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Comment on “Critical point scaling of Ising spin glasses in a magnetic field”
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In a section of a recent paper [Phys. Rev. B 91, 104432 (2015)], the authors discuss some of the arguments
in the paper by Parisi and Temesvári [Nucl. Phys. B 858, 293 (2012)]. In this Comment, it is shown how these
arguments are misinterpreted and the existence of the Almeida-Thouless transition in the upper critical dimension
six reasserted.
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In a recent paper by Yeo and Moore [1] about the long
debated existence of the Almeida-Thouless (AT) instability
[2] in the short-ranged Ising spin glass below the upper critical
dimension six, the authors criticize in Sec. III some of our
statements and arguments in Ref. [3]. In that paper we have
demonstrated: First the incorrect reasoning of Ref. [4] about
the disappearance of the AT transition line when approaching
the upper critical dimension from above; second we have
computed the AT line staying exactly in six dimensions (and
not by a limiting process); and third the ε expansion was
used to compute the AT line below six dimensions, and the

relatively smooth behavior of it while crossing d = 6 (with
fixed bare parameters) was exhibited. In what follows, we
want to comment on the discussion in Sec. III of Ref. [1].

AT AND ABOVE SIX DIMENSIONS

The first-order renormalization-group (RG) equations for
the six-dimensional model are worked out and solved in
Sec. 3 of Ref. [3], the AT line follows from that calculation
(see Eq. (37) in Ref. [3])1:

h2
AT = 4

(1 − w2 ln |r| + 10
3 w2 ln w)4

w|r|2 ≈ 4

(1 − w2 ln |r|)4
w|r|2, d = 6, (1)

where w2 � 1 was used. (Note that a minus sign in the
denominator of Eq. (13) has been left out in Ref. [1].)
As it turns out from the discussion in Sec. 3 of Ref. [3],
this approximation is valid if the scaling variable with zero
scaling dimension (which is invariant under the RG in d = 6)
is small, i.e.,

w2

1 + 5
3w2 ln w2 − w2 ln |r| � 1, (2)

and this condition is always satisfied whenever |r| � 1 and
w2 � 1; see also the middle part of Eq. (59) of that reference.
Yeo and Moore [1] forget all about this derivation of the six-
dimensional AT line; they deduce it from Eq. (11) of Ref. [1]
by the limit ε → 0, and finally they argue that “Eq. (11) is
not valid for this limit.” We can absolutely agree with this
last statement: The system at the upper critical dimension
needs special care, physical quantities, such as the critical
magnetic field where replica symmetry breaking sets in, cannot
be obtained by a limiting process of ε → 0. The point is that
ε in Eq. (11) may be small but fixed, whereas |r| � 1, and the
|r|ε/2 term in the denominator must be ignored. Taking account
of this, the AT line above dimension six, Eq. (11) of Ref. [1],
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1We use here the notations of Ref. [1]. In fact |r| was called τ

in Ref. [3], whereas r played the role of the nonlinear scaling field
associated with τ . We also adapt here to the somewhat unconventional
use of the symbol ε as ε = d − 6.

must be written (consistently with the approximations used to
derive it) as

h2
AT ∼ w|r|(d/2)−1

(
2w2

ε
+ 1

)(5d/6)−1
, d > 6. (3)

This is just Eq. (28) of Ref. [3]. This equation for the AT line
above six dimensions must be supplemented by the range of
its applicability, otherwise false conclusions, such as Eq. (12)
in Ref. [1] [which is obviously incompatible with (1)] could
be deduced. For this reason, we briefly repeat the two steps
needed for the derivation of (3):

(1) The RG equations for the three bare parameters,
namely,

˙|r| =
(

2 − 10

3
w2

)
|r|, (4)

ẇ2 = −εw2 − 2w4, (5)

ḣ2 =
(

4 + ε

2
+ 1

3
w2

)
h2 (6)

are valid for |r| � 1 and w2 � 1. One can introduce the
nonlinear scaling fields [5] satisfying exactly, by definition,
the linearized (around the fixed point) and diagonalized RG
equations. For the system in (4) and for its Gaussian fixed
point, one readily finds

