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Displacement and annihilation of Dirac gap nodes in d-wave iron-based superconductors
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Several experimental and theoretical arguments have been made in favor of a d-wave symmetry for the
superconducting state in some Fe-based materials. It is a common belief that a d-wave gap in the Fe-based
superconductors must have nodes on the Fermi surfaces centered at the � point of the Brillouin zone. Here we
show that, while this is the case for a single Fermi surface made out of a single orbital, the situation is more
complex if there is an even number of Fermi surfaces made out of different orbitals. In particular, we show that
for the two �-centered hole Fermi surfaces made out of dxz and dyz orbitals, the nodal points still exist near Tc

along the symmetry-imposed directions, but are are displaced to momenta between the two Fermi surfaces. If
the two hole pockets are close enough, pairs of nodal points can merge and annihilate at some T < Tc, making
the d-wave state completely nodeless. These results imply that photoemission evidence for a nodeless gap on the
dxz/dyz Fermi surfaces of KFe2As2 does not rule out d-wave gap symmetry in this material, while a nodeless gap
observed on the dxy pocket in KxFe2−ySe2 is truly inconsistent with the d-wave gap symmetry.

DOI: 10.1103/PhysRevB.94.174518

I. INTRODUCTION

One of the most interesting features of Fe-based supercon-
ductors (FeSCs) is the observation of different structures of
the superconducting (SC) gap in different materials, which
may indicate that the gap symmetry in FeSC is material
dependent. [1] Weakly or moderately doped FeSC have both
hole and electron pockets, and the gap symmetry there is very
likely s wave, with a π phase shift between hole pockets
and electron pockets, the so-called s+−-wave state [2]. The
situation is less clear in materials with only one type of Fermi
pocket, such as strongly hole-doped KFe2As2, which contain
only hole pockets [3], and KxFe2−ySe2 or monolayer FeSe,
which have only electron pockets [4]. Thermal conductivity
and Raman scattering measurements in KFe2As2 [5–7], as
well as the observation of a neutron resonance peak in the
superconducting state of KxFe2−ySe2 [8], were interpreted
as evidence for a d-wave gap symmetry in these materials.
Theoretical studies also found a strong enhancement of the
d-wave superconducting susceptibility [9,10], and at least one
study of KFe2As2 has found [11] a stronger attraction in the
d-wave channel than in the s+− channel.

The arguments in favor of a d-wave gap symmetry, how-
ever, have been questioned by angle-resolved photoemission
(ARPES) measurements [12,13]. For hole-doped KFe2As2,
these measurements have found [13] that the gap on the
inner hole pocket centered at the � point (k = 0) displays
some angle variation but has no nodes [14]. The conventional
wisdom is that a d-wave gap must vanish on all Fermi
surfaces (FSs) centered at k = 0 along symmetry-imposed
directions in momentum space. Specifically, a dx2−y2 gap,
which we consider hereafter, must vanish on the FS points
along the diagonals kx = ±ky in the 1-Fe Brillouin zone (1Fe
BZ). The nonvanishing of the gap on the inner FS along
these direction in ARPES measurements was interpreted [13]
as the smoking-gun evidence ruling out a d-wave gap
in KFe2As2. Similarly, in KxFe2−ySe2, the gap has been
measured on the electron pocket centered at the Z point
(kx = ky = 0 and kz = π ) and was found to be almost angle

independent [15]. Again, the conventional wisdom is that
this result is fundamentally inconsistent with a d-wave gap
symmetry.

It was argued in Ref. [16] that the d-wave order parameter
in FeSCs necessarily contains both intrapocket and interpocket
components, and by this reason a d-wave gap has no nodes
along the Fermi surfaces. A similar effect was previously
shown to impact the behavior of accidental nodes in an s+−

superconductor [17,18]. In this paper, we revisit this issue and
investigate the fate of the d-wave nodes on the FSs centered
at the high-symmetry � and Z points. We argue that one
has to distinguish between the cases when a FS centered at
kx = ky = 0, is made out of a single orbital, like the Z-centered
electron pocket in certain compounds, and the cases when the
FSs centered at these points are made out of an even number
of orbitals, like the �-centered hole pockets present in most
compounds, which are made out of dxz/dyz orbitals. In the first
case, the symmetry-imposed d-wave nodes remain on the FS.
In the second case, the d-wave gap does not have nodes on the
normal-state FSs [see Fig. 1(a)]. We demonstrate, however,
that this does not imply that the electronic spectrum is gapped.
We show that the nodes remain along the high-symmetry
directions, but get displaced from the original FSs, at least
near Tc, when the gaps are small. If the difference between the
Fermi momenta of the two pockets is substantial, the nodes
persist down to T = 0. If, however, the pockets are close to
each other, pairs of nodes with opposite winding numbers can
annihilate at Tcr < Tc, rendering the spectrum gapped.

