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Triplet FFLO superconductivity in the doped Kitaev-Heisenberg honeycomb model

Tianhan Liu,1,2,3 Cécile Repellin,4,5 Benoı̂t Douçot,1 Nicolas Regnault,4,6 and Karyn Le Hur2
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We provide analytical and numerical evidence of spin-triplet Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
superconductivity in the itinerant Kitaev-Heisenberg model (antiferromagnetic Kitaev coupling and ferromagnetic
Heisenberg coupling) on the honeycomb lattice around quarter filling. The strong spin-orbit coupling in our
model leads to the emergence of six inversion symmetry centers for the Fermi surface at nonzero momenta in
the first Brillouin zone. We show how the Cooper pairs condense into these nontrivial momenta, causing spatial
modulation of the superconducting order parameter. Applying a Ginzburg-Landau expansion analysis, we find
that the superconductivity has three separated degenerate ground states with three different spin-triplet pairings.
Exact diagonalizations on finite clusters support this picture while ruling out a spin (charge) density wave.
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Introduction. Mott insulators and high-Tc superconductors
are closely related since the latter can be obtained from
doping the half-filled Mott insulator [1–5]. One key element in
superconductivity is the emergence of off-diagonal long-range
order, which results in a Bardeen-Cooper-Schrieffer ground
state where Cooper pairs have a zero net momentum. The η

pairing, proposed by Yang [6], binds electrons with momenta
k and π − k, and therefore involves a superconductivity with
a nonzero Cooper pair momentum. This superconductivity
is referred to as Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
superconductivity [7,8]. FFLO superconductivity, which sup-
ports spatial modulation for the electron pairing due to the
nontrivial Cooper pair momentum, was first proposed in the
1960’s in a system with a significant Zeeman interaction,
which shifts the Fermi surfaces for the up and down spins.
Experimental realizations of FFLO superconductivity have
been proposed, for example, in heavy fermions [9], ultracold
atom systems [10–16], BEC analogs [17], and in magnetic
analog materials [18–27]. However, this exotic phase of matter
has been observed only in a small number of systems so
far [9,16]. Indeed, the large magnetic field has a strong
pair-breaking effect and limits the stability region of the
FFLO phase. Models without explicit time-reversal symmetry
breaking have been considered in the context of superfluid 3He
[28] and unconventional superconducting [29] films. Here, we
propose a theoretical model where the time-reversal symmetry
is not explicitly broken and is purely two dimensional (as
opposed to Refs. [28,29]). Thus our approach is suitable for
the realization of FFLO superconductivity in the context of
two-dimensional “iridate” materials.

Lately, the studies of iridates, a family of materials with
significant spin-orbit coupling, have aroused great interest
[30–32] partly because of the emergence of topological
Mott physics [33] and its connection to the Kitaev anyon
model [34,35]. It has been shown both theoretically and
experimentally that the existence of zigzag-magnetic order

results from a Kitaev-Heisenberg magnetic coupling in the
two-dimensional sodium iridate family [36–40]. An additional
symmetric-off-diagonal exchange term can also be added in
the analysis [41]. Doping these spin-orbit Mott insulators
has been addressed theoretically [42–44] and has started to
attract some experimental attention [45]. Here, we address
superconductivity in the presence of a large Hubbard in-
teraction and adopt a localized magnetism point of view
where the Kitaev-Heisenberg spin Hamiltonian originates
from superexchange processes [46]. Such a magnetic system
with spin-orbit coupling and Kitaev-Heisenberg physics can
also be realized in cold atom systems [47–51]. Using both
analytical and numerical methods, we provide convincing
evidence of a spin-triplet FFLO superconductor owing to
spin-orbit coupling close to quarter filling without breaking
the time-reversal symmetry. This provides an exotic scenario
to reach a spin-triplet FFLO superconductor without breaking
time-reversal symmetry with applications in quantum materi-
als and ultracold atoms.

