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Surface codes offer a very promising avenue towards fault-tolerant quantum computation. We argue that
two-dimensional interacting networks of Majorana bound states in topological superconductor/semiconductor
heterostructures hold several key advantages in that direction, concerning both the hardware realization and
the actual operation of the code. We here discuss how topologically protected logical qubits in this Majorana
surface code architecture can be defined, initialized, manipulated, and read out. All physical ingredients needed
to implement these operations are routinely used in topologically trivial quantum devices. By means of quantum
interference terms in linear conductance measurements, single-electron pumping protocols, and gate-tunable
tunnel barriers, the full set of quantum gates required for universal quantum computation can be achieved.
In particular, we show that designated multistep pumping sequences via tunnel-coupled quantum dots realize

high-fidelity ancilla states for phase gates.
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I. INTRODUCTION

Surface code architectures are currently being recognized
as potentially very powerful platforms for quantum informa-
tion processing (QIP) and universal quantum computation
[1-11]. Based on relatively simple two-dimensional (2D)
array structures, the distinguishing hallmark of code-based
QIP is redundancy: A rather small number of logical (or
information) qubits is integrated into the background of a
much larger number of physical qubits. The latter are built
from local combinations of elementary hardware qubits and
act as so-called stabilizers of the code, i.e., they are subject
to readout operations projecting the system to a well-defined
code state. The encoding of relatively few logical qubits
into a large entangled code space provides a highly potent
resource for error detection/correction and fault tolerance in
quantum operations. In fact, as long as the microscopic error
probability for physical qubit manipulations stays below a
rather benign threshold of order ~1% [8—11], logical qubits
enjoy a topological protection with exponentially small error
rates for increasing ratio of physical to logical qubits [4].
Somewhat less obviously, this encoding strategy also makes
the boundaries between hard- and software less rigid than
in other QIP approaches. For example, whether a given
physical qubit acts as stabilizer or as storage space for logical
information in each computation cycle will be decided by the
code protocols and the applied measurement pattern. To a
certain degree, error handling can then be reduced to simply
tracking errors by classical software. An excellent and detailed
review of the surface code approach to quantum computing has
been given by Fowler et al. [10].

However, there is a price to be paid for the high levels
of flexibility and fault tolerance in QIP based on surface
codes, namely the tremendous hardware overhead introduced
by the code space. Referring to Refs. [8-10] for detailed
estimates, the realization of a useful system (allowing for
well-protected QIP) of just a few dozen logical qubits might
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require to assemble thousands of physical qubits. This means
that maximal efficiency will be critically important to the
design of scalable surface code platforms, raising questions
both concerning the physical realization of the code and,
equally important, its operation.

Realization. What levels of physical qubit integration can
be reached at nanoscopic or mesoscopic length scales? How
much hardware overhead is required to define, manipulate,
and read out logical qubit states? To what extent is the
manipulation of individual qubits detrimental to the operation
of the code, say, with regard to generated heat or radiation
levels? If external electromagnetic fields are necessary, can
their cumulative effects be kept at bay when large numbers of
qubits are integrated?

Operation. Can one address qubits with logarithmic effi-
ciency [11], e.g., vianoninvasive multiplexer schemes? Recall-
ing that code-based QIP relies on the repeated readout of many
stabilizers, can measurements be performed at sufficient speed,
say, with a cycle time of a few microseconds? Can the full set
of logical gates required for universal quantum computation
be realized at tolerable efforts? How can one avoid decay
and dephasing of qubits due to residual interactions, e.g.,
with readout or manipulation devices, or between qubits
themselves?

In Ref. [12], we have argued that topological hybrid su-
perconductor/semiconductor architectures featuring Majorana
bound states might evolve into a platform performing favorably
with regard to many of the above criteria. (For reviews on
Majorana states in such devices, see Refs. [13—16]. Majorana
surface codes are also discussed in Refs. [17-21].) Given that
not even a single topological semiconductor qubit has been re-
alized so far, this assertion may seem presumptuous. However,
current striking developments in the materials foundations of
topological semiconductor devices, including experimentally
observed signatures of Majorana states, see Refs. [22-28], give
rise to cautious optimism that the realization of functioning de-
vice architectures is but a matter of time. Two developments in
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particular seem of key importance. First, progress in the growth
of high-quality superconductor/semiconductor interfaces has
been instrumental to the formation of hard excitation gaps
and to the protection of Majorana states [23—27]. Second, the
successful realization of 2D superconductor/semiconductor
heterostructures [28,29] suggests that it may be advantageous
to switch from nanowire architectures to genuine 2D layouts.
For concreteness, we describe the wire construction below.
However, we do not expect that the analogous formulation
of a 2D architecture will differ on a conceptual level. Once
realized, either structure will be accessible in terms of the full
spectrum of device manipulations and measurement protocols
of mesoscopic quantum electronics, including (i) quantum
interferometry by point contact measurements of the linear
conductance, (ii) access by quantum dots that allow one to
pump single electrons on and off the code, and (iii) the option
to connect and disconnect qubits from the code by tuning
selected voltages.

We have sketched basic aspects of the access hardware
and some elementary code operations in Ref. [12], including
stabilizer readout and the controlled creation of anyonic
excitations. The present paper paves the way along a different
direction, namely how to operate an experimentally feasible
Majorana-based surface code platform in terms of a few
highly efficient basal quantum operations. Elemental gates for
Majorana surface codes and their gate-circuit implementations
have been described before in Refs. [11,17-19]. Below
we address the initialization, manipulation, protection, and
readout of logical qubits in our device architecture, up to and
including a set of universal gates for fault-tolerant quantum
computation. Some of our gate constructions are inspired
by earlier ideas (e.g., for the controlled-NOT and Hadamard
gates), but others are altogether new, in particular, for the
S- and T-phase gates. Our S-gate implementation employs
only simple measurement-induced qubit manipulations, while
for the T' gate, we devise multistep single-electron pumping
protocols. The latter are guaranteed to yield a phase gate and
can be used to directly generate high-fidelity ancilla states.
We expect this feature to be especially useful in practice since
one can thereby reduce, or even completely avoid, the large
overhead introduced by magic state distillation [5].