˙g|r| = 2g|r|, ˙gw2 = −εgw2 and ˙gh2 =
(

4 + ε

2

)
gh2 .
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The relations between bare parameters and nonlinear scaling
fields were published in Ref. [3], for completeness we repeat
them here

|r| = g|r|

(
1 − 2

ε
gw2

)−(5/3)

, w2 = gw2

(
1 − 2

ε
gw2

)−1

and

h2 = gh2

(
1 − 2

ε
gw2

)1/6

. (7)

(2) The zeros of the scaling function of the replicon mass
�̂R are the locations of the AT instability. �̂R depends on the
bare parameters |r|, w2, and h2 through the RG invariants
x ≡ gw2g

ε/2
|r| and y ≡ gh2g

−2−(ε/4)
|r| . The AT instability line can

then be written as y = f (x) or

gh2
AT

= g
2+(ε/4)
|r| f

(
gw2g

(ε/2)
|r|

) = g2
|r|√
gw2

g
(
gw2g

ε/2
|r|

)
, with

g(x) ≡ √
xf (x). (8)

The following remarks are now in order:
(i) This form of the AT line is generic for the system where

the zero-external-magnetic-field symmetry is broken only by
the linear replica symmetric invariant in the Lagrangian whose
bare coupling constant is h2. (This model is used in Refs. [1,4]
too.) Equation (7) cannot be used in this generic case to replace
nonlinear scaling fields by bare couplings as they were derived
from the one-loop RG equations in (4), (5), and (6).

(ii) Equation (14) of Ref. [1] formally agrees with (8), but
the bare couplings are there instead of the g’s. In this form it
is not correct.

(iii) The function g(x) of (8) can be calculated pertur-
batively, and the one-loop result was published in Ref. [3]:
g(x) = (−C ′)x where −C ′(ε) > 0 is analytic and positive
around ε = 0. Putting this into (8), one gets

gh2
AT

∼ g
2+(ε/2)
|r|

√
gw2 ,

and inserting the inverse relations of those in Eq. (7) one
immediately arrives at (3).

As must be clear from the two-step process above, a mixture
of renormalization and perturbation theory leads to Eq. (3).
The leading linear contribution to g(x) is free from a singularity
at d = 6 as it comes from an ultraviolet convergent one-loop
graph [3]. Triangular insertions in the next two-loop graphs,
however, certainly produce singular terms, such as g(x) ∼
1
ε
x2, their neglect is acceptable only if 1

ε
x = 1

ε
gw2g

(ε/2)
|r| � 1.

Expressing this condition by the bare couplings, one can write
the range of applicability of Eq. (3) as

|r| � 1, w2 � 1, and most importantly,

1

ε
w2|r|(ε/2)

(
1 + 2

ε
w2

)−1−(5/6)ε

� 1. (9)

The left-hand side of the third condition becomes of order unity
(1/2) and thus breaks down when ε → 0 whereas |r| and w2 �
1 but otherwise fixed. This is just the limit leading to Eq. (12) of
Ref. [1] (and to the conclusion of the disappearance of the AT
line for ε → 0) and is the source of the basic fault in the original
arguments in Ref. [4]. (See also Fig. 2(b) and the discussion
around it in Ref. [3].) ε in (3) may be small but must be kept
fixed. The simple first-order perturbational result is obtained
for w2 � ε. The joint application of the perturbational method
and RG (and not RG alone as Yeo and Moore [1] claim)
provide (3) which is valid for 0 < ε � w2 � 1 too. In this
latter case the range of applicability of Eq. (3), according
to (9), shrinks to zero as − ln |r| 	 ε−1, together with the
amplitude in (3). This phenomenon signals the appearance of
the logarithmic correction in d = 6: h2

AT ∼ (ln |r|)−4|r|2, and
it is not an indication of the disappearance of the AT line.
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