Before showing detailed derivations, we summarize the
main points. Kitaev-Heisenberg coupling entails spin-triplet
pairing that engenders spinor condensates [52–54] in momen-
tum space. One important ingredient here is the appearance
of six inversion symmetry centers for the Fermi surface
at nonzero momenta in the first Brillouin zone. This will
allow the Cooper pairs with triplet pairing to condense at
nontrivial momenta. In Fig. 1, we show the band structure
of the spin-orbit coupling model and the symmetry centers
of the Fermi surface. Electron pairs around these symmetry
centers with nontrivial momenta qα form spin-triplet pairs
with Cooper pair momenta Qα = 2qα . We shall study the
superconductivity by calculating the Cooper pairs’ response
in the Ginzburg-Landau theory for both spin-triplet and spin-
singlet pairing. We provide compelling evidence of a triplet
FFLO superconductor through a Ginzburg-Landau expansion
and an exact diagonalization analysis.
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FIG. 1. (a) The Kitaev-Heisenberg model on the honeycomb
lattice: In Eq. (1), α denotes respectively x on the red links, y on the
green links, and z on the blue links, each of them corresponding to
rx = (−

√
3

2 , − 1
2 ), ry = (

√
3

2 , − 1
2 ), and rz = (0,1); the lattice vectors

are Rx = (−
√

3
2 , 3

2 ), Ry = (−
√

3
2 , − 3

2 ), and Rz = (
√

3,0). We have
taken the lattice spacing to be 1. (b) The first Brillouin zone, in which,
apart from the center of the FBZ, there are six additional centers
of inversion symmetry for the Fermi surface of the tight-binding
part. (c) The band structure of the spin-orbit model (t = 0, t ′ = 1).
M , O, K , K ′ are denoted in (b). When the chemical potential is
fixed, electrons on the Fermi surface form triplet Cooper pairs with
nontrivial momentum Qx , Qy , and Qz. Qα = 2qα . (d) Energy color
plots for the lowest band in units of t ′ = 1.

Model Hamiltonian. For the doped Kitaev-Heisenberg
model, we consider the following Hamiltonian on the hon-
eycomb lattice,

H = H0 + HJ ,

H0 = −
∑
〈i,j〉

Pi

[
tc

†
iσ djσ + t ′c†iσ djσ ′τα

σσ ′ + H.c.
]
Pj ,

HJ = J1

∑
〈i,j〉

Si · Sj + J2

∑
〈i,j〉

[
Sα

i Sα
j − S

β

i S
β

j − S
γ

i S
γ

j

]
, (1)

where i and j refer to the site index, and ciσ and djσ to electron
operators on the lattices A and B in Fig. 1(a). σ and σ ′ are the
spins of the electrons and τ the Pauli matrix with α = x,y,z,
respectively, for red, green, and blue links (ri − rj = rα)
and β,γ take components other than α [see Fig. 1(a)]. We
note the Gutzwiller projectors as Pi = (1 − ∑

σ c
†
iσ ciσ ) or

Pj = (1 − ∑
σ d

†
jσ djσ ) according to the sublattice [55–57].

The filling factor n and the doping level δ are connected by the
relation n = 1

2 − δ. In contrast to previous analyses [42,43], we
include a spin-orbit term of the (doped) model [46], such that
the antiferromagnetic Kitaev and ferromagnetic Heisenberg
couplings at half filling are microscopically obtained from
second-order superexchange processes: J1 = 4t2

U
, J2 = 4t ′2

U

with U the Hubbard interaction. Due to the sign conventions
in Eq. (1), positive J2 values favor ferromagnetic correlations.

The singlet component would rather involve small-Q wave
vectors. Setting J = J1 − J2 and K = J2, we recover the
model used in Ref. [36] describing the half-filled system. One
shall assume that t ′ is real to avoid an induced Dzyaloshinskii-
Moriya interaction. However, an imaginary t ′ does not change
the physics in the limit of t = 0. With a purely imaginary
t ′, the time-reversal symmetry (TRS) is restored and we will
show the presence of FFLO superconductivity with TRS in
this limit.

Band structure around quarter filling. Around quarter
filling, which is sufficiently away from half filling, one can
assume that the effect of the Gutzwiller weights on the values
of t ′ is weak and neglect the renormalization of t ′. We can then
diagonalize H0,

H0 =
∑

k



†
kH0(k)
k, 


†
k = (c†k↑,c

†
k↓,d

†
k↑,d

†
k↓),

H0(k) =
(

0 M†(k)
M(k) 0

)
,

M(k) = tg(k)τ 0 +
∑

α=x,y,z

t ′gα(k)τα,

hα(k) = 2t ′2 sin k · Rα + 2t t ′[1 + cos k · (rα − rβ )