All QIP protocols presented in what follows rely on
the unique measurement-based manipulation and quantum
interference capabilities offered by our code architecture.
Their high efficiency can be traced back to the underlying
topological nature of the elementary qubits together with the
fact that the non-Abelian braiding of Majorana fermions is
not needed to operate a Majorana surface code [11,17-19],
in contrast to most alternative approaches to Majorana-based
quantum computing [30—40]. The latter point also implies
that the experimentally challenging topological T junctions
are not needed in our approach. We stress that none of our
basal operations requires significant overhead compared to
the hardware and manipulations already needed for the basic
code structures. All its operations are performed through
conductance measurements, pumping protocols, and/or gate
voltage changes. Our logical gate implementations differ, and
sometimes simpler, than those suggested for bosonic codes
[10,41-45] or other Majorana code realizations [18-20]. In
view of the challenging demands on the efficiency of elemen-
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tary quantum operations, we believe that the above signatures
will be of critical importance for the successful realization of
large-scale Majorana-based quantum computation platforms.

Before entering a detailed discussion in Sec. II, we give
a brief synopsis of our architecture. Its skeleton structure is
defined by a regular square lattice of so-called Majorana-
Cooper boxes (MCBs) linked by tunnel bridges, see Fig. 1.
Each MCB corresponds to two topological semiconductor
nanowires proximitized by a common, floating superconduct-
ing island. The nanowires in the setup of Fig. 1 are parallel,
which means that a homogeneous parallel magnetic Zeeman
field can synchronously drive them into a topological phase
[13—-15]. Within the topological phase, each wire supports
Majorana zero-energy end states, giving rise to a total of
four states per MCB. Each Majorana state is assumed to be
individually tunnel coupled to an external lead electrode and
to a quantum dot (or single-electron transistor). We augment
the hardware described in Ref. [12] by local interference
links between nearby pairs of external leads. Such links
can be realized as gate-tunable tunnel bridges that may be
switched on and off as needed. Once in place, they will
allow for interferometric transport measurements of Majorana
strings (e.g., bilinears), which will in turn be instrumental
to the manipulation of logical operators. Assuming a large
capacitive charging energy, backgate voltages may now be
tuned to effect charge quantization on each MCB [46-48].
The low-energy state of a given MCB is then equivalently
described by an effective spin-1/2 degree of freedom [49-54].
These spins are the elementary hardware qubits of our system
and can be described by Pauli matrices (X,9,2); for MCB no.
I. The fractionalization of spins into Majorana components,
see Eq. (2), in turn allows for the unique spatially nonlocal
addressing and readout capabilities exploited in our QIP
protocols.

Including tunnel bridges linking neighboring MCBs into
the checkerboard pattern of Fig. 1, spin-1/2 ring-exchange
processes around the elementary plaquettes (loops) of the 2D
lattice are generated. These may be described as products of
MCB Pauli operators, either of four Z; or of four %;. The
emerging two types of composite physical qubits, denoted by
7 and X in Fig. 1, are the stabilizers of the surface code.
Physically, one may think of the stabilizer qubit as the Z,-
valued flux captured by the lattice ring-exchange processes.

Our basic approach to the repeated stabilizer measurement
is quantum interferometry (cf. Refs. [55,56]): Current passing
through two terminals adjacent to a plaquette can pass around
this loop in clockwise or anticlockwise direction, and the
interference between these paths identifies qubit states through
conductance measurements. This single-step measurement
protocol neither requires ancilla qubits, cf. also Refs. [19,20],
nor hardware beyond that already present in the system.
For nontopological device architectures, such point-contact
conductance interferometry techniques are routinely used and
their extension to Majorana islands [26] are not expected to
create huge difficulties. Via the above-mentioned interference
links, similar interferometric transport measurements can
determine the eigenvalues of arbitrary Majorana bilinears and
strings, including those of the qubit operators (£, §,2);.

It is obvious that experimental efforts will first focus on
structures simpler than that of a large 2D code. This includes
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FIG. 1. Schematic Majorana code architecture with 18 MCBs (light gray). The MCB is a floating superconducting island with four Majorana
end states y;—; 4 (red dots) of topological semiconductor wires, which can be implemented, e.g., as 90° rotated H-shaped device [12] (for an
illustration, see top right corner). The fermion parity on a given MCB, P = Y1V2Y3 Vs, 1s constrained by Coulomb blockade, see Eq. (1), and
Majorana bilinears define Pauli operators (£,Z), see Eq. (2). Majorana states on neighboring MCBs are linked by tunnel bridges (solid black
lines). Away from (near) boundaries, minimal plaquettes involve products of eight (six) Majoranas. These stabilizers are either of type X (blue)
or Z (yellow), corresponding to products of four (three) £ or 2 operators, respetively, see Eq. (6). Note that near the top/bottom Z-type (left/right
X-type) code boundaries, only Z (X) stabilizers appear. Stabilizer eigenvalues are read out by conductance measurements, see Eq. (8). By
using leads (small circles) tunnel coupled to y, and y;, respectively, one measures the two adjacent (colored) stabilizers. Majorana bilinears
can be read out by adding interference links between leads (dotted lines). By using leads attached to ys and ys, we can measure Z = i ysys,
cf. Eq. (10). This Pauli operator readout affects the neigboring (blue) X stabilizers, which anticommute with 2. By pumping a single electron
between two quantum dots (indicated by squares), one generates a string operator. With dots attached to y; and ys, the latter is £ = iy;y5 and

flips the two adjacent (yellow) Z stabilizers.