The displacement of the nodes from the FSs is related to
how intraorbital pairing in the orbital basis is displayed in
the band basis [16,19]. Namely, in the absence of spin-orbit
interaction, tetragonal symmetry requires that the d-wave
gap on these pockets must be diagonal in the orbital basis,
i.e., 〈dxz,−k↓dxz,k↑〉 = �,〈dyz,−k↓dyz,k↑〉 = −�. However, to
analyze the gap structure near the FS, one needs to change
the basis from orbital space to band space. The latter is
characterized by the band operators c1,kσ and c2,kσ , which
describe excitations near the two hole FSs. In the band basis,
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FIG. 1. The Fermi surfaces (FSs) and the location of the nodal
points near the two �-centered dxz/dyz pockets. Panel (a) shows the
two FSs in the normal state, highlighting the orbital that gives the
largest spectral weight at each point along the FSs (yellow for dxz and
green for dyz). Panel (b) illustrates the location of the d-wave nodes
on the two FSs (blue and red lines) if the band off-diagonal gap term
was absent. Panel (c) presents the actual location of the nodal points
(red and blue dots) for the case � = 0.8�cr. The dispersions are given

by Ea,b =
√
�2 cos2 2θ + ε2

a,b and the terms εa,b vanish along the two
gray lines adjacent to the FSs.

the same d-wave gap acquires both diagonal and off-diagonal
components: 〈c1,−k↓c1,k↑〉 = −〈c2,−k↓c2,k↑〉 = � cos 2θ and
〈c2,−k↓c1,k↑〉 = 〈c1,−k↓c2,k↑〉 = � sin 2θ , respectively. For cir-
cular hole FSs, θ coincides with the angle along
the FS.

Because the off-diagonal gap term mixes the two FSs, the
d-wave gap varies as a function of θ but does not have nodes.
The strength of the variation depends on the interplay between
� and the splitting between the two-hole FS, as we discuss
below. Such an effect does not happen for an s-wave gap, since
the orbital and band representations are identical in this case,
implying that off-diagonal terms do not emerge, unless there
is hybridization between the pockets. The orbital and the band
representations are also identical, for any gap symmetry, on a
pocket made out of a single orbital, such as the dxy Z pocket
in KxFe2−ySe2.

By extending the analysis to momenta away from the nor-
mal state FS, we found that the nodes in the d-wave excitation
spectrum near the dxz/dyz hole pockets do survive and are
just displaced from the normal-state hole FSs. Specifically, the
excitation spectrum has the form [16]

E2
a,b = �2 cos2 2θ + ε2

a,b, (1)

with

εa,b = sgn(ε1,k + ε2,k)

√(
ε1,k + ε2,k

2

)2

+ �2 sin2 2θ

±
(

ε1,k − ε2,k

2

)
, (2)

where ε1,k and ε2,k are the normal-state dispersions of bands
1 and 2, respectively. If the off-diagonal term � sin 2θ was
absent, εa = ε1,k, εb = ε2,k, and the dispersions would be
the conventional ones for a d-wave SC, namely, E2

a,b =
�2 cos2 2θ + ε2

1,2. In this case, each dispersion would have
nodal points on the FS at θ = θn ≡ (2n + 1)π/4, with n =
0,1,2,3 [see Fig. 1(b)]. Because of the off-diagonal term, εa

does not vanish when ε1 = 0 and εb does not vanish when
ε2 = 0. However εa (εb) does vanish along the lines specified
by ε1,kε2,k = −�2 sin2 2θ , which are displaced from the actual
FS; see Fig. 1(c).

When the magnitude of the d-wave gap is small, the two
lines are well separated and cross the direction θ = θn at the
momenta ka > kF,1 and kb < kF,2. At these crossing points,
the full quasiparticle energy Ea (Eb) vanishes. These are new
d-wave nodal points, shifted from their corresponding FS by
the mixing term. For small �, this shift is small, of order �2.
However, as temperature decreases, � becomes larger and the
nodal points become closer. If the gap reaches the critical value
�cr, which depends on the radii of the two pockets, the two
nodal points merge and annihilate each other. At � = �cr, the
lines εa = 0 and εb = 0 mix, see Fig. 2(c). For � > �cr, these
lines split in the orthogonal direction and no longer cross
the directions θ = θn; i.e., εa,b and � cos 2θ do not vanish
simultaneously. In this situation, Ea,b do not have nodal points,
implying that the excitations of the d-wave superconductor are
fully gapped.

