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We study the frequency dependence of the optical conductivity Re σ (ω) of the Heisenberg spin- 1
2 chain in the

thermal and near the transition to the many-body localized phase induced by the strength of a random z-directed
magnetic field. Using the method of dynamical quantum typicality, we calculate the real-time dynamics of the
spin-current autocorrelation function and obtain the Fourier transform Re σ (ω) for system sizes much larger than
accessible to standard exact-diagonalization approaches. We find that the low-frequency behavior of Re σ (ω) is
well described by Re σ (ω) ≈ σdc + a|ω|α , with α ≈ 1 in a wide range within the thermal phase and close to the
transition. We particularly detail the decrease of σdc in the thermal phase as a function of increasing disorder
for strong exchange anisotropies. We further find that the temperature dependence of σdc is consistent with the
existence of a mobility edge.
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Introduction. Many-body localization (MBL) generalizes
the concept of Anderson localization [1] to interacting systems.
In a pioneering work [2], Basko, Aleiner, and Altshuler showed
perturbatively that the Anderson insulator is stable to small
interactions. Thus, an isolated quantum many-body system
can undergo a dynamical phase transition from a thermal
phase to an MBL phase where eigenstate thermalization
[3–5] breaks down. Subsequent numerical works further
revealed the richness of disordered many-body systems [6–9].
A characteristic property of MBL systems is a logarithmic
growth of entanglement after a global quench [10,11], which
has lead to a phenomenological understanding in terms of
locally conserved quantities [12–14]. An exciting aspect of
MBL is that it allows one to protect quantum orders at finite
energy densities (both symmetry breaking and topological
ones), which would melt in thermal phases [15–19]. On the
experimental side, first observations of MBL in optical-lattice
systems have been made by studying quantum quenches in
disordered systems of interacting particles [20]. Furthermore,
the I -V characteristics of amorphous iridium oxide reveal an
insulating state where MBL might play a role [21].

In the ongoing discussion of MBL, a central model is the
spin- 1

2 XXZ chain with a spatially random z-directed mag-
netic field, being equivalent to interacting spinless fermions
in a random on-site potential of strength W . Furthermore, the
XXZ chain is a fundamental model for the study of transport
and relaxation in low dimensions [22] and relevant to the
physics of quasi-one-dimensional quantum magnets [23–28],
cold atoms in optical lattices [29], and nanostructures [30], as
well as to physical questions in a much broader context [31,32].
This model is also of paramount interest due to its remarkably
rich dynamical phase diagram, manifest in the frequency- and
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temperature-dependent optical conductivity σ (ω,T ). Despite
integrability of the disorder-free XXZ chain, W = 0, the exact
calculation of σ (ω,T ) at T �= 0 has been and continues to be a
challenge to theory and is an important goal of new analytical
and numerical techniques. While it has become clear that, for
small particle-particle interactions � < 1, σ (ω,T ) features a
nondissipative Drude contribution at ω = 0 and any T � 0
[33–45], much less is known on the dynamics at ω �= 0. Yet,
signatures of diffusion, e.g., with a well-behaving limit ω → 0,
have been found only for strong � > 1 and high T [46–48] as
well as for � = 1 and very low T [49–51].

Perturbations, such as spin-phonon coupling [52–54],
dimerization [55,56], interactions between further neighbors
[57,58] or different chains [24,25,59–64], break the integra-
bility of the XXZ chain and therefore add another layer of
complexity. In this context, improving numerical approaches
is imperative to progress in understanding. Within the class
of relevant perturbations, disorder plays a remarkable role
since it goes along with MBL as a new dynamical state
of matter. Early on, a numerical work based on Lanczos
diagonalization [65] found that, at � = 1 and W = 1, the
low-ω optical conductivity at high T follows the power
law Re σ (ω) ≈ σdc + a|ω|α , with α ≈ 1, being different from
Mott’s law for the Anderson insulator α ≈ 2. Such α was
also observed for small but finite � and in a wider range of
W [66]. A more recent theoretical study [67] has suggested
that α → 1 when approaching the MBL transition from the
localized (σdc = 0) side, attributed to rare metallic regions,
in contrast to α ≈ 2, due to rare resonant pairs deep in the
localized phase.