+ cos k · (rα − rγ )], (2)

in which α �= β,γ and g(k) = ∑
α eik·rα , and gα(k) = eik·rα

(α = x,y,z). We see that in the spin-orbit coupling limit (t =
0) the Fermi surface has six additional inversion symmetry
centers, apart from the inversion symmetry center O with
trivial momentum Q0 = 0, in the first Brillouin zone (FBZ)
k ↔ 2qα − k (α = x,y,z), as indicated in Fig. 1(b). This
derives from the sine function remaining invariant under the
change of k · Rα ↔ π − k · Rα . In Fig. 1(c), we show the
band structure at the spin-orbit coupling limit t = 0, t ′ �= 0:
The four bands have a conic structure for the Fermi surface at
half and quarter filling.

Superconducting instability. The doped itinerant Kitaev-
Heisenberg model in the spin-orbit limit (t = 0) has seven
symmetry centers around quarter filling with momenta: ±qα

(α = x,y,z) and q0 = 0. There are four kinds of Cooper pairs
around these symmetry centers [59,60]:

�̂
†
αQα

(k) = iτ
y

σσ ′′τ
α
σ ′′σ ′c

†
kσ d

†
−k+Qασ ′ (α = 0,x,y,z). (3)

In direct space, the three types of spin-triplet pairing and the
spin-singlet pairing in competition are

�̂x
ij = ci↑dj↑ − ci↓dj↓, �̂

y

ij = i(ci↑dj↑ + ci↓dj↓),

�̂z
ij = ci↑dj↓ + ci↓dj↑, �̂0

ij = ci↑dj↓ − ci↓dj↑. (4)

Kitaev-Heisenberg coupling involves the density channel χ̂α =
c
†
iσ djσ ′τα

σσ ′ + H.c. besides the superconductivity pairing. We
have checked that around quarter filling the density channel
renormalizes the spin-orbit coupling term t ′ and such renor-
malization is negligible [60]. Then we can decompose the
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FIG. 2. The inverse of the vertex function −1
α (Q,T ) at quarter

filling α = x,y,z as a function of q = Q
2 ∈ FBZ (first Brillouin zone)

at quarter filling for the spin-triplet pairing (a) �xQ, (b) �yQ, and (c)
�zQ at temperature kBT = 0.01t ′ and t ′ = 1.

Kitaev-Heisenberg coupling at the mean-field level as

J2

∑
〈i,j〉

[
Sα

i Sα
j − S

β

i S
β

j − S
γ

i S
γ

j

]

= 3J2Ns

4

∑
α,Q

|�αQ|2 − J2

∑
α,k,Q

[gα(k)�αQ�̂
†
αQ(k)

− gα(k)�0Q�̂
†
0Q(k) + H.c.], (5)

in which �αQ = 1
Ns

∑
〈i,j〉 e

iQ·rj 〈�̂α
ij 〉 is the Fourier transform

of the order parameter 〈�̂α
ij 〉 in Eq. (4) with spatial phase

modulation eiQ·rj . Ns denotes here the number of unit cells.
We constitute the Nambu spinor for the four Cooper pairs

�kQ = (
k,

†
Q−k) [
k is defined in Eq. (2)] and write down

their Gor’kov-Green function G−1
α (ω,k,Q) (α = 0,x,y,z,

Q/2 ∈ FBZ). We then pursue the Landau expansion [61].
In the spin-orbit coupling limit (t = 0, t ′ �= 0), we have the
second-order Landau expansion (here we fix U = 6 following
Ref. [42]),

FBCS ≈ −
∑

α,β=0,x,y,z

∑
Q

Ns
−1
αβ (Q,T )�αQ�∗

βQ, (6)

in which FBCS is the free energy and to the lowest (second)
order is proportional to the inverse of the Cooper pair vertex
function −1

αβ (Q,T ) [61]. When α �= β, we have checked

that −1
αβ (Q,T ) is negligible because of frustration in the

momentum space; therefore we focus our attention on the
diagonal part of the inverse of the Cooper pair vertex function
that we denote as −1

α (Q,T ) ≡ −1
αα (Q,T ). When −1

α (Q,T ) >

0, the triplet superconductor pairing �αQ is stable [62]. In
Fig. 2, we show −1

α (Q,T ) as a function of q = Q/2 ∈
FBZ at temperature kBT = 0.01t ′, in which we remark the
condensation of spin-triplet Cooper pairs �αQ into the peaks at
wave vector qα = Qα

2 . We have three spin-triplet condensates
at different momenta, as shown in Figs. 3(a)–3(c).