When nodal points are present, the excitations near Ea,b =
0 are Dirac cones, Ea,b =

√
k̃2
x + k̃2

y , where x̃ and ỹ are
directions along and transverse to the lines εa = εb = 0,
defined by k̃x = 2�(θ − θn) and k̃y = ( dεa,b

dk
)(k − ka,b), where

the derivative is taken at θ = θn. At the critical gap value
� = �cr, dεa,b/dk vanishes, and we find k̃y ∝ (k − ka,b)2.
This dispersion has the same form as the dispersion of
fermions at the critical point between a semimetal and an
insulator [20–22]. It was argued [21] that for such a dispersion
the system with dynamically screened Coulomb interaction
should display a highly nontrivial quantum-critical behavior
in both fermionic and bosonic sectors. Our study shows that
a d-wave FeSC provides an interesting realization of such
behavior.

The displacement of the nodes to momenta away from the
normal-state FSs has been previously discussed for accidental
nodes on electron pockets in an s+− superconductor. In this
case, the displacement is due to hybridization between these
pockets [17,23]. The authors of Ref. [17] argued that, as the
hybridization parameter gets larger, pairs of accidental nodes
come close and, at some critical hybridization, merge and
annihilate. The same effect occurs [18] when one increases the
pnictogen/chalcogen-induced interaction between fermions on
Fe sites [i.e., interaction with momentum nonconservation by
(π,π ) in the 1Fe BZ]. For a d-wave superconductor, the lifting
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FIG. 2. The evolution of the d-wave nodes as � increases beyond
the critical value �cr. The blue and red lines are the normal-state FS.
The gray lines denote the locations of εa,b = 0, and the dispersions

are given by Ea,b =
√
�2 cos2 2θ + ε2

a,b. The nodal points are marked
by the red and blue dots. Four pairs of nodal points are present for
� < �cr and disappear for � > �cr. In this figure, we used circular
band dispersions with m2 = 3m1.

of the nodes on the normal-state FSs was first discussed in
Ref. [16]. These authors concluded that, the nodes are lifted
not only on the normal-state FSs, but that the whole electronic
spectrum is generally gapped, except for possible accidental
nodes. We, on the contrary, argue that, at least for small �,
the symmetry-imposed nodes do survive and just shift from
the original FSs to momenta located between the original FSs.
This is similar to what happens with the accidental nodes in
an s+− superconductor in the presence of hybridization. From
a generic perspective, the persistence of the nodal points is
associated with the fact that each Dirac node has a nonzero
winding number. Only when the two nodal points with opposite
winding numbers come close to each other under the variation
of some parameter (the magnitude of the gap in the d-wave
case) can they can merge and annihilate. We discuss the
comparison with earlier works in more detail later in the paper.

We also emphasize that the nodal points in the d-wave case
are true symmetry-imposed d-wave nodes, and the damping
near each nodal point is the same as near a d-wave node on
the FS in a conventional case. Therefore, all thermodynamic
properties of the system are also the same as in a conventional
d-wave superconductor. Only in ARPES one can distinguish
between a conventional d-wave case with nodes on the original
FS and the case when the nodes are shifted away from the
normal-state FS due to the presence of the interpocket pairing
component.

The paper is organized as follows. In Sec. II we introduce
the model, in Sec. III we derive the excitation spectrum, and in

Sec. IV we compare our results with the case of a semimetal
to insulator transition. In Sec. V we compare our results with
earlier studies, and in Sec. VI we present comparisons with
experiments. We present our conclusions in Sec. VII.

II. MODEL FOR d-WAVE SUPERCONDUCTIVITY

To focus on the main message of this paper, we consider
a simplified model of an FeSC with two �-centered hole
pockets made out of the dxz and dyz orbitals [Fig. 1(a)],
and assume that 4-fermion interactions give rise to d-wave
superconductivity with dx2−y2 gap symmetry (for a dxy gap
symmetry, the results are analogous to the ones that we obtain
below). The attraction in the d-wave channel may be due to
the interactions within the dxz/dyz subset, as we assume for
simplicity, or it can be induced by the coupling to other orbitals.
In the dx2−y2 ordered state, which belongs to the B1g irreducible
representation of the D4h group, the gap function in the orbital
basis is given by 〈dxz,−k↓dxz,k↑〉 = �,〈dyz,−k↓dyz,k↑〉 = −�.
There are no interorbital terms 〈dyz,−k↓dxz,k↑ ± dxz,−k↓dyz,k↑〉
as they belong to the different irreducible representations B2g

(plus sign) and A2g (minus sign).
Although the anomalous terms 〈di,−k↓dj,k↑〉 are diagonal,

the kinetic energy near the � point does contain terms
describing hoping from one orbital to the other. The kinetic
energy is diagonalized by converting from the orbital to the
band basis, yielding

H0 =
∑
k,α

(ε1,kc
†
1,kαc1,kα + ε2,kc

†
2,kαc2,kα). (3)

The dispersions ε1,k and ε2,k are C4 symmetric. We assume
for simplicity that the system parameters are such that the hole
pockets can be approximated as circular [24]; i.e., ε1,k = μ −
k2/(2m1) and ε2,k = μ − k2/(2m2). The two dispersions are
not identical when m1 �= m2, but are degenerate by symmetry
at k = 0 in the absence of spin-orbit coupling [25,26].