1D chains that may implement so-called repetition codes [45]
which do not achieve the full computational power of a 2D
surface code. Nonetheless, many of the manipulation and
readout tools needed for QIP in the 2D code can already be
implemented and tested using small MCB chains or arrays.
‘We note that recent theoretical work [57] has examined related
models.

The remainder of this paper is structured as follows. We
start out in Sec. II with a discussion of the different hardware
hierarchies defining our code architecture. In order to keep the
paper self-contained, Sec. II also summarizes the key results
of Ref. [12]. In Sec. III, we show how logical qubits are
defined. Basal quantum operations are discussed in the central
Sec. IV, where we demonstrate how logical qubits can be
initialized, moved, braided, manipulated, and read out in this
architecture. To that end, we will also introduce a powerful
class of generalized pumping protocols. In Sec. IV F, we offer
an analysis of potential challenges and/or error sources. With
those basal operations at hand, the implementation of a full

set of quantum gates for universal quantum computation is
possible using established quantum circuits [10,19,58], see
Sec. V. The paper ends with concluding remarks in Sec. VI.
Finally, we note that we often use units with 2 = 1 below.

II. MAJORANA SURFACE CODE HARDWARE
A. Majorana-Cooper box

The elementary unit of our architecture is the MCB, de-
scribed in detail in Refs. [49-54] and schematically illustrated
in Fig. 1. In the following we briefly introduce the MCB, where
the emphasis will be on its subsequent integration into a surface
code structure. Interested readers may find a concrete proposal
for the hardware layout of an MCB in Ref. [12]. An isolated
MCB consists of a mesoscopic s-wave superconducting island
in contact to two semiconductor nanowires with strong spin-
orbit interaction (e.g., InAs or InSb). On each wire a pairing
gap is induced by the proximity effect, which we assume to be
so large that continuum quasiparticles can be ignored. Residual
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quasiparticle poisoning effects are discussed in Sec. IVF.
When subjected to a sufficiently strong Zeeman field, the
wires enter a topological regime with Majorana bound states
near their ends [13—15]. We here consider wires long enough
that direct tunnel couplings between different end states are
negligible, but finite-coupling effects are briefly addressed in
Sec. IVF.

In effect, as illustrated in Fig. 1, we then have four
zero-energy Majorana states described by Hermitian opera-
tors, y; = yj, which satisfy a Clifford anticommutator alge-
bra, {y;,yj} = 28;; [13-15]. Recalling that a conventional
fermion can be built from two Majorana fermions, the presence
of four zero-energy Majorana states implies a fourfold degen-
eracy. This degeneracy gets lifted by the Coulomb blockade,
which has to be taken into account because we consider a
floating (not grounded) island with a large single-electron
charging energy E¢ ~ 1 meV [26]. For notational simplicity,
we shall consider the same E. for all MCBs below. In what
follows, the effective energy scales of the problem are assumed
to be below both the proximity-induced pairing gap and the
charging energy.

Since Cooper pairs and Majorana fermions both represent
zero-energy states, the Hamiltonian of a single MCB contains
only the capacitive charging energy contribution, Hyicp =
EC(N — ng)z, where the parameter n, can be tuned by a
backgate voltage. The operator N has integer eigenvalues
(N) and counts the fermion number on the MCB. Within
our low-energy framework, these fermions are either bound
in Cooper pairs or belong to the Majorana sector. Under
Coulomb valley conditions, i.e., for n, close to integer values,
the charging energy then enforces a well-defined ground-state
value for N, even if weak tunnel couplings to other code parts
are present. Depending on our choice for ng, this value is
either even or odd. Since the number of electrons bound in
Cooper pairs is always even, a parity constraint emerges in the
Majorana sector [49],

P =yiyaysya = (DY = £1, (1

reducing the fourfold degeneracy to a twofold degeneracy.
With charge fluctuations being frozen out by Coulomb
blockade, the low-energy dynamics of the MCB is then
described by an effective spin-1/2 variable. The associated
Pauli operators (X, y,Z) correspond to bilinear combinations of
Majorana operators and afford the representation [49,53,54]

=iy, J=inys, Z=inys. )
Note that this representation is consistent with standard Pauli
matrix relations, X = iZ and so on. Using the parity constraint
(1), each Pauli operator can equivalently be expressed by the
complementary pair of Majorana operators, €.g., X = Fiy3)4.
For 2D arrays of MCBs, it is convenient to choose an
alternating representation as illustrated in Fig. 1. For MCB
I, Pauli operators (%;,9;,Z;) are assigned for / in an odd
column (containing three MCBs in Fig. 1), but the unitarily
transformed representation (Z;,—3J;,%£;) will be used for even
columns (with two MCBs in Fig. 1). This convention leads to
a maximally transparent representation of stabilizer operators
in terms of MCB Pauli operators, see Eq. (6) below.
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The tunnel coupling between Majorana state j of an MCB
and an attached lead or quantum dot with fermion operator ¥
is described by the tunneling Hamiltonian [46,47,54]

H, =1;¥e™?y, + He., A3)

where ¢; is a complex tunneling amplitude and the phase
operator ¢ is conjugate to the number operator, [¢,N] = 2i.
The factor of two means that ¢4 creates a Cooper pair,
N — N + 2, and hence the out-tunneling process contained in
Eq. (3) annihilates a single electron charge on the island. The
representation (3) manifestly splits the tunneling process into a
transfer of charge and the charge-neutral Majorana dynamics.

