to the velocity amplitude of the substrate. The
impedance consists of a dissipative real part and a reactive
imaginary part. The latter can be interpreted as the amount
of mass of the liquid that is coupled to the oscillation of the
substrate. For an ordinary liquid the Navier-Stokes equations
reduce to a diffusion equation and the transverse acoustic
impedance can straightforwardly be calculated. A schematic
of the setup is presented in Fig. 1.

The purpose of this paper is to calculate the transverse
acoustic impedance of a layer of a Fermi liquid. By Fermi
liquid we mean that the fluid is described by Landau’s Fermi
liquid theory [1]. Landau’s theory is a paradigm of what can
be the state of an interacting many-body system. The central
idea is that although the particles are strongly interacting,
the low-energy properties of the system can be described by
weakly interacting excitations called quasiparticles. Similar
to molecules in a rarefied gas, the quasiparticles can have
a long mean-free path, but there is an essential difference
that even in the absence of collisions, interactions between
the quasiparticles remain. This has important effects. For
example, it allows the propagation of density oscillations
even in the absence of collisions, so called zero sound. Also
transverse oscillations can propagate as a wave, in contrast
to Navier-Stokes fluid where such motion obeys a diffusion
equation. Landau’s theory is explained in many articles and
textbooks [2–5]. Originally Landau formulated the theory for
liquid 3He, but it also forms the basis for understanding the
behavior of conduction electrons in metals. Extension of the
Fermi liquid theory to include paring correlations gives an
accurate description of the superfluid or superconducting state
of a Fermi liquid [5,6].

The calculation of the impedance requires solution of
the transport equation, the Landau-Boltzmann equation in
appropriate geometry. This was first done by Bekarevich and
Khalatnikov [7]. Their solution was extended by Flowers
and Richardson [8]. These solutions are basically analytic
but they are very complicated. Simpler approximate results
were derived by Richardson [9]. All these assume a thick

liquid layer, in principle filling a half space. Our purpose
is to generalize these calculations to a liquid layer of finite
thickness. Instead of an analytic approach, we solve the
Landau-Boltzmann equation by discretization and numerical
inversion of the resulting large matrix.

There are a several motivations for the present work.
First, in previous work the response of a Fermi liquid on
a vibrating cylinder was studied [10,11]. Such a calculation
is computationally demanding and therefore it is of interest
to study similar phenomena in the simpler planar geometry.
Second, the behavior in a finite layer is much more diverse
than in the thick-layer limit. An indication of this is already
given in the torsional oscillator calculations [12]. Third, the
experiments by Casey et al. [13] and Dimov et al. [14]
show unexpected decoupling of the liquid from the substrate.
Previous analysis of these experiments neglected the Fermi
liquid interactions [15], and therefore we wanted to check
whether these have an effect. Fourth, we were interested in
checking whether finite-thickness effects could have affected
previous experiments, and in predicting the outcome of
possible future experiments. Fifth, understanding the Fermi
liquid interactions in the normal state could form a useful
step for properly incorporating the Fermi liquid effects in the
acoustic impedance of the superfluid state [16].

We use Fermi liquid equations in the relaxation-time
approximation and including interaction effects up to second
order in spherical harmonics. The approach includes the
effect of the collective transverse zero-sound mode as well as
incoherent quasiparticles. In the limit of a short mean-free path
of the quasiparticles, the flow of a Fermi liquid obeys Navier-
Stokes equations. The leading correction to this hydrodynamic
limit arises as a “slip” in the boundary conditions [17,18]. In
our numerical solution no such expansion is made and thus the
slip effect is included in all orders.

The calculations are mainly aimed for experiments in liquid
3He. However, the results apply also to the simultaneous
presence of a Bose condensate [19,20], and thus can also be
applied to mixtures of 3He and 4He. Reviews of the acoustic
impedance studies in both normal and superfluid 3He have
been given by Halperin and Varoquaux [21] and Okuda and
Nomura [22]. A theoretical review is given by Nagai et al.
[16]. Recently experiments using a planar micromechanical
oscillator in normal 3He have been made by Gonzalez et al.
and are analyzed using slip theory [23].
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FIG. 1. Simplified diagram of the problem of a liquid film on
an oscillating substrate, and its solution in the space formed by
momentum projection μ = pz/pF = cos θ and the dimensionless
vertical coordinate ζ = z/d . The boundary conditions are given in
Eq. (17).