The transformation from the orbital operators dxz/dyz to the
band operators c1 and c2 is a U (1) rotation:

dxz,kα = cos θkc1,kα + sin θkc2,kα,

dyz,kα = cos θkc2,kα − sin θkc1,kα. (4)

For circular Fermi pockets the rotation angle θk co-
incides with the polar angle θ along the FS [24]. Us-
ing Eq. (4) we reexpress the anomalous term H� =
�

∑
k (d†

xz,k↑d
†
xz,−k↓ − d

†
yz,k↑d

†
yz,−k↓) in the band basis. We

obtain a combination of interband and intraband terms,

H� = �a

∑
k

(
iσ

y

αβ

)
(c†1,kαc

†
1,−kβ − c

†
2,kαc

†
2,−kβ )

+�b

∑
k

(
iσ

y

αβ

)
(c†1,kαc

†
2,−kβ + c

†
2,kαc

†
1,−kβ ) + H.c.,

(5)

where σ are Pauli matrices and in the d-wave case �a =
� cos 2θ and �b = � sin 2θ . Without loss of degeneracy, one
can set �a to be real. �b is, in general, a complex variable.

Note that in the d-wave case, the interband anomalous
terms are of the same order � as intraband terms and
differ only by their angular dependence. This may seem
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counterintuitive, as the pairing kernel involving fermions from
different bands is much smaller than the kernel involving
fermions from the same band. To see why interband and
intraband pairing terms are nevertheless comparable, one
can explicitly solve for the intraband and interband pairing
vertices by using a microscopic interaction that favors d-wave.
For concreteness, consider a toy model with pair-hopping
interaction,

Hint = g

2

∑
[d†

xzαdyzαd
†
xzβdyzβ + d†

yzαdxzαd
†
yzβdxzβ ], (6)

where the summation over momenta and spin indices is left
implicit. A positive g favors B1g pairing as one can verify
in a straightforward way by solving the gap equation in the
orbital basis. Converting this Hamiltonian into band basis and
projecting onto the B1g channel, we obtain

Hint = −g

4

∑
[η†

1,kη1,p cos 2θk cos 2θp

+ η
†
2,kη2,p sin 2θk sin 2θp

+ (η†
1,kη2,p + η

†
2,kη1,p) sin 2θp cos 2θk], (7)

where η
†
1,k = c

†
1,kαc

†
1,−kβ − c

†
2,kαc

†
2,−kβ , η

†
2,k = c

†
1,kαc

†
2,−kβ +

c
†
2,kαc

†
1,−kβ , and the summation is over momentum and

spin indices. Introducing the two anomalous vertices
�1(iσ y

αβ)η†
1,k cos 2θk and �2(iσ y

αβ)η†
2,k sin 2θk and solving the

BCS-like gap equations, shown graphically in Fig. 3, we obtain

�1 = g

4

(
�11 + �22

2

)
�1 + g

4
�12�2,

�2 = g

4
�12�2 + g

4

(
�11 + �22

2

)
�1, (8)

where �11, �22, and �12 (all positive) are particle-particle
polarization bubbles made out of c1 and c2 fermions in the
superconducting state. Near Tc, we obtain

�11 = 1

2

∫
d2k

tanh
( ε1,k

2T

)
|ε1,k| , �22 = 1

2

∫
d2k

tanh
( ε2,k

2T

)
|ε2,k| ,

�12 = 1

2

∫
d2k

tanh
( ε1,k

2T

) + tanh
( ε2,k

2T

)∣∣ε1,k + ε2,k
∣∣ . (9)

Δ1 Δ1 Δ1

Δ2 Δ2

Π11 Π22

Π12 Π12

= +

++

Δ1 Δ1

Δ2 Δ2

Π11 Π22

Π12 Π12= +

++

Δ2

FIG. 3. The diagrammatic representation of the linearized gap
equations, Eqs. (8). Blue and red lines denote fermions from bands
c1 and c2.

Comparing the two expressions in Eq. (8), we see that
�1 = �2 = �, no matter what is the ratio of the interpocket
and intrapocket polarization operators. This holds as long as
the interaction g is momentum independent. If momentum
dependence is included, the intrapocket and interpocket
interaction terms in (7) differ more than by their distinct
angular dependencies. In this situation, the right-hand side
of the two equations in (8) are no longer identical, and
generally �1 > �2. In the limiting case �2 → 0 one recovers
the conventional case with only intraband pairing condensate.