B. MCB network

We next consider a network of MCBs as shown in Fig. 1,
where MCB [ has the fluctuating superconducting phase ¢;.
Neighboring MCBs are coupled through short tunnel bridges
connecting specific pairs of Majorana states (y;,yy). Describ-
ing each contact in terms of the tunneling Hamiltonian (3)
with tunnel amplitude #; between y; and the respective bridge
fermion V;, the effective MCB-MCB tunneling Hamiltonian
follows by second-order perturbation theory,

hr o —o
Hyy = _12_lel(<ﬂ/—<ﬂﬂ)/2y,yl/ + H.c., 4)

where #; 2~ tt, G(l,1’) contains the low-energy fermion prop-
agator of the bridge. For a sufficiently short bridge, retardation
effects in this propagator are negligible and the coupling
constants #;; are effectively time- and/or energy-independent.
As an example with the above properties, one may think of
tunnel bridges that include short nonproximitized nanowire
segments connecting adjacent MCBs. Such small-sized con-
nectors typically form junction dots, i.e., few-level systems
where electrostatic gating makes the #; couplings tunable.
For |t| 2 0.33E¢, the ground state of the system enters a
frustrated 2D Ising phase which is not useful for QIP purposes
[18]. We therefore focus on the regime |#;/| < E¢ throughout.

The presence of the exponentiated phase operators in
Eq. (4) indicates that a single tunneling process kicks both
participating MCBs out of their respective charge ground
states, leaving the system in an excited charge state with
energy of order Ec. One option to go back to the charge
ground state is given by a trivial reverse tunneling event along
the same link which only adds an irrelevant additive constant
to the effective low-energy code Hamiltonian. Dropping such
constants, the leading-order process for relaxing back to the
charge ground state comes from ring exchange along the
elementary plaquettes involving four MCBs. The integration
over the transient times of order E, ! where the system
is virtually excited is most conveniently done by applying
a Schrieffer-Wolff transformation [59]. We then obtain the
effective low-energy code Hamiltonian [12]

N 5
Heoge = — Z Re(c,)O0,, ¢, = @ l—[ o, (5)
n C

where n runs over all elementary plaquettes of the 2D network.
Ignoring the code boundaries for the moment, this defines
stabilizer operators O, as products of the eight Majorana

operators comprising a minimal loop, O, = ]_[ﬁ=1 y;"). The
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coefficients ¢, in Eq. (5) involve the product of the four tunnel
amplitudes around this loop. Note that the fluctuating phases
¢; have dropped out of Eq. (5) due to the Schrieffer-Wolff
projection to the charge ground state of each MCB. A key
feature of the Hamiltonian (5) is that all contributing operators
commute, [O,,0,]=0, since two plaquettes either share
two or no Majorana operators. Each stabilizer operator is
Hermitian, @n = (’A),T,, and squares to unity, @,2! = 1. The
Hilbert spaces defined by the two possible eigenvalues £1
then correspond to the simultaneously measurable physical
qubits of the Majorana surface code.

Itis well known that interacting Majorana plaquette models
as given in Eq. (5) can be mapped to (planar versions of)
Kitaev’s celebrated toric code model [18,19,60,61], which
features long-range entanglement and topological order. In
fact, our perturbative construction of Eq. (5) directly mirrors
Kitaev’s original derivation of the toric code from a strongly
anisotropic variant of his honeycomb model [62], cf. Ref. [18].
We note that Refs. [63—-67] discuss similar interacting Majo-
rana networks which may yield alternative code constructions
that differ from a surface code.

The mapping to the toric code also confirms that stabilizers
must come in two different types, @n =X or @,1 =7, see
Fig. 1. Indeed, by using the MCB Pauli operators (£,9,2);
introduced above, we observe that, away from lattice bound-
aries, every X (Z) stabilizer operator is equivalently expressed
as product of the four X (Z) Pauli operators on the adjacent
MCBs numbered by Iy - - - I4 (1] - - - 1),

A A

X =%, X,x,%,, Z= 21{ zlézlgzlg- (6)

The product is thus taken along the minimal path surrounding
the respective plaquette. Again in agreement with the planar
toric code, stabilizers located at the boundaries of the system
only involve three Pauli (six Majorana) operators, see Fig. 1.
It is worth noting that one could also take the fermion parity
operators Py, defined as the product of the four Majorana
operators on MCB [, as a third type of stabilizer. This
fact suggests the possibility of a Majorana surface code
equipped with three different types of stabilizers (X,Z,P),
cf. Refs. [19,20]. Under strong Coulomb blockade conditions,
however, the parity constraint (1) locks all 7, stabilizers into
specific eigenstates. In what follows, we therefore employ only
the (X, Z)-type stabilizers as active physical qubits.

In contrast to the commonly studied toric code model with
just two couplings [62], we observe that the coupling constants
Re(c,) in Eq. (5) may effectively assume random values due
to, e.g., the presence of tunnel phases or device imperfections.
The temporal evolution of the system thus contains a large
number of uncorrelated random phases exp[+iRe(c,)t] which
lead to dephasing between corresponding stabilizer states with
eigenvalues +1. Protection of logical qubits against such
dephasing processes forms an essential part of QIP with
the surface code and can be effected, e.g., by reducing the
respective f#;; couplings through gate voltage changes, see
Sec. III A below. Errors could also arise from higher-order
corrections to the code Hamiltonian in Eq. (5). For || < E¢,
however, all sub-leading contributions beyond Eq. (5) are
suppressed by at least a factor (|t;¢|/Ec)?. Such terms are
not expected to seriously deteriorate the operation of the code.

PHYSICAL REVIEW B 94, 174514 (2016)

In any case, they can be handled in error correction along with
the aforementioned and other (more severe) error sources, see
Sec. IVF.

We conclude that the spin-1/2 variables represented by the
MCB Pauli operators (2) constitute the elementary hardware
qubits in our setup. Their definition is linked to the existence of
topologically protected Majorana states. We therefore expect
that these qubits come with long coherence times and thus
represent attractive platforms for QIP operations in general
[57]. Physical qubits (stabilizers) are then defined as products
of four MCB Pauli operators along the minimal loops of the
2D lattice, see Eq. (6). For the definition of logical qubits, see
Sec. III below.