This paper is structured in the following way. In Sec. II we
state the basic Fermi liquid equations and transform them to a
form suitable for numerical solution. In Sec. III we take a look
at different limiting cases. In Sec. IV we explain the numerical
method, and finally in Sec. V we present and comment on the
results.

II. FERMI LIQUID EQUATIONS

A. Equations of motion

We study the linear response of a Fermi liquid film to
the transverse oscillations of a planar substrate. We derive
an expression for the acoustic impedance Z = F/u, where
F is the force on the liquid per unit area of the film, and u

the velocity amplitude of the substrate, which is assumed to
oscillate at angular frequency ω. In this section we transform
analytically the equations of a Fermi liquid to a form that
then can be solved numerically. The transformation could be
done by making only slight modification to the derivation
by Flowers and Richardson [8]. Here we present a more
general derivation that directly utilizes the distribution function
defined in terms of momentum direction and energy instead
of momentum. The two distributions appear in several works
[3,4,7,8], and their relation is clearly pointed out in Ref. [6].
We use the notation of a recent work that also includes the
effect of condensed bosons [20]. We start by considering a
pure fermion system, and postpone the minor effect of the
bosons to Sec. II C.

Fermi liquid theory deals with quasiparticles with momenta
p close to the Fermi surface, p ≈ pF . Assuming no spin
dependence, the quasiparticle distribution function and energy
can be written as

n p(r,t) = n0(ε p(r,t)) + δn̄( p̂,ε p(r,t),r,t), (1)

ε p(r,t) = ε(0)
p + δε p̂(r,t). (2)

Here p̂ = p/p is the momentum direction, n0(ε) = 1/(eε/T +
1) the Fermi function, ε(0)

p = vF(p − pF ) the unperturbed
quasiparticle energy, T the temperature, vF = pF/m∗ the
Fermi velocity, and m∗ the effective mass. We also define
the energy-integrated distribution function

ψ p̂(r,t) =
∫

δn̄( p̂,ε,r,t)dε. (3)

In the relaxation-time approximation, the linearized kinetic
equation can be written in a closed form for ψ p̂. One gets the
equations

∂

∂t
(ψ p̂ − δε p̂) + vF p̂ · ∇ψ p̂ =− 1

τ
[ψ p̂ − 〈ψ p̂′ 〉 p̂′

− 3〈P1( p̂ · p̂′)ψ p̂′ 〉 p̂′

+ 5(ξ2 − 1)〈P2( p̂ · p̂′)ψ p̂′ 〉 p̂′ ],

(4)

δε p̂ =
∞∑
l=0

Fl

1 + Fl/(2l + 1)
〈Pl( p̂ · p̂′)ψ p̂′ 〉 p̂′ . (5)

Here Fl with l = 0,1, . . . are the interaction parameters, Pl

the Legendre polynomials [P0(x) = 1, P1(x) = x, P2(x) =
1
2 (3x2 − 1), . . .], and 〈. . .〉 p̂ the average over the unit sphere of
momentum directions. In a pure fermion system F1 is related
to the ratio of effective and particle masses, m∗/m = 1 + 1

3F1.
Equations (4) and (5) are the same as derived in Ref. [20] except
the following generalization. We have allowed two relaxation
times, τ2 = τ/ξ2 for a quadrupole deformation of the Fermi
surface and τ for all higher order deformations.

In the following we neglect Fermi liquid interaction
coefficients beyond second order, Fl = 0 for l > 2. We also
assume harmonic time dependence ∝ exp(−iωt). These allow
us to write Eqs. (4) and (5) to the form

τvF

a
p̂ · ∇ψ p̂ + ψ p̂ − 1/a + F0

1 + F0
〈P0( p̂ · p̂′)ψ p̂′ 〉 p̂′

−3b〈P1( p̂ · p̂′)ψ p̂′ 〉 p̂′ − c〈P2( p̂ · p̂′)ψ p̂′ 〉 p̂′ = 0. (6)