We also study the peak of the static Cooper pair response
−1

α (Qα,T ) as a function of temperature at different doping
levels δ: The peak remains finite at quarter filling, while it has
logarithmic divergence at zero temperature when the doping
diverts from quarter filling [Fig. 4(a)]. Here, −1

α (Qα,T ) is
proportional to the density of states at the Fermi level, which
vanishes linearly as δ → 1/4, which means that at quarter fill-
ing, superconductivity disappears and we have a free electron
system, assuming J2 is not too large compared to t ′. Indeed,
we have checked that at quarter filling, the critical value of J2

to reach a superconducting instability is J2C � 0.6t ′, as shown
in Fig. 5(b). At low temperature, the peak of the condensate

FIG. 3. Graphical representation of the three times degenerate
ground state wave function of the FFLO superconductivity around
quarter filling. The bold line signifies a spin-triplet pairing on the
link �α

ij with the spin-triplet type α [Eq. (4)] in correspondence
with the type of link [(a) x red, (b) y green, and (c) z blue]. The
dashed line represents the same pairing but with a π phase (opposite
sign in the wave function). Here, we only show the nearest-neighbor
electron pairing. Long-range electron pairing exists and depends on
the correlation length of the superconductor [58].

profile −1
x (Qx,T ) = −1

y (Qy,T ) = −1
z (Qz,T ) stays positive

while the peak of the spin-singlet condensate profile −1
0 (0,T )

remains negative at all temperatures [Fig. 4(b)]. This indicates
that in the spin-orbit coupling limit, the doped itinerant
Kitaev-Heisenberg model hosts only the three spin-triplet
ground states. Since the phase related to Qα is π , the analysis
for −Qα remains the same.

The three spin-triplet condensates may interact with each
other, and we have calculated the box diagram to study this
effect by extending the Landau expansion to the fourth order.
We note

b†xq = 1

Ns

∑
k

(c†k↑d
†
−k+q↑ − c

†
k↓d

†
−k+q↓),

b†yq = −i
1

Ns

∑
k

(c†k↑d
†
−k+q↑ + c

†
k↓d

†
−k+q↓), (7)

b†zq = − 1

Ns

∑
k

(c†k↑d
†
−k+q↓ + c

†
k↓d

†
−k+q↑),

the creation operators for the three Cooper pairs. Since the
three Cooper pairs condense at different momenta Qα , the
box diagram is actually the only one respecting momentum
conservation. To the fourth order, we obtain the free energy of
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FIG. 4. In the limit t = J1 = 0: (a) The peak of Cooper pair vertex
function −1

α (Qα,T ) as a function of temperature at different doping
levels (δ = 0.25 is the quarter filling). (b) The vertex function of the
singlet Cooper pair −1

0 (0,T ) as a function of temperature at different
doping levels.
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FIG. 5. Left panel: The box diagram of the fourth-order Landau
expansion describing the interaction between the triplet pairing. Right
panel: J2C/t ′ as a function of temperature at quarter filling δ = 0.25.
The critical value of J2C below which superconductivity instability is
induced in the limit t = J1 = 0.

the three condensates,

FBCS = Ns

∑
α=x,y,z

{ − −1
α (Qα,T )

∣∣�αQα

∣∣2 + C1

∣∣�αQα

∣∣4}

+NsC2

∑
α �=β

∣∣�αQα

∣∣2∣∣�βQβ

∣∣2
, (8)

in which C1 and C2 are positive numbers obtained from
the calculation of the box diagram in the left panel of
Fig. 5(a). We have checked that C2 > C1 > 0 and thus we
deduce that mixing of the three superconducting condensates
is not energetically favorable, and there is phase separation
among the three types of fermionic pairs. Consequentially,
the ground state wave function at zero temperature is three
times degenerate (see Fig. 3): The modulated �α

ij [Eq. (4)] are
represented by bold and dashed lines [(a) red for x, (b) green
for y, and (c) blue for z].