III. EXCITATION SPECTRUM

We now return to Eqs. (3) and (5). The quadratic Hamil-
tonian H0 + H� can be straightforwardly diagonalized and
yields

H =
∑
k,α

Ea(k)a†
kαakα +

∑
k,α

Eb(k)b†kαbkα, (10)

where

E2
a,b(k) = ε2

1,k + ε2
2,k

2
+ �2

a + ∣∣�2
b

∣∣ ±

√√√√(
ε2

1,k − ε2
2,k

2

)2

+ (ε1,k − ε2,k)2|�b|2 + 4�2
a(Re�b)2. (11)

In the d-wave case (�a = � cos 2θ and �b = � sin 2θ ), Eq. (11) can be simplified to

Ea,b(k) =
√

�2 cos2 2θ + ε2
a,b(k), (12)

where

εa,b(k) = sgn(ε1,k + ε2,k)

√(
ε1,k + ε2,k

2

)2

+ �2 sin2 2θ ±
(

ε1,k − ε2,k

2

)
. (13)

Equation (11) was first obtained in Ref. [17] for an
s+− superconductor with accidental nodes (�a = �, �b =

i�α cos 2θ , α > 1). For a d-wave superconductor, Eqs. (12)
and (13) were first derived in Ref. [16].
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FIG. 4. The dispersion of the d-wave gap along the two FSs
[Eq. (14)] for two values of �. Blue (red) lines denote band c1 (c2).
There is substantial angular variation but no nodes. Note also that the
minimum value of the gap is different in both bands.

The dispersions Ea,b in Eqs. (12) and (13) have the same
forms as in a conventional d-wave superconductor, but are
actually more complex because εa,b themselves depend on �.
For a vanishing �, εa and εb coincide with the normal-state
dispersions, εa = ε1,k and εb = ε2,k, as they indeed should.
At a finite but small � (i.e., near Tc), εa = ε1,k + �2 sin2 2θ

ε1,k+ε2,k

and εb = ε2,k + �2 sin2 2θ
ε1,k+ε2,k

. We see that εa (εb) does not vanish
on the FS, where ε1 = 0 (ε2 = 0), except along the particular
directions sin 2θ = 0. For such values of θ , however, �2 cos 2θ

has a maximum value �2. As a result, there are no zeros of
Ea,b along each of the two FSs, despite the fact that the gap is
d wave. At arbitrary T < Tc we have at ε1,k = 0 (and ε2,k > 0)

Ea =

√√√√√�2 cos2 2θ +
⎛
⎝

√
ε2

2,k

4
+ �2 sin2 2θ − ε2,k

2

⎞
⎠

2

.

(14)
We plot the excitation energies Ea and Eb as a function of

θ along both FSs in Fig. 4 for two values of �. We see that
there is substantial angular variation of Ea,b(θ ), but no nodes.

We now analyze the excitation energies Ea,b away from
the FS. A straightforward analysis of Eq. (13) shows that εa,b

vanish along the lines where

ε1,kε2,k = −�2 sin2 2θ. (15)

For small � (i.e., near Tc), Eq. (15) is satisfied along two
separate lines, one adjacent to the inner FS (ε1,k = 0), and
another adjacent to the outer FS (ε2,k = 0). We show the lines
εa = 0 and εb = 0 in Fig. 2 for different values of �. Because
these lines cross the directions along which cos 2θ = 0, Ea or
Eb vanish at the crossing points; i.e., the full excitation energy
vanishes. This implies that the nodal points of the d-wave
superconductor still exist near Tc, but get shifted away from
the normal state FS by the interband component of the d-wave
gap. The nodal points are located along cos 2θ = 0, at k = ka,b

given by

k2
a,b =

(
k2
F,1 + k2

F,2

2

)
±

√√√√(
k2
F,1 − k2

F,2

2

)2

− 4m1m2�2,

(16)
where k2

F,i = 2miμ.
The behavior of Ea,b at smaller temperatures depends on

the interplay between the gap value and the difference between
m2 and m1, or specifically, between �(T ) and

�cr = μ

(
m2 − m1

2
√

m1m2

)
. (17)

If �cr is large enough, the nodes survive down to T = 0.
However, if m2 − m1 is small enough (i.e., the inner and the
outer hole pockets are close), �(T ) reaches �cr at some T =
Tcr below Tc. At this temperature, a Lifshitz transition occurs
when the two nodal points merge at k = kcr and then split in
orthogonal directions; see Fig. 2(c).