We have defined dimensionless complex constants

a = 1 − iωτ, (7)

b = 1/a + F1/3

1 + F1/3
, (8)

c = 5/a + F2

1 + F2/5
− 5ξ2

a
, (9)

in accordance with Ref. [8].
We choose the z axis perpendicular to the liquid film and

assume homogeneity in the x-y plane. The x axis is chosen
parallel to the oscillation of the wall. With these assumptions
the most general distribution allowed in linear response can be
written as

ψ p̂(r) = p̂xψ(p̂z,ζ ). (10)

We also have defined ζ = z/d as the dimensionless z coordi-
nate, where d is the thickness of the liquid film. The form (10)
allows us to simplify the averages

〈P0( p̂ · p̂′)ψ p̂′ 〉 p̂′ = 0,

〈P1( p̂ · p̂′)ψ p̂′ 〉 p̂′ = 1
4 p̂xg1(ζ ),

〈P2( p̂ · p̂′)ψ p̂′ 〉 p̂′ = 3
4 p̂xp̂zg2(ζ ). (11)

Here the first average vanishes because transverse oscillations
do not change the density of the liquid. The latter two averages
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depend on the integrals [8]

g1(ζ ) =
∫ 1

−1
dμ(1 − μ2)ψ(μ,ζ ), (12a)

g2(ζ ) =
∫ 1

−1
dμμ(1 − μ2)ψ(μ,ζ ). (12b)

Inserting these into the kinetic equation (6) gives

μ

h

∂

∂ζ
ψ(μ,ζ ) + ψ(μ,ζ ) − 3

4
bg1(ζ ) − 3

4
cμg2(ζ ) = 0. (13)

We have abbreviated the equation by defining μ = p̂z and one
more complex coefficient

h = ad

vF τ
= d

lξ2
− i�(1 + F1/3). (14)

The latter form expresses h using the dimensionless parameter

� = ωd

vF (1 + F1/3)
(15)

and the mean-free path l. Since τ2 is the effective relaxation
time in the hydrodynamic limit, the quasiparticle mean-free
path is defined as l = vF τ2 = vF τ/ξ2. A convenient set of
dimensionless parameters that define the problem is formed
by �, l/d, ξ2, F1, and F2.

We may further solve for ψ by integrating the kinetic
equation (13) from ζ0 to ζ :

ψ(μ,ζ ) = ψ(μ,ζ0)e
h
μ

(ζ0−ζ )

+ 3

4

h

μ

∫ ζ

ζ0

e
h
μ

(ζ ′−ζ )[bg1(ζ ′) + cμg2(ζ ′)]dζ ′. (16)

We use this equation to integrate in the direction of particle
propagation. That is, we integrate in the direction of increasing
ζ for angles pointing up (μ > 0) and decreasing ζ for angles
pointing down (μ < 0); see Fig. 1.

In addition to the equations of motion, we need to specify
boundary conditions. We set a stationary plane at z = d, that
is, ζ = 1. We assume that the quasiparticle scattering at this
surface is diffusive except for a fraction s2 of quasiparticles,
which is scattered specularly. The case s2 = 1 then mimics a
free surface of a liquid. We set the oscillating wall at z = ζ =
0. Its velocity is ux̂e−iωt . We assume that the quasiparticle
scattering at this wall is diffusive except for a fraction s1 of
quasiparticles, which is scattered specularly. These imply the
following boundary conditions for the distribution function
[20]:

ψ(μ < 0,1) = s2ψ(−μ,1), (17a)

ψ(μ > 0,0) = s1ψ(−μ,0) + (1 − s1)pF u. (17b)

Note that because of symmetry, it is also possible to consider
the liquid between two equally oscillating walls by setting
s2 = 1 and 2d being the distance between the walls.

We see from the boundary conditions (17) that the distribu-
tion function has to be proportional to pF u. We can then factor
out pF u for the sake of numerical convenience by defining the
effective fields

ψe = ψ

pF u
, ge

1 = g1

pF u
, ge

2 = g2

pF u
. (18)

This simplifies the boundary conditions (17) but the bulk
equations (12) and (16) remain the same for the effective
fields. Equations (12), (16), and (17) constitute the set of
integral equations and boundary conditions that we can solve
numerically.