C. Access hardware

Before moving on to the discussion of code operations,
we introduce the hardware elements needed for initialization,
manipulation, and readout of qubits. In particular, we will
describe the implementation of tunnel conductance probes
(including interference links), single-electron pumping, and
the use of gate voltages. None of these elements involves the
application of radiation fields. All access operations should be
performed in the quasiadiabatic limit, i.e., at frequency scales
well below the thresholds where radiation might be produced.
The above elements could be integrated directly within the 2D
code structure and do not require device technology beyond
that needed to build the code itself. In view of the simplicity
and flexibility of this architecture, alternative readout and/or
manipulation schemes may also be implemented in an efficient
manner, see Sec. IV F and Refs. [19,57].

1. Tunnel conductance probes

We consider all Majorana states to be endowed with tunable
tunnel connectors to external probe leads. The presence of
a weak tunnel coupling ); between a specific Majorana
fermion y; and the lead fermion W; (near the corresponding
tunnel contact) will be described by a tunneling operator, see
Eq. 3) with W — Wy, y; — v, ¢ — @, and t; — A;. These
connections are essential for two-terminal interferometric
transport measurements, which are our designated readout
instrument for stabilizers, as well as for nonstabilizers like
the MCB Pauli operators (2). For the latter type of readout,
we need a tunnel link locally connecting the respective pair of
leads. Such links allow for additional interference terms in the
conductance which are sensitive to nonstabilizer eigenvalues,
see below and Sec. IV A.

We first describe the measurement and readout of stabilizer
eigenvalues. To that end, consider two neighboring Majorana
states on adjacent MCBs, say, yp and y; in Fig. 1, which
are connected by the effective tunnel matrix element #,.
Both Majorana states are also tunnel-coupled to separate
probe leads. The application of a small bias voltage between
these leads generates current flow, and the corresponding
linear conductance, Gy, can be computed from an effective
transfer Hamiltonian Hy;. The latter follows by lowest-order
expansion in g j, where we also perform a Schrieffer-Wolff
transformation in order to project to the charge ground state on
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each MCB, similarly to the steps leading to Eq. (5). We obtain
Hy = a(€ + 0, 4 caOn) Wi W, + He., (7

with o = —321A7 /(55 Ec). Equation (7) features a super-
position of a constant term (£), describing tunneling via
the direct link ~;;, with two subleading terms of tunneling
around nearby loops. The latter involve the Majorana strings
O, sa around the upper (1) and lower (d) plaquette adjacent
to the contacted pair ypy;, with the coefficients ¢, 4 in
Eq. (5). We find & = (5/16)n]|t |2/EC with a dimensionless
asymmetry parameter n ~ AngoAngq + O(An;‘,); the full
expression for n can be found in Ref. [12]. Importantly, n
depends on detuning parameters An, ;o off the respective
particle-hole symmetric point (with integer n, ;) at which the
addition/removal of one charge unit to/from the MCB costs
precisely the same energy (E¢). If at least one detuning
vanishes, then the term ~& will be absent in Eq. (7). This
cancellation of the direct process can be traced back to a
destructive interference between different time-orderings of
tunneling events. By varying the backgate voltage parameters
ng1, one can then optimize the amplitude of the interference
signal between the direct path and the loop contributions in
the conductance readout below.

With the normal density of states v;—p; of the respective
probe lead, second-order perturbation theory in Hy;, see
Eq. (7), yields the tunneling conductance

= 472w o2 (g + 8.0u + 840u + £0a0uOa). (8)

er/h
Evidently, the conductance is sensitive to the stabilizer
eigenvalues O, 4 = 1, where we tacitly assume that the
conductance measurement implies a projection to the corre-
sponding eigenstates, cf. Refs. [55,56]. Apart from a stabilizer-
independent contribution with g = &2+ |c,|> + |cy|?, the
conductance (8) contains quantum interference terms between
the direct link and individual loops, g,/a = 2§Re(c,/q4), and a
two-loop interference term with g,; = 2Re(c,cy).

The coefficients (g, g, ,84,&ua) Will show random variations
between readout configurations (y;, yy ) targeting different pairs
of stabilizers. However, for a given pair, they are presumably
time independent and can be parametrically altered by varia-
tion of the backgate parameters 7, ;, and/or tunnel couplings
t;r. Numerical values for these coefficients can be obtained
by conductance measurements for the four different plaquette
configurations (O,,0,) = (£1,%1), where we anticipate that
plaquettes can be flipped in a controlled manner by pumping
protocols. Once the coefficients {(g,8.,84,8ua);} have been
determined for all neighbor pairs by this initial calibration pro-
cedure, performing a (sequential or parallelized) measurement
of the conductances along a set of ~N links (for a code with
N MCBs) will determine all stabilizer eigenvalues.

Next we discuss the projective measurement and readout
of nonstabilizer operators. These basal quantum operations
will be extended to logical qubits in Sec. IV A, while here
we introduce the needed hardware elements and conductance
interferometry principles. For concreteness, we consider the
Pauli operator Z =iysys in Fig. 1, with eigenvalues z =
41, where a suitably designed interferometric conductance
measurement will be sensitive to this eigenvalue, see Eq. (10)
below. In order to perform such a measurement, one can
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use the external leads already needed for stabilizer readout.
In addition, we now require an interference link locally
connecting both leads (away from MCBs) through a tunnel
matrix element t. To lowest order in the tunnel couplings
As.6, transport between both terminals is again governed by
a transfer Hamiltonian (Hsg). Repeating the steps leading to
Eq. (7), we now obtain

Hss = (7 + 1:2)W] W, + Hec. ©)
with t, ~ As;A¢/Ec. The two-terminal conductance follows
from perturbation theory as in Eq. (8),

Gse

=4 ?vsvg|T|* + |1.)* + 2Re(t*t,)z].  (10)
er/h

After an initial calibration step, a conductance measurement
thus determines z, where the measurement again implies a
projection to the respective eigenstate of 2. We note that the
amplitude of the interference signal can be optimized by tuning
the link parameter t. By using different lead pairs attached
to the same MCB, one may access all Pauli operators (X, ¥,
and Z) on this box. Similarly, for leads coupled to different
MCBs, readout of other nonstabilizer operators (e.g., the string
operators below) is possible, cf. Sec. [V A.