On a technical side, we found that, when � is slightly
below �cr, the two nodal points of the dispersion are the
nodes of εb (and Eb), while the dispersion εa has no nodes.
The change of the behavior from the nodes in both εa and
εb to two nodes in εb occurs when � reaches the value
�∗ = μ(m2−m1

m1+m2
), which is comparable but smaller than �cr.

The ratio �∗/�cr = 2
√

m1m2/(m1 + m2) < 1. This change
does not affect the location of the zeros of εa,b in momentum
space (gray lines in Fig. 2); just the identification of these lines
with εa or εb becomes more complex.

At � > �cr, the lines where εa,b = 0 form four discon-
nected closed loops [see Fig. 2(d)]. Along these loops the
excitation energy becomes E = �| cos 2θ |. However, because
the closed loops do not cross the directions cos 2θ = 0, the
nodes disappear; i.e., the excitation spectrum of a d-wave
superconductor becomes fully gapped.

IV. ANALOGY WITH SEMIMETAL-TO-INSULATOR
TRANSITION

There is a close analogy between the Lifshitz transition
at T = Tcr in our problem and the transition from a 2D
massless Dirac semimetal to an insulator. In the latter case,
the semimetal phase has two separate Dirac nodal points with
the winding numbers ±1 [27]. Upon variation of some system
parameter (e.g., strain in graphene), the distance between the
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two nodal points decreases until they merge and annihilate
at a critical value of such parameter. At the critical point,
the system is described by fermions with linear dispersion
in one spatial direction and quadratic in the other [20–22].
Similarly, in our case, near Tc, the dispersion along one of
the four directions specified by cos 2θ = 0 has two nodal
points with Dirac-like dispersions. Just as in the semimetal
to insulator transition, the winding numbers near the two
Dirac points are ±1. At T = Tcr (if it exists), the Dirac points
merge. At this temperature the excitation spectrum around the
single nodal point is quadratic along the direction in which
cos 2θ = 0 and linear in the transverse direction. At a smaller
temperature, the excitation spectrum is fully gapped, like
in an insulator. Recent studies of the semimetal-to-insulator
transition have shown [21] that at the critical point the
dynamically screened Coulomb interaction gives rise to a
highly nontrivial quantum-critical behavior in both fermionic
and bosonic sectors. A d-wave state in the FeSC will provide
a realization of such behavior if Tcr can be tuned to zero by
changing some external parameter, such as pressure. An s+−
superconductor, in which accidental nodes can be lifted by
varying an external parameter [17,18], is another realization
of such semimetal-to-insulator transition [28–30].

V. COMPARISON WITH EARLIER WORKS

Several earlier studies of the pairing involving fermions
from two different bands have already pointed out that an
intrapocket pairing condensate generates an interband pairing
condensate, generally of the same order as the intraband
one [16,31]. The authors of [31] focused on the system
with only electron pockets. When interpocket repulsion is
dominant, the analysis within 1Fe BZ shows that the system
develops d-wave superconductivity with sign change of the gap
on the two-electron pockets [9]. However, the result holds only
as long as one neglects the coupling between electron pockets,
i.e., the processes with momentum nonconservation by (π,π )
in the 1Fe BZ. Hybridization, which is the combined effect
of glide plane symmetry and of spin-orbit interaction, triggers
the appearance of a interpocket pairing condensate in terms
of the band fermions, in analogy to what happens in our case.
This effect does not affect substantially the d-wave gap on the
electron pockets, which in 2D has no nodes anyway, but it gives
rise to a novel s+− pairing between inner and outer hybridized
electron pockets [31,32], when the coupling associated with
the hybridization exceeds a certain critical value.

A shift of the nodal points to momenta away from the FS and
their subsequent merging and annihilation (a Lifshitz transi-
tion) has been analyzed in several publications [17,18,23,33]
in the context of the behavior of accidental nodes under a
change of system parameters such as hybridization [17,23],
interaction with momentum non-conservation by (π,π ) in the
1Fe BZ [18], or application of strain [33]. The key features
in the s+− case are the same as in the d-wave case, namely,
under a change of some parameter, which induces interpocket
pairing term in the band basis, nodal points initially survive,
but shift away from the FS, into the region between the
pockets (electron pockets in s+− case). As the strength of the
interpocket pairing term increases, neighboring nodal points
come closer to each other and eventually merge and annihilate.

There is one distinction to our case, however: the merging
of accidental nodes in an s-wave superconductor involves
neighboring nodal points, which were originally on the same
FS, i.e., nodal points have to travel in the direction along the FS.