B. Observables

The macroscopic forces acting in the liquid are obtained by
calculating the stress tensor

�ij = 3n〈p̂i p̂jψ p̂〉 p̂, (19)

where n = p3
F /3π2

�
3 is the number density of the fermions.

The shear force, the xz component of the stress tensor, can be
evaluated using (10) and (12b), which gives

�xz(ζ ) = 3
4ng2(ζ ) = 3

4npF uge
2(ζ ). (20)

The acoustic impedance of the liquid film is then

Z = �xz(ζ = 0)

u
= 3

4
npF ge

2(ζ = 0). (21)

The mass current in the liquid is

J = mp2
F

π2�3
〈 p̂ψ p̂〉 p̂. (22)

Evaluating this using (10) and (12a) gives that the current is in
the x direction and its magnitude

J (ζ ) = mp2
F

4π2�3
g1(ζ ) = 3

4
ρuge

1(ζ ), (23)

where the liquid density ρ = mn. Thus 3
4ge

1(ζ ) can be
interpreted as the average velocity normalized by the substrate
velocity u. In the hydrodynamic limit this should approach
unity at the substrate (ζ = 0). This is the velocity field in the
transverse wave and should not be confused with the velocity
of the wave itself.

C. Bose-Fermi liquid

The theory above can straightforwardly be generalized to
the simultaneous presence of condensed bosons [19,20]. In
transverse oscillations the superfluid component remains at
rest. In the notation of Ref. [20], vs = 0 and δμB = 0. The
equations, in particular Eqs. (34) and (35) of Ref. [20] reduce
to those in the present paper. The only difference is that Eq. (23)
gives only the fermionic contribution to the current. In order
to get the total mass current, the fermion density ρ should be
replaced by the normal fluid density ρn = m∗n/(1 + F1/3).

III. LIMITING CASES

There are limiting cases that are worth studying separately.
In some cases analytic solutions are known.

A. Hydrodynamic limit

At high temperatures quasiparticle collisions become fre-
quent and thus the mean-free path is short. In the hydrodynamic
regime l is short compared to other length scales, l 	 d and
l 	 vF /ω. In this regime the Fermi liquid theory implies
equations of motion that are the well known hydrodynamic,
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or Navier-Stokes, equations. Solving these for laminar flow
between two parallel planes is a common exercise in books
on hydrodynamics [24,25]. We need to consider two boundary
conditions for the top surface: a free liquid surface (s2 = 1)
and an unmoving solid surface, i.e., Couette flow (s2 = 0). For
the oscillating wall, we assume no slip (s1 = 0). We use the
Navier-Stokes equation to calculate the force at the boundary
of the liquid and the oscillating surface. This way one gets the
acoustic impedance

Z = F

u
= ρωδ

2
(1 − i)

e2(1−i)d/δ ∓ 1

e2(1−i)d/δ ± 1
. (24)

The upper signs stand for a free liquid surface and the lower
signs for Couette flow. These are identical when d/δ is large.
Here δ is the viscous penetration depth, which is related to
other parameters by equations

δ = d

√
2l

5�d
=

√
2vF

2τ2(1 + F1/3)

5ω
. (25)

We see that the essential dimensionless parameter in (24)
is δ/d.

B. Ballistic limit

At very low temperatures quasiparticle collisions become
so infrequent that they may be neglected. This is the ballistic
regime, where the quasiparticles travel between the oscillating
plane and the liquid surface without encountering each other.
In the ballistic limit we take l → ∞. In the general case, this
does not lead to any simplification of the kinetic equation (16),
as the limit a → ∞ still leaves b (8) and c (9) finite. However,
if we also set the Fermi liquid interactions F1 and F2 to zero,
then b = c = 0. We call this the ballistic gas limit. This leads
to essential simplification of the kinetic equation (16), which
reduces to the form

ψe(μ,ζ ) = e
h
μ

(ζ0−ζ )
ψe(μ,ζ0). (26)

By using this equation and the boundary conditions (17) to
traverse rectangular paths in the (μ,ζ ) space (Fig. 1), we obtain
the quasiparticle distribution

μ > 0 : ψe(μ,0) = 1 − s1

1 − s1s2e−2h/μ
, (27)

μ < 0 : ψe(μ,0) = s2(1 − s1)e2h/μ

1 − s1s2e2h/μ
. (28)

We can now compute ge
2 at the oscillating wall, which gives

the acoustic impedance

Z = 3

4
npF (1 − s1)

∫ 1

0
dμμ(1 − μ2)

1 − s2e
2i�/μ

1 − s1s2e2i�/μ
. (29)

We see that this depends essentially on � (15). Note that this
result is valid only in the case of F1 = F2 = 0.