Finally, let us comment on the importance of higher-order
corrections in tunnel couplings to the tunneling Hamiltonian(s)
and to the conductance. If only the intercode couplings
t; contributing to the target loop and to additional to-be-
measured stabilizers are switched on during readout, e.g.,
O,.q in Eq. (9), higher-order terms can only renormalize the
transfer amplitudes, e.g., the couplings ~&,c, 4, and/or result
in additional subleading terms with an operator content that
is equivalent to the target loop up to stabilizer operators.
Otherwise, they will not change the effective Hamiltonian
describing transfer processes through the code. For instance,
consider the two (wanted) loop processes around the stabilizers
O,..4, which add to the direct lower-order (in #;) contribution
~& in Egs. (7) and (8). For readout of these stabilizers, such
higher-order contributions will at worst make the identification
between conductance outcomes and the corresponding stabi-
lizer configurations slightly more involved. (Further aspects
of higher-order loop contributions are discussed in terms
of the charge pumping protocols in the next subsection.)
Similarly, increasing the coupling strengths A; between code
and external probe contacts does not affect the outcome of
readout operations or manipulations, so long as afterwards
the participating MCBs are relaxed to their respective charge
ground states. In conclusion, the above readout mechanisms
should also work when the #;; or A; are tunable and, for
manipulation purposes, operated outside of the deep tunneling
regime. In either case, it is clear from the topology of the
MCB network and the tunnel connections which operators
might be addressed with a specific choice of probe or quantum
dot contact points.

2. Single-electron pumping

Whereas conductance interferometry is our proposed read-
out tool, adiabatic charge pumping of single electrons onto and
off the code by means of tunnel-coupled quantum dots will
be tailor made for the controlled manipulation of qubits. For
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simplicity, we assume that each quantum dot can accommodate
only a single electron (occupation number n = 0,1), where
the level energy is gate tunable. When the tunnel coupling
A, to the corresponding Majorana state y; is finite, by a
suitable gate voltage change, one can pump (or absorb)
one elementary charge into (from) the code [33,34]. The
tunneling Hamiltonian is given by Eq. (3) with y; — y,
ti— A, ¢ — @, and VI — d,T, where d,T is the fermion
operator for the dot. Clearly, a single tunneling event will
drive the respective MCB outside its charge ground state, and
dot operations categorically have to be performed in pairs
to maintain charge neutrality of the code. We here assume
that the pumping operation is performed in an adiabatically
slow way, at rates to be studied momentarily, although weak
deviations from adiabaticity are not detrimental if combined
with a measurement of the final dot occupations. Such control
measurements collapse the system of dots into a definite
state, thus eliminating diabatic errors that could spoil the code
operation [68].

Denoting the initial charge configuration of the dot pair
by (n;,nr) = (1,0), consider a gate-voltage protocol resulting
in the final state (0,1). This process transfers precisely one
electron through the code, entering via the Majorana state y;
and exiting via yy. The transfer Hamiltonian Hj; describing
this process can be obtained by similar steps as those leading
to Eq. (7) above, where we find
m tl*

st Ay il
Hy = TypdiSwdy, Ty ~ —— 1_[

Ec an

joi Ec
The transfer amplitude 7;; has been specified up to a prefactor
of no interest here, and S represents string operators
describing intracode electron transfer processes. In general,
Eq. (11) involves a linear superposition of many contributions
from different tunneling paths y; — y between the selected
end-point Majorana states. For an arbitrary path with m
tunneling events between neighboring MCBs (y;, — yr, with
tunnel links j = 1, ...,m), the string operator is given by the
product of these 2m Majorana operators in addition to the
end-point Majorana states [69],

Su = Gviy)Wu, W =[]linw). (12
j=1
For |1, I | € Ec¢, the dominant term in Eq. (11) comes from the
shortest path(s) with minimal number m of tunnel bridges. To
give an example, for neighboring MCBs, we have m = 1 and
the leading contribution takes the form W”r =iy, When y,
(and/or yy) coincides with a Majorana operator in a given path
WH/, the destructive interference mechanism described above
for the stabilizer readout configuration in Eq. (7) is activated.
The path contribution to Eq. (11) can then be quenched by
tuning the backgate parameter ng (n,) on MCB [ (I') to an
integer value.
Since Wll/ in Eq. (12) stems only from intracode tunneling
processes ~y;, ¥, between neighboring MCBs, such operators

commute with all stabilizers, [Wll/,@n] = 0. This also implies
that any two string operators Sy are equivalent up to (products
of) stabilizer operators. In a stabilized code state, the full

operator content of the pumping process is therefore identified
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by the terminal Majorana operators. In fact, the two stabilizer
operators O, containing y; are flipped by the above pumping
protocol, since y; anticommutes with those two operators but
commutes with all others. Similarly, the two stabilizers that
contain y, will be flipped. It is then clear that, depending
on the distance between y; and y;, by such a charge transfer
process one can flip zero, two, or four stabilizers. The case of
no stabilizer flips corresponds to the above stabilizer readout
scheme, see Eq. (7). In accordance with the planar toric code
rules [62], stabilizers of each type thus can only be flipped in
pairs. For instance, by pumping a single electron from y7 — 3
in Fig. 1, the two adjacent Z plaquettes will be flipped. Since
both y; and ys belong to the X plaquette in between, this
stabilizer is flipped twice and hence remains invariant. We
note that each string operator (12) can alternatively be written
as product of MCB Pauli operators along a path from y; to y;.
In particular, for the above pumping process, S = iy7yg = &
connects the two flipped Z stabilizers in Fig. 1.