The nontrivial interplay between the d-wave order pa-
rameter in the orbital and the band basis has been first
analyzed in Ref. [16]. The authors of [16] correctly pointed
out that the interband pairing component makes the exci-
tations along the FS nodeless despite that the gap has a
d-wave symmetry. In Ref. [16] the d-wave order parameter
in the orbital basis was assumed to have the form �(k) =
gk〈d†

xz,k↑d
†
xz,−k↓ − d

†
yz,k↑d

†
yz,−k↓〉, with gk changing sign be-

tween hole and electron pockets (such an order parameter
has been listed previously among other singlet pairing order
parameters in Eq. (D1) of Ref. [25]). For the purposes of
comparison with our paper, where only hole pockets are
studied, it is sufficient to consider gk near hole pockets, where
it can be approximated by a constant.

Our result for the electronic dispersion, Eqs. (12) and (13),
reproduces Eq. (5) of Ref. [16], yet the conclusions are
somewhat different. The authors of Ref. [16] concluded that
the presence of interpocket pairing component makes the
electronic spectrum generically gapped, except for possible
accidental nodes. We, on the contrary, argue that the true
symmetry-imposed d-wave nodal points survive, at least near
Tc, and just shift away from the normal-state FS. We further
argue that a d-wave superconductor can be fully nodeless, but
this happens only when pairs of nodal points with opposite
winding numbers come close, merge, and annihilate. The
presence of two closely located hole FSs is crucial for this last
effect; otherwise, the critical �cr, above which the spectrum
becomes nodeless, is comparable to the bandwidth, and the
gap � necessary remains smaller than �cr down to T = 0.

As one illustration of their analysis, the authors of Ref. [16]
considered the two-orbital lattice model with tight-binding
parametrization of Ref. [34]. This model is different from the
two-orbital low-energy model and has one hole pocket at the
center of the 1Fe BZ and another hole pocket at the corner
of the 1Fe BZ. We argue that in this model, �cr is large,
a fraction of the bandwidth. To demonstrate this, in Fig. 5
we plot the dispersion along the kx = ky direction, showing
that the symmetry-imposed d-wave nodes are indeed present
at � smaller than the hopping integral t , only their position
shifts from the normal-state FS. The nodes annihilate and fully
gapless spectrum appears only for � > �cr = 3.08t . The large
value of �cr is due to the fact that the two hole pockets are
centered at different points of the 1Fe BZ. When both hole
pockets are centered at �, �cr is much smaller.

We emphasize that at � < �cr the nodal points are not
accidental; they are true symmetry-imposed d-wave nodal
points, protected by the fact that each is a Dirac point with a
nonzero winding number. Accordingly, the damping near these
new nodal points is the same as near d-wave nodes on the FS
in a conventional case, and all thermodynamic properties are
the same as in a conventional d-wave superconductor. Only in
ARPES one can distinguish between a conventional d-wave
case with the nodes on the original FS and the case when the
nodes move away from the original FS due to the presence
of the interpocket pairing component. Still, this is a nontrivial
effect as the shift in εk in Eqs. (12) and (13) vanishes along
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FIG. 5. The quasiparticle dispersion in the d-wave su-
perconducting state for the two-orbital model of Raghu
et al. [34]. The dispersion has the form E2

k = ε2
k + �2 cos2 2θk,

where εk = (ξ 2
+ + �2 sin2 2θk)1/2 ± | �B| (see Eqs. (12) and (13)

and Ref. [16]). Reference [16] used the parameters from
Ref. [34]: ξ+ = −0.3t(cos kx + cos ky) + 3.4t cos kx cos ky − 1.45t ,
| �B|= t[2.32(cos kx −cos ky)2 + 3.42 sin2 kx sin2 ky]1/2, and sin 2θk =
3.4t sin kx sin ky/| �B|, where t sets the overall energy scale. Nodal
points of the dispersion are the ones for which cos 2θk = 0 and
εk = 0. We plot εk as a function of momentum k along the direction
k = kx = ky (for which cos 2θk = 0) for different gap values �. A
pair of nodal points is observed unless � exceeds the critical value
�c ≈ 3.08t , which is about a quarter of the bandwidth.

the directions sin 2θ = 0 and in this respect is qualitatively
different from the overall shift of the FS due to a change of the
chemical potential.

The authors of Ref. [16] also argued that the presence of
interpocket pairing component eliminates the nodes on the
electron FS near Z point in KxFe2−ySe2 [Z = (0,0,π )]. We
argue that this is not so, because the Z pocket is made out of a
single dxy orbital, with a negligibly small admixture of dxz and
dyz orbitals, which at the Z point are located far way from the
chemical potential. In this situation, the nodes should remain,
if the pairing symmetry is d wave. Moreover, the displacement
of the nodes from the FS is negligibly small, even if the pocket
itself is tiny, because the displacement is determined by the
ratio of the small � and the large distance between the energies
of dxy and other orbitals at Z.