When t and J1 are small compared to t ′ and J2, the three
FFLO states are still stable when the temperature is low
enough [−1

x (Qx,T ) = −1
y (Qy,T ) = −1

z (Qz,T ) > 0]. The
FFLO phase remains stable as long as the energy related to
the critical temperature is bigger than the gap of the free
electron system around quarter filling opened by the t term,
i.e., kBTc(δ) > t [63]. In Fig. 5(b), we have plotted the critical
value of J2C for the superconductivity instability as a function
of temperature T .

Exact diagonalization of the Kitaev-Heisenberg model. We
have done an exact diagonalization of the Kitaev-Heisenberg
model of Eq. (1) in the spin-orbit coupling limit t = 0, t ′ = 1.
The exact diagonalization treats the Gutzwiller projectors
exactly in Eq. (1). We fix the parametrization J1 = 4t2

U
, J2 =

4t ′2
U

(here we choose U = 6, as suggested by Ref. [42]). The
system has Ns = Nx × Ny plaquettes with periodic boundary
conditions in both directions, and is filled with N electrons
on the 2Nx × Ny sites. Nx and Ny are both even numbers
in order to avoid frustration of the FFLO condensates. Due to
computational constraints, we reduce our study to three system
sizes: Ny = 2, Nx = 2,4,6. For an odd number of Cooper
pairs (doped system), the lowest-energy eigenstates appear
in momentum sectors kx = (Nx/2,Ny/2), ky = (Nx/2,0),
and kz = (0,Ny/2) [in the bases of k1 = 1

Nx
(0, 4π

3 ), k2 =
1

Ny
( 2π√

3
, − 2π

3 )], as shown in Figs. 6(b), 6(d), and 6(g). The
degeneracy for the three spin-triplet states is partially lifted
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FIG. 6. Energy spectra as a function of the linearized momentum
kx + Nxky of the Hamiltonian in Eq. (1) with periodic boundary
conditions and t = J1 = 0, t ′ = 1, J2 = 0.667. The left column and
middle column show a system of Nx × Ny = 4 × 2 plaquettes with
particle numbers (a) N = 4, (b) N = 6, (c) N = 8 or quarter filling
(d) N = 10 and (e) N = 12. The right column only provides the
(f) N = 8, (g) N = 10, (h) N = 12 spectra on a 6 × 2 system [the
largest Hilbert space dimension involved for (h) is � 1.7 × 108]. Note
that for this system, only the few first energy levels are shown.

when Nx �= Ny , which breaks the symmetry of a 2π/3
rotation, followed by a permutation of spin components. For
an even number of Cooper pairs, the ground state appears in
momentum sector k0 = (0,0), as shown in Figs. 6(a), 6(c),
6(e), 6(f), and 6(h). In agreement with the theory, kα coincides
with the three discrete versions of the FFLO Cooper pair
momenta qα (α = x,y,z) for an odd number of Cooper pairs,
while for an even number of Cooper pairs k0 ≡ 2kα = 2qα

mod (Nx,Ny). This alternation of the ground state momentum
sector as a function of particle numbers distinguishes the FFLO
superconductivity here from other modulated orders such as
spin or charge density waves [64]. The quasidegeneracy in
Fig. 6(b) is yet to be understood and might just be a finite size
effect.

Conclusion. We have provided both analytical and numeri-
cal evidence of a pure spin-triplet FFLO superconductor in the
doped itinerant Kitaev-Heisenberg model in the spin-orbit cou-
pling limit (t,J1 → 0). When t ′ is purely imaginary, the time-
reversal symmetry (TRS) is restored, which might overcome
the difficulties of the experimental realization of the FFLO
phase. The key ingredient of the FFLO superconductivity here
is the symmetry centers of the Fermi surface at nontrivial
momenta instead of a Zeeman field. The ground state is three
times degenerate with respectively the three spin-triplet pairing
�α

ij in the p-wave state with nontrivial Cooper pair momentum
Qα = 2qα and spatial modulation of π phase in the direction
of lattice vector Rα for the order parameter. These results may
have relevance for doped iridate honeycomb materials or in
ultracold atom systems. This FFLO state could be detected
by possible Josephson effect measurements, by coupling such
an FFLO material with a usual superconductor as proposed
in several works, such as Ref. [65]. This FFLO state could
also reveal interesting (short-range) magnetic fluctuations in
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connection with the zigzag phase at half filling, which is
beyond the scope of the present work.
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