A single-electron pumping process can be considered
adiabatic if it occurs on times scales long against 7,q9, where
the energy scale r;jl = |7y | corresponds to the leading-order
contribution to Hjy. Under these circumstances, the process
will adiabatically transform an initial state |W )iy, into the
final state |W)gpa ~ Slpl\ll)inmal. We observe that when both
dots are tunnel coupled to Majorana states on the same box, the
pumping protocol implements elementary Pauli operations, cf.
Eq. (2). In Sec. IV E, we will discuss powerful generalizations
of the above protocols.

3. Gate voltage adjustments

The application of a static voltage to electrodes in spatial
proximity of code elements can be used to adjust several
important parameters of the code. For instance, by tuning
the MCB backgate parameters n, ;, one can alter the strength
of path contributions to electron tunneling and optimize the
interference signal for stabilizer readout operations. Similarly,
by changing the voltage on gates near the tunnel bridges
connecting neighboring MCBs, we may control the matrix
elements #;;. For example, a minimal hole can be cut into the
code by severing the four connections of a single stabilizer
loop.

III. LOGICAL QUBIT IMPLEMENTATION

In Kitaev’s original work on the toric code [62], a stabilizer
system wrapped onto a surface of toroidal geometry was shown
to exhibit topological ground-state degeneracy 2%¢, where g
is the genus of the surface. The number 2g thus counts the
unconstrained binary degrees of freedom. In principle, the
latter are good candidates for topologically protected logical
qubits due to their encoding into a stabilized code space.
Howeyver, toroidal surfaces are difficult to realize in terms
of 2D device technology, and the resulting qubits are almost
impossible to address and/or read out. Later, it was realized
that the torus topology can be effectively simulated in terms of
a planar geometry [2,3], thereby paving the way for the surface
code approach.

A simple example for a planar code patch with boundaries
suitable to the definition of logical qubits is shown for our
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architecture in Fig. 1. The shunting of Majorana states defines
Z-type (or X-type) boundaries, where only Z (or X) stabilizers
appear at the respective boundary. The ground state, |\), of the
code Hamiltonian (5) has to satisfy the conditions O, V) =
O,|¥) with eigenvalues O, = sgn[Re(c,)]. However, these
conditions are not sufficient to uniquely determine |W). This
can be seen by comparing the number of constraints (given
by the number of stabilizers: 17 in Fig. 1) to the number
of independent hardware qubits (MCBs: 18 in Fig. 1). We
conclude that for the example in Fig. 1, one unconstrained
degree of freedom remains. It corresponds to Pauli operators
Zmpo (X topo) defined as product of all Z (£) MCB Pauli matrices
along an arbitrary path connecting the two Z-type (X-type)
code boundaries. Albeit (Zopo,f(mpo) encodes a logical qubit,
this option is not very interesting since it just yields a single
qubit, independent of the size of the code patch.

The ground-state degeneracy of such surface codes can be
effectively enhanced by the controlled creation of holes, i.e.,
by excluding individual stabilizers from the readout operation
applied to the majority of physical qubits in each computation
cycle. We anticipate that such a procedure will represent a
trade-off game, since for a dense pattern of holes, erroneous
flips of the encoded logical qubits will become likely. We
here introduce logical qubits in analogy to their definition
in the bosonic surface code approach by Fowler et al. [10].
However, our Majorana surface code architecture comes with
two differences of central importance.

First, Fowler et al. employ ancilla qubits (called measure-
ment qubits in Ref. [10]) in addition to the physical qubits
(data qubits in Ref. [10]). By entangling four data qubits
with a measurement qubit through a sequence of controlled-
NOT (CNOT) operations, projective stabilizer readout becomes
possible. In our case, since readout is performed by conduc-
tance measurements using interference loops, see Sec. II1C,
neither measurement qubits nor additional CNOT operations
are necessary. Compared to the bosonic variant, the present
Majorana code architecture thus offers a significant reduction
of hardware overhead together with a simpler single-step
stabilizer measurement, see also Ref. [19].

Second, Fowler et al. implement a logical qubit as software
hole by stopping certain CNOT operations between measure-
ment and data qubits [10]. Since our Majorana code realization
does not contain measurement qubits, we here need to proceed
in a different manner. In order to exclude a stabilizer from the
cyclic readout procedure, the gate-tunable tunnel couplings
Ay between the code and the respective leads, cf. Sec. IIC,
have to remain turned off. We note that it is not sufficient
to simply switch off the respective bias voltage in the idle
state since unbiased leads can, e.g., decohere the system. This
procedure gives a software hole but not yet defines a useful
logical qubit, since the two qubit eigenstates should be (nearly)
degenerate to avoid large dephasing errors, cf. Sec. II B. To
achieve this goal, we need a combined software-hardware hole,
where also the intracode tunnel couplings #;; are reduced by
suitable gate voltage changes along the loop around a chosen
stabilizer. The respective plaquette energy Re(c,) in Eq. (5)
thus decreases and one physically cuts a hardware hole into
the code. Residual small plaquette energies can be handled in
error correction, and to measure adjacent stabilizers one can
sequentially turn on selected couplings #;;; again.
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Asreviewed in Ref. [10], larger holes for implementing log-
ical qubits may be formed by combining several (d) adjacent
holes. (The number d is the so-called code distance in terms
of physical qubits.) The fault-tolerance threshold theorem [11]
states that as long as error probabilities for elementary quantum
operations remain below a moderate threshold value of order
~1%, logical error rates become exponentially small with
increasing d. This exponential scaling justifies the notion of
topologically protected logical qubits [11]. In what follows,
we mostly describe the case d = 1, with the understanding
that a highly efficient reduction of logical errors is offered by
increasing d. All operations are implemented such that they
directly can be adapted to the case d > 1.