VI. RELATION TO EXPERIMENTS

Our results have important consequences for the experi-
mental identification of d-wave states in FeSC, particularly
for strongly hole-doped systems, like KFe2As2, which contain
only hole pockets [3], and KxFe2−ySe2 or monolayer FeSe,
which have only electron pockets [4].

Like we said earlier, thermal conductivity and Raman
scattering measurements in KFe2As2 [5,7] were interpreted
as evidence for a d-wave gap symmetry in this material.
On the other hand, ARPES measurements on KFe2As2 have
found [13] that the gap on the inner hole pocket centered at
the � point (k = 0) displays some angle variation but has no
nodes [14].

The results of Ref. [16] and of this work show that the fact
that ARPES does not see nodes at the momenta corresponding

to the inner dxz/dyz Fermi surface of KFe2As2 is, in principle,
not inconsistent with a d-wave state because a d-wave
superconducting gap has no nodes at these momenta. We argue,
however, that the d-wave nodes are still present, if the gap
is small enough, but are located away from the normal-state
Fermi surfaces. If the gap value exceeds a certain threshold,
the nodes disappear, and the d-wave superconducting state
become fully nodeless.

The values of the gap and of the radii of the dxz/dyz hole
pockets can be extracted from ARPES data from Ref. [35].
Based on these data, we found that kF,1 ≈ 0.22/A and kF,2 ∼
0.3/A on the two dxz/dyz pockets, and the Fermi velocity
is, roughly vF ∼ (50–100) meVA. Then vF (kF,2 − kF,1) ∼
4–8 meV. The superconducting gap � ∼ 1–2 meV; hence,
vF (kF,2 − kF,1) > �. In this situation the nodes must still
be present along the diagonal directions at momenta in
between the normal-state Fermi momenta of dxz/dyz pockets,
if the pairing symmetry in KFe2As2 is d wave. We call for
ARPES measurements on KFe2As2 at momenta away from
the normal-state Fermi surfaces. These measurements should
truly distinguish between d-wave and s-wave gap symmetries.

We also argued that a d-wave gap should retain nodes along
a pocket made predominantly out of a single orbital. This result
has consequences for KxFe2−ySe2. ARPES measurements on
this material [15] have found a pocket centered at the Z

pocket (kx − ky = 0,kz = π ). According to calculations [36],
this pocket is predominantly made out of a single dxy orbital.
If the pairing state in KxFe2−ySe2 was d wave, the gap on
this pocket should have nodes along the diagonal direction.
ARPES measurements [15], however, found a nodeless gap
along the Z pocket. According to our calculations, this result
is inconsistent with d-wave gap symmetry in KxFe2−ySe2.

VII. CONCLUSIONS

In this work we analyzed the d-wave gap structure of
multiorbital FeSC, as several experimental and theoretical
studies suggested that such a state may be realized in materials
with only holelike or only electronlike Fermi pockets. We
showed that the common belief that a d-wave gap must have
nodes right on the Fermi surfaces located at the center of
the BZ is correct only if this Fermi surface is made out of a
single orbital, but it is not true if there is an even number
of pockets made out of different orbitals. In FeSCs, there
are two pockets made out of dxz and dyz orbitals. We argued
that symmetry-imposed d-wave nodal points near the � point
remain, at least near Tc, but are shifted away from the normal
state FSs into the momentum region between the pockets.
Depending on the magnitude of the gap, as compared to the
relative radii of the two Fermi surfaces, the dx2−y2 -wave nodal
points either persist down to T = 0, or come closer with
decreasing T and merge and annihilate at a finite T < Tc

via a Lifshitz transition. This transition, in which the Dirac
gap nodes annihilate, is analogous to a transition from a 2D
massless Dirac semimetal to an insulator. Because the electron
pockets are small and centered at (π,0) and (0,π ), they do not
cross the diagonals of the Brillouin zone; i.e., there are no
d-wave gap nodes on these pockets as well. Thus, a d-wave
FeSC with two dxz/dyz hole pockets and two electron pockets
may display a completely nodeless d-wave superconductivity.
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With regard to experiments, we argued that the fact that
ARPES does not see nodes right on the inner dxz/dyz Fermi
surface of KFe2As2 is, in principle, not inconsistent with a
d-wave gap symmetry. However, based on the values of the
gap and of the radii of the dxz/dyz hole pockets extracted from
ARPES, it is likely that in KFe2As2 the nodes are still present,
but are located away from the normal-state Fermi surfaces. We
call for ARPES measurements at momenta between the two
dxz/dyz Fermi surfaces in KFe2As2. We also argued that the
observation of a nodeless gap in KxFe2−ySe2 on a Z pocket,
consisting of a single orbital, provides strong evidence against
a d-wave gap symmetry in this material.
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