In this Rapid Communication, we study the optical conduc-
tivity in disordered systems using complementary numerical
methods, with a particular focus on dynamical quantum
typicality (DQT) [43,44,68] (see also Refs. [69–80]). This
method employs the fact a single pure state can exhibit
properties identical to that of the complete statistical ensemble.
This fact has been demonstrated in nontrivial phases of the
disorder-free XXZ chain and allows to study the long-time
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FIG. 1. Dynamical phase diagram (sketch) of disordered spin- 1
2

XXZ chains. Issues studied in this Rapid Communication: Scaling
of dc conductivity σdc and low-frequency exponent α for strong
interactions � � 1 and disorders W � 0 up to the MBL transition;
temperature dependence and existence of mobility edge; typicality in
finite systems with W > 0.

dynamics of quantum systems with Hilbert spaces being much
larger than those accessible to standard exact-diagonalization
(ED) approaches. While in localized phases it is clear that
a single eigenstate cannot be a typical representative, i.e.,
the eigenstate thermalization hypothesis (ETH) [3–5] is not
satisfied, we show for finite systems that DQT, which is
different from ETH, works well, i.e., still the overwhelming
majority of states drawn at random from a high-dimensional
Hilbert space are typical.

To outline, we apply DQT to disordered XXZ chains and
demonstrate that a single pure state can indeed represent
the full statistical ensemble within the entire range from
the thermal to the MBL phase. In particular, we find that
Re σ (ω) ≈ σdc + a|ω|α with α ≈ 1 in a wide range of pa-
rameters within the thermal phase and close to the transition.
Moreover, we detail the dependence of σdc on W and connect
to known results on either very small or very large W . Finally,
we determine the T dependence of σdc down to low T in
the thermal phase. We find that this dependence is consistent
with the existence of an MBL mobility edge. Thus, our results
provide for a comprehensive picture of dynamical phases in
disordered XXZ chains, as illustrated in Fig. 1.

Model. We study the antiferromagnetic XXZ spin- 1
2 chain

with periodic boundary conditions, given by (� = 1)

H = J

L∑
r=1

(
Sx

r Sx
r+1 + Sy

r S
y

r+1 + �Sz
r S

z
r+1 + BrS

z
r

)
, (1)

where S
x,y,z
r are the components of spin- 1

2 operators at site
r . J > 0 is the exchange coupling constant, L the total
number of sites, and � the anisotropy. The local magnetic
fields Br are drawn at random from a uniform distribution
in the interval [−W,W ]. Thus, translation invariance and
integrability of the model are broken for any W �= 0. Total
magnetization Sz is strictly conserved for any value of W .
This model has been studied extensively in the context of
MBL at � = 1 and several exact-diagonalization studies find
an MBL phase at infinite temperatures for W/J � 3.5 [6,9].

In this Rapid Communication, we study the grand-canonical
ensemble 〈Sz〉 = 0, taking into account all Sz sectors.

The spin-current operator j = J
∑

r (Sx
r S

y

r+1 − S
y
r Sx

r+1)
follows from the continuity equation. We are interested in
the autocorrelation function at inverse temperatures β = 1/T

(kB = 1), C(t) = Re 〈j (t)j 〉/L, where the time argument of j

has to be understood with respect to the Heisenberg picture,
j = j (0), and C(0) = J 2/8 at high temperatures β → 0. From
C(t), we determine the optical conductivity via the Fourier
transform

Re σ (ω) = 1 − e−βω

ω

∫ tmax

0
dt eiωtC(t), (2)

where the cutoff time tmax has to be chosen much larger
than the relaxation time τ , with C(τ )/C(0) = 1/e [63,64].
Note that, using the Jordan-Wigner transformation, H can be
mapped onto interacting spinless fermions. In this picture, Br

is a discorded on-site chemical potential and j is the particle
current.

Methods. We use the DQT method, which is most con-
veniently formulated in the time domain t and relies on the
relation

C(t) = Re
〈�β(t)|j |ϕβ(t)〉
L〈�β(0)|�β(0)〉 + ε, (3)

where |�β(t)〉 = e−ıH t−βH/2|ψ〉, |ϕβ(t)〉 = e−ıH t j e−βH/2

|ψ〉, and |ψ〉 is a single pure state drawn at random. Most
important, the remainder ε scales inversely with the partition
function, i.e., ε is exponentially small in the number of ther-
mally occupied eigenstates [43,44,68]. The great advantage of
Eq. (3) is that it can be evaluated without any diagonalization
by using forward-iterator algorithms. Here, we employ a
fourth-order Runge-Kutta iterator with a discrete time step
δtJ = 0.01 � 1. Using this iterator, together with sparse-
matrix representations of operators, we can reach system sizes
as large as L = 30. However, since we have to average over
N � 1 disorder realizations (to obtain the algebraic mean),
we consider L � 26.