C. Thick-film limit

Let us consider the case of a very thick film, d → ∞.
This was first studied by Bekarevich and Khalatnikov [7] and
more generally by Flowers and Richardson [8]. They found
an analytic solution. Since the result is not simple, we will
not reproduce it here. Instead we point out that there are two

variational ansatz solutions given in Eqs. (3.32) and (3.38) of
Ref. [9]. The essential dimensionless parameter in the thick-
film limit is �l/d = ωτ2/(1 + 1

3F1).

IV. NUMERICAL SOLUTION

The search for the numerical solution begins with the
discretization of the (μ,ζ ) space. Generally the ζ axis is
divided into segments of equal length so that ζj = (j −
1)/(n − 1), where j = 1, . . . ,n. For high temperatures, the
wave emanating from the oscillating wall will not penetrate
deep into the liquid layer. In this case, instead of equally
spaced lattice points, it is more efficient to use a discretization
that places lattice points more densely in the vicinity of the
oscillating wall.

Different discretization schemes may be employed for the
μ axis. We approximate integrals over μ (12) with

∫ 1

−1
f (μ)dμ ≈

m∑
i=1

wif (μi). (30)

The values μi and the weights wi are selected using Gaussian
quadrature. We use an even number m of μi values in order to
avoid the μ = 0 point, which could require special treatment.

The integration over ζ (16) is made only between neighbor-
ing discretized points. Instead of a simple trapezoidal formula
we use∫ ζ

ζ0

eαζ ′
f (ζ ′)dζ ′ ≈ w1f (ζ0) + w2f (ζ ),

w1 = 1

α2(ζ − ζ0)
{eαζ − [1 + α(ζ − ζ0)]eαζ0},

w2 = 1

α2(ζ − ζ0)
{eαζ0 − [1 − α(ζ − ζ0)]eαζ },

(31)

where α = h/μ. This method allows us better accuracy if the
exponential factor inside the integral in Eq. (16) varies rapidly.

The discrete versions of the integral equations (12), (16),
and (17) provide a network of linear dependencies between
ψ(μi,ζj ), g1(ζj ), and g2(ζj ). We now form a vector � that
holds all these variables in the following fashion:

� = (
ψe(μ1,ζ1), . . . ,ψe(μm,νn);

× ge
1(ζ1), . . . ,ge

1(ζn); ge
2(ζ1), . . . ,ge

2(ζn)
)
. (32)

The length of this vector is d = mn + 2n. The network of
linear dependencies may now be represented in the form

� = D� + B. (33)

Here the left-hand side represents the left-hand side of
Eqs. (12), (16), and (17), and correspondingly for the right-
hand sides. The matrix D is of dimension d × d. The vector
B is the inhomogeneity term arising from the nonspecular
scattering at the oscillating wall in the last term of Eq. (17b).
Equation (33) is a system of linear equations for �, whose
solution can be written as

� = (I − D)−1B. (34)
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FIG. 2. Parametric plot of Z = Z′ + iZ′′ with l/d as a variable for a small � = 10−3 (15). Different curves correspond to different values
of the Fermi liquid parameter F1 and the specularity s1. The liquid has a free top surface (s2 = 1) and the parameter s1 controls the specularity
of the oscillating bottom wall. The arrows point out the direction of increasing l/d , the various analytical limiting cases, and the approximate
point where l/d ∼ 1. For solid curves F1 = 0 and for dashed curves F1 = 5.4. The hydrodynamic limit (24) is shown by black dashed line. The
ballistic gas limit (29), represented by the black solid line, was computed using s1 = 0 and F1 = 0. Other parameters are F2 = 0 and ξ2 = 1.