To additionally corroborate our DQT results, we employ
ED for L = 14 and the finite-temperature Lanczos method
(FTLM), formulated in the frequency domain ω and yielding
Re σ (ω) with a frequency resolution δω ∝ 1/M [81], where
M ∼ 400 is the number of Lanczos steps used.

Results. We now present our DQT results, starting with the
infinite-temperature limit β → 0. If not stated otherwise, all
DQT data are obtained from real-time data tJ � 40, where
the autocorrelation function C(t) decays fully to zero [82].
This finite-time window yields a frequency resolution δω/J ≈
0.08.

First, for medium disorder W/J = 2, we compare in Fig. 2
the optical conductivity Re σ (ω), as obtained from DQT and
FTLM for a system of size L = 22. The excellent agreement
clearly shows that a single pure state, drawn at random from a
high-dimensional Hilbert space, is a typical representative of
the full statistical ensemble. This demonstration of typicality
in disordered systems of finite size constitutes a first central
result of our Rapid Communication and is the fundament for
using DQT as an accurate numerical method, for this and other
values of W [82].

180401-2



RAPID COMMUNICATIONS

TYPICALITY APPROACH TO THE OPTICAL . . . PHYSICAL REVIEW B 94, 180401(R) (2016)

0

0.05

0.1

0.15

0 1 2 3

R
e
σ
(ω

)/
β
J

ω/J

FTLM L = 22
DQT L = 22

FIG. 2. Comparison of DQT (tJ � 40) and FTLM (M = 400):
Re σ (ω) at β → 0, � = 1, and W/J = 2 for L = 22 and N = 200.
The excellent agreement clearly shows the validity of typicality. Such
agreement is also found for other values of W (see Ref. [82]).

In Fig. 3 we summarize our optical-conductivity results
Re σ (ω) for � = 1.0 (upper row) and � = 1.5 (lower row)
along the transition from small disorder W/J = 0.5 (left-hand
side) to strong disorder W/J = 4 (right-hand side). Several
comments are in order. First, while finite-size effects increase
as W decreases, we find no significant L dependence for large
L � 22 in the disorder range 0.5 � W/J � 4.0, depicted in
Fig. 3. Second, while averaging over disorder realizations is
more important for larger W , statistical errors for N = 200 are
already smaller than the symbol size used for each W shown.
Third, despite the large difference in L, the overall agreement
with ED data, depicted for L = 14 in Figs. 3(a)–3(d), proves
again that typicality is remarkably well satisfied. Finally, it is
evident from Fig. 3(a) that already at high T finite-size effects
can be significant for L = 14.

As shown in Fig. 3, the optical conductivity Re σ (ω) has a
well-defined value σdc at ω = 0 and a maximum σmax > σdc

located at ωmax > 0 for all W depicted. While σdc decreases
fast as W increases, σmax has a much weaker W dependence
[see Fig. 4(b)]. In particular, the position ωmax moves to higher
frequencies and eventually saturates at large W [see Fig. 4(c)].
Most notably, for ω � ωmax the optical conductivity is well
described by a power law, i.e., Re σ (ω) ≈ σdc + a|ω|α , where
α ≈ 1. The exponent α = 1 has been proposed in Ref. [67]
at the MBL transition. We find this exponent also in a wide

−3

−2

−1

−2 −1 0

W/J = 2.5

0

0.1

0.2

σdc

σmax

0

1

R
e
σ
(ω

)−
c)

/
β
J

ω/J

c = 0
c = σdc

α = 0.93

σ
i/

β
J

W/J

ω
m

a
x
/
J

W/J

Δ = 1.0
Δ = 1.5

FIG. 4. (a) Log-log plot of Re σ (ω) − c, with c = 0 and c = σdc,
at W = 2.5, � = 1, and β → 0 (〈Sz〉 = 0, L = 20, tJ � 400, N =
1000) as well as a power-law fit with the exponent α = 0.93 being
close to 1. (b), (c) Disorder dependence of σdc, the maximum σmax,
and its position ωmax at � = 1.0,1.5 and β → 0 (〈Sz〉 = 0, L = 24,
tJ � 40, N = 200). For W = 0, also the � = 1.5 result of, e.g., Ref.
[47], is indicated (green square).

range of the thermal phase. This finding does not depend on the
frequency resolution and the disorder average [see Figs. 3(d)
and 3(h)], and can be substantiated by a log-log plot after
subtracting σdc [see Fig. 4(a)]. We further checked that our
finding is true for binary disorder [82]. Note that the above
power law is different from Mott’s law Re σ (ω) ∝ ωα with
α = 2, valid for W/� � 1 [67]. Moreover, it differs from a
subdiffusive power law with σdc = 0 and α < 1 [83,84], in
agreement with Ref. [85].

For W → 0, Figs. 4(b) and 4(c) suggest ωmax → 0 and
σdc = σmax for � = 1.0 and 1.5. On the one hand, this
suggestion is in line with results at W = 0 for � = 1.5 in Refs.
[47,48,86]. On the other hand, for � = 1.0, the complete form
of Re σ (ω) vs ω is still under scrutiny [49–51,57,87], including
the existence of a finite σdc.

Next, we turn to lower temperatures β �= 0, focusing on
� = 1 and W = 2, where σdc is already small but still nonzero
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FIG. 3. Re σ (ω) at β → 0 for � = 1.0 (upper row) and � = 1.5 (lower row) in the transition from small W/J = 0.5 (left-hand side) to
strong W/J = 4 (right-hand side) for the ensemble 〈Sz〉 = 0, as obtained numerically for L = 14 using ED and L > 14 using DQT (tJ � 40;
L < 26: N = 200; L = 26: N = 20). For W = 4, L = 20 data are shown for N = 10 000 and tJ � 120 (insets), reducing statistical errors
and increasing frequency resolution. In all cases (a)–(h), the low-ω behavior is well described by Re σ (ω) ≈ σdc + a|ω| (lines). In (e) the
perturbative result of Ref. [47] for W → 0 is depicted [82].
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FIG. 5. (a) Re σ (ω) at intermediate W/J = 2 and various βJ � 2
for � = 1 (〈Sz〉 = 0, L = 24, tJ � 40, N = 1000). (b) Temperature
dependence of σdc for different L � 24. (Small error bars for the two
largest L = 20 and 24 indicate the difference between N = 500 and
1000.) This temperature dependence is consistent with a mobility
edge located at E − Emin ∼ 2J .

at β = 0. In Fig. 5(a) we depict our results for Re σ (ω) ω/(1 −
e−βω), i.e., the mere Fourier transform of C(t), for various
βJ � 2 and a single L = 24. Clearly, spectral weight at
ω/J � 2 increases as β increases, while the overall structure
at ω/J ∼ 1 only weakly depends on β. In Fig. 5(b) we show
the temperature dependence of σdc, which is well converged
for L � 20 and N � 500 in the entire temperature range

depicted. Apparently, at high temperatures, σdc/β ≈ const. For
T/J � 2, however, σdc/β decreases rapidly as T decreases.
This finding is a central result of our Rapid Communication. It
is very suggestive of an interpretation in which extended states
are frozen out below an energy scale of order E − Emin ∼ 2J .
Speaking differently, this result points to the existence of a
mobility edge in terms of E, where Emin refers to the lower
bound of the spectrum. Similar results have been reported in
Ref. [65] for smaller values of W .

Summary and conclusion. We studied the frequency de-
pendence of the optical conductivity Re σ (ω) of the XXZ

spin- 1
2 chain in the transition from a thermal to a many-body

localized phase induced by the strength of a spatially random
magnetic field. To this end, we used numerical approaches to
large system sizes, far beyond the applicability of standard
ED, with a particular focus on DQT. In particular, we showed
that the DQT approach represents a powerful tool to study
dynamical responses of MBL systems. First, we demonstrated
the validity of typicality in disordered systems. Then, we found
that the low-frequency behavior of Re σ (ω) is well described
by Re σ (ω) ≈ σdc + a|ω|α , with a constant α ≈ 1 in a wide
range of the thermal phase and close to the transition. We
further detailed the decrease of σdc as a function of increasing
disorder or decreasing temperature. We particularly found that
the temperature dependence is consistent with the existence of
a mobility edge.
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