The task is now to first assemble the D matrix and then solve
the linear system (33) to get �. The acoustic impedance (21)
is then obtained by picking out the element that corresponds
to ge

2(0). We can also pick out ge
2 at any ζ to get the stress

tensor (20) within the liquid or ge
1 to get the transverse velocity

field (23). While the dimension d × d may be very large, the
D matrix only has 7mn − 4m elements that can be nonzero.
We use sparse matrix methods for solving the inverse (33).
This requires specifying those elements of the matrix D that
can be nonzero so that the zero elements never need to be
addressed. Since B is sparse and only a few elements of �

are of interest, there is no need to calculate the whole inverse
matrix (I − D)−1.

V. RESULTS

Before presenting the results of the numerical calculations,
we outline the parameter values that define experimentally
relevant conditions. Foremost there are the Fermi liquid
interaction parameters F1 and F2 that describe the forces
between the quasiparticles. In pure 3He the parameter F1

is pressure dependent and its value has been determined
experimentally [26]. Some notable values are F1 = 5.4 at
zero pressure and F1 = 13.3 at the melting pressure. There
are no generally accepted values for F2, but it is thought
to range between −1 and 1 [21,27,28]. A requirement
for the existence of transverse zero sound is expected to

FIG. 3. Acoustic impedance in the absence of Fermi liquid interactions at different � (15). Displayed here are, from left to right, a
parametric plot of the impedance and the real and the imaginary parts of the impedance as functions of l/d . Similar to Fig. 2, the black solid
curve represents the ballistic gas limit (29). The dashed black curves represent the thick-film limit according to Ref. [9]. In the parametric plot
(left panel) the dashed lines collapse to a single curve but in the real part vs l/d (center panel) they are shifted from each other. For clarity,
the thick-film limit is omitted in the imaginary part vs l/d (right panel). The results for the finite film differ from the thick-film limit when the
liquid surface is felt. From the middle panel we see that this is the case when l/d > 0.1. Other parameters are s1 = 0, s2 = 1, and ξ2 = 0.35.
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FIG. 4. The same as Fig. 3 except that F1 = 13.3. The ballistic gas line is the same as in Fig. 3 to allow easier comparison of the figures.
Because of interactions, the curves do not end on this line. The dashed black curves represent the exact thick-film limit [8]. Other parameters
are F2 = 0, s1 = 0, s2 = 1, and ξ2 = 0.35.

be [8,21,29–31]

F1 + 3F2

1 + 1
5F2

> 6 (35)

in our model, where Fn with n > 2 are neglected. In addition,
we have the ratio ξ2 = τ/τ2 of the two relaxation times, for
which the value ξ2 = 0.35 has been suggested [8]. Other
dimensionless parameters are � = ωd/vF (1 + 1

3F1) (15) and
l/d. The former depends essentially on the film thickness d

and frequency ω whereas the latter depends essentially on
the temperature as the mean-free path l ∝ T −2 in the Fermi
liquid regime. We use the coefficient lT 2 based on viscosity
measurements as given in Tables III and IV of Ref. [32] and
m∗/m from Ref. [26]. The specularity parameters s1 and s2

define conditions at the two liquid boundaries.
We show plots of transverse acoustic impedance Z = Z′ +

iZ′′. The real part of the impedance corresponds to dissipation
and the imaginary part to reactance. We display parametric
plots of Z as well as separate plots of Z′ and Z′′ as functions
temperature or l/d, for which we use a logarithmic scale.

We consider first the case of small � (15), � 	 1.
Supposing there are waves whose speed is on the order of
the Fermi velocity vF , the condition � 	 1 means that the
film thickness is much smaller than the wavelength of such

waves. That is, there is flow but no space for propagating
waves. For small � it is convenient to scale the impedance
by �. This produces pictures like Fig. 2. With this scaling the
hydrodynamic limit curves (24) at different � coalesce into a
single curve, which is depicted here by the black dashed line.

Let us analyze a curve in Fig. 2 in the order of increasing
l/d. The origin, Z = 0, corresponds to the stationary film limit,
where the liquid remains at rest in spite of the oscillation of the
substrate. For small but finite l the diffusive waves generated
at the oscillating surface penetrate to depth δ (25) into the
liquid. These give rise to Z on a straight line in the direction
1 − i (24). The penetration depth increases with growing l.
When δ ∼ d the wave starts to feel the liquid surface, and the
path in the Z plane starts to curve. For small s1 the curves still
stay close to the hydrodynamic limit for some range of l. The
hydrodynamic limit curve (24) continues towards the point
Z/pF n� = −i, which corresponds to rigid-body motion of
the liquid with the substrate. Before reaching this point, the
curves develop a cusp at l ≈ d. With further increase of l the
system enters the ballistic, or Knudsen, regime. With l → ∞
they reach the ballistic limit point. A set of ballistic limit points
(29) in the noninteracting, s1 = 0 case is shown by the black
solid line in Fig. 2.

We see that with the scaling of Fig. 2, the effect of the
interaction parameter F1 is limited to mean-free paths l > d.

FIG. 5. The same as Fig. 4 except that F2 = 1. There is significant difference between the figures at large �.
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FIG. 6. Acoustic impedance as a function of temperature for three different frequencies at the pressure of 23 bars. The solid curves are for
a liquid confined between two diffusely reflecting plates spaced 25 μm apart, and correspond to � in the range from 31 to 93. The dashed
curves give the thick-film limit. The two cases differ only at low temperatures; the slight difference at high temperatures is due to numerical
error. The black solid lines give the hydrodynamic solution (24). The vertical arrow denotes the superfluid transition point, Tc = 2.3 mK. The
parameters are F1 = 11.8, F2 = 0, s1 = 0, s2 = 0, and ξ2 = 0.35.

The same holds for F2 as well. Also, the effect of the interaction
parameters is an order of magnitude smaller than the whole
scale of Z′′ in the figure. With increasing specularity of the
oscillating wall, the film becomes more decoupled. However,
rather high specularity (>0.9) is required to have half of the
liquid film mass decoupled in the ballistic limit and there still
remains strong dissipation that shows no sign of decreasing
with increasing specularity.

The results above may be applied to the experiments
by Casey et al. [13] and Dimov et al. [14], which report
decoupling of the liquid from the substrate with decreasing
temperature. Our motivation was to check whether Fermi
liquid interactions could be responsible for the decoupling.
Since we see only minor decoupling, we have to conclude
that our Fermi liquid model is not capable of explaining these
experimental observations.

Let us next consider the case of large �. In this case, when
waves develop, there is room for several wavelengths in the
film. In this case the rigid-body limit cannot be reached, and
it is more convenient to analyze Z without scaling with �. An
example of curves up to � = 2 is shown in Fig. 3. We again
follow one curve in the order of increasing l/d. Initially the
curve starts from the origin along a straight line in the direction
Z′′ = −Z′, similarly to the case of small �. However, for large
� we exit the hydrodynamic regime before reaching δ ∼ d.
This happens because ωτ ∼ �l/d approaches unity. Thus, the
impedance deviates from the hydrodynamic limit and follows
the curve calculated in the thick-film limit (Sec. III C). This
curve is shown by dashed lines in Fig. 3. This continues as long
as the waves generated at the oscillating wall start to feel the
surface and are reflected back. At this point the curve deviates
from the dashed line, as will be analyzed shortly.

Figure 3 depicts the special case that the Fermi liquid
interactions vanish, F1 = F2 = 0. This case is not realized
in pure 3He. Experimentally a close case could be studied in
mixtures of 3He and 4He, where the Fermi liquid interactions
are weaker than in pure 3He (Ref. [11]). Interestingly, no waves
are expected according to criterion (35). Still we see waves;
the end points of the curves lie on the spiral, not at the end
point of the dashed line. The spiraling down indicates damping
of these waves. Note that the ballistic limit curves (black solid
lines) in Figs. 2 and 3 are the same; the difference comes only
from the different scalings used.

We note that we did not succeed in computing numerically
the exact analytic result of the thick-film limit [8] in the case of
Fig. 3. This apparently has to do with some numerical problem
when the inequality (35) is not satisfied. Instead, we use the
simpler of the approximate formulas, Eq. (3.32) of Ref. [9].
We see that the curves initially follow the thick-film behavior,
until the effect of the liquid surface appears. Comparing the
real parts of the two solutions gives that this takes place around
l/d ∼ 0.1.

The center and right-hand panels of Fig. 3 show the real
and imaginary parts of Z plotted separately as functions of
l/d. We see that both the real and imaginary parts of the
impedance fully plateau as l/d → 1000. This indicates that in
the parametric plot the curves have arrived at static end points.

Figure 4 is similar to the previous one, but this time the first
Fermi liquid parameter is set to F1 = 13.3 and so the curves
no longer end on the ballistic gas limit (29). In this case the
zero-sound criterion (35) is satisfied and allows us to compute
the exact thick-film solution, represented by the black dashed
line [8]. Similar to the noninteracting case, the curves initially
follow the thick-film behavior, until the effect of the liquid
surface appears.

Figure 5 is again similar to the previous two, but this time
also the second interaction parameter has a nonzero value,
F2 = 1. Comparing this to Fig. 4, we see that the effect of F2

strongly increases for increasing �.
We can understand the behavior of the ends of the curves in

Figs. 4 and 5 as follows. With the condition (35) satisfied,

FIG. 7. Transverse velocity field as a function of temperature and
the distance from the oscillating wall. The transverse sound waves
penetrate to the other wall at around one millikelvin. The parameters
are the same as in Fig. 6 corresponding to 36 MHz.
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FIG. 8. The effect of F2 for a film of thickness d = 2.5 μm. Other parameter values are pressure 23 bars, frequency 36 MHz, F1 = 11.8,
s1 = s2 = 0, and ξ2 = 0.35. Solid curves depict the finite-film solution, dashed curves the thick-film limit. The black solid line represents the
hydrodynamic solution.

the damping of the waves is weak. This means that with
increasing � the end points nearly circle around a point in
the complex Z plane without any apparent damping. The
waves emanating from the oscillating wall are reflected back
from the top surface. By changing the layer thickness, sound
velocity, or oscillation frequency, we potentially alter the phase
at which the waves return back to the oscillating surface. If the
returning wave is in phase with the wall oscillations, then
the oscillations are amplified. Conversely, a returning wave in
opposite phase leads to destructive interference. Changing the
liquid layer thickness by a quarter of the wavelength results
in the opposite phase and a deviation in the opposite direction
from the thick-film limit. An implication of this is that in order
to see finite-thickness effects, the boundaries of the liquid need
to be accurately parallel.

In Fig. 6 the layer thickness is fixed and the mean-free
path changes as a function of temperature. We have used
parameter values that correspond to the experiment by Roach
and Ketterson [33]. In the calculation the liquid is confined
between two diffusely reflecting plates spaced d = 25 μm
apart. We see that in this setting the presence of the top plate,
which is seen as the bifurcation of the three curves, is only felt
at temperatures below the superfluid transition temperature Tc.
The liquid layer is simply too thick for the transverse sound
wave to penetrate all the way to the other wall and back at
temperatures above Tc. This can be confirmed in Fig. 7, where
the transverse velocity field (23) is plotted as a function of
temperature.

The obvious thing to do is to repeat the computation in
Fig. 6 for a thinner film. By selecting d = 2.5 μm and using
the smallest oscillation frequency 36 MHz, we conveniently
have � ≈ 3 which, based on our previous analysis, is in the

range where we should see large sensitivity to F2. The results
are shown in Fig. 8. We have used two different values of F2.
Both the thick-film and finite-film solutions show sensitivity
to F2. The bifurcation between these two solutions happens
well above the superfluid transition temperature. For both
solutions an increase in F2 results in an initially identical
shift in the impedance but, in addition to this, the thin-film
solution is influenced by the top plate once the temperature
gets sufficiently low. This is especially apparent for Z′′, for
which the thick-film solutions converge as T → 0.

VI. SUMMARY

We have formulated how to calculate the transverse acoustic
impedance of a Fermi liquid film. We have built up a scheme
for numerical evaluation. Some example results are presented
in this paper aiming to clarify the case of a few known
experiments and stimulate new ones. In the future we plan to
extend the calculations to more general boundary conditions,
to transmission of transverse waves, and to separation of bulk
and surface contributions. A generalization of the present
calculation to take the Fermi liquid effect into account in the
superfluid state is under consideration.
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