A. Single-cut qubits

Let us start with the most elementary logical qubit realizable
in our code architecture, where one forms a hole for just
a single plaquette. According to the above discussion, the
removal of the corresponding constraint on |W) leaves one
binary degree of freedom undetermined. Since we have Z-
and X-type stabilizers, two different types of logical qubits are
possible, and by not measuring Z (or X) we obtain a Z-cut (or
X-cut) qubit, respectively. Suppose now that we have chosen
a stabilizer, say, Z 1 in Fig. 2. By convention, we take the
Pauli-Z operator for this Z-cut qubit as the stabilizer operator
7 | itself. However, to define a logical qubit, we also need to
identify the conjugate Pauli operator X, anticommuting with
7. This operator should not lead out of the code space spanned
by simultaneous eigenstates of all other stabilizers. Obviously,
once X | has been constructed, the Pauli-Y operator will also
be available by virtue of the relation Z lf( =1 )A’l. Below we
use the shorthand notation (2 1 ,)A( 1) for the resulting single-cut
logical qubit.

An operator X; with the required features can be con-
structed as product of all MCB Pauli-% operators connecting
the internal X-type boundary around the open Z, plaquette to
an X-type code boundary along an arbitrary path, see Fig. 2.
Note that this construction gives X as a string operator which
trivially commutes with all X-type stabilizers but also with all
other Z stabilizers (apart from 2]). The latter fact follows
because X, contains an even number (zero or two) of £
operators that are conjugate to the Z operators appearing in
a given Z. The only stabilizer affected by the string will be
VA 1, with anticommutator {)A( 1 ,2 1} = 0, because the terminal
Pauli-£ operator present in X anticommutes with precisely
one % in Z,. Alternatively, switching from the spin-1/2 to the
Majorana language, one can understand the above properties
by noting that X, shares a single Majorana operator with Z;
but an even number of Majoranas with all other stabilizers of
the code.

Summarizing, the two operators (Z X 1) define a logical
qubit embedded into the code space of the system. An X-cut
qubit may be defined analogously by ceasing the measurement
of an X-type stabilizer, say, X, in Fig. 2. With the conjugate
Pauli operator Z,, which connects the X,-plaquette to a Z-type
boundary via a string of Z operators, we arrive at the logical
qubit (Xz, 22)

We emphasize that the definition of the string operators X
and 22 is not unique. For instance, instead of Z2, equivalent
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FIG. 2. Logical qubits in the Majorana code architecture (only a part of a larger 2D code is shown). By ceasing to measure the stabilizer
VA 1 (yellow, top left corner), one obtains the Z-cut qubit (Z 1 ,f( 1). The Pauli-X | string connects A | to an X-type boundary (one choice is shown
as red line). Similarly, (X,,2,) is an X-cut qubit, where we stop measuring X, (dark blue). The string operator Z, (blue line) connects X»
to a Z-type boundary, where an alternative choice 23 = 757, is shown as well. Next, the X-type double-cut qubit (X 4,Z4) is built from
two single-cut qubits ()Q,Z;) and (}?4,24) We use X A= X3 and the string operator VA A= 23 24 connecting X3 and )A(4 Similary, the Z-type
double-cut qublt (Z B, X g) is formed from (Z5,X 5) and (Z6,X6) Choosing VA B = Zs, both plaquettes are connected by the internal string
operator Xz = XsXe. Finally, by readout of the MCB Pauli-£ operator connecting Z and Z; (probe leads shown as orange circles), logical
information can be moved from 26 — Z7, i.e., the double-cut qubit B is then encoded between stabilizers no. 5 and 7, see Sec. [V B.

choices can be written as Z; = 25 Zz, differing from Zz by
an arbitrary product operator Zs of Z-type stabilizers, see
Fig. 2 for an example. However, in a stabilizer eigenstate of
Za, the difference between 22 and Z’ reduces to a known sign
corresponding to the measurement outcome Zs; = £1. The
only nontrivially related string operators in a fully stabilized
code are those extending from the selected plaquette to
different code boundaries. In that case, Zg and Z; differ by the
string operator Zopo defined above. Likewise, for the Z-cut
qubit, the strlng operator X ! = XX, is then related to X, via
the operator X,; Xtopo In a similar way, if a code patch
contains multiple holes, string operators adopt definitions
differing by the not-measured stabilizers, depending on which
side they pass around the hole(s). This property will be used
extensively below in our implementation of CNOT and/or phase
gates.

B. Double-cut qubits

Next we discuss how to implement a double-cut (or
internal) qubit. This type of qubit serves to disconnect logical
information from the code boundary, such that all operations
appear as for an infinite system. In order to obtain a double-cut
qubit, two single-cut qubits may be stitched together. For

instance, consider the two X -cut qubits (X3,23)and (X4,Z4) in
Fig. 2. We use a redundant encoding scheme, where the two-
qubit state always remains in the, say, even-parity subspace
defined by X3 X4 = +1. Such a constraint can be imposed by
initial preparation and then kept throughout the computation by
employing only a subset of qubit operators as detailed below.
The even subspace is spanned by {| + +)34,| — —)34}, where
the first (second) quantum number in each ket refers to the
eigenvalue X3 = £1 (X4 = £1) of the respective single-cut
qubit. Eigenstates of Pauli-Z operators are here denoted by

710) = +]0) and Z|1) = —|1), while Pauli-X eigenstates are
written as |£+) = (]0) + |1) )/«/—
We next identify [+)4 = | + +)3s and [-)4 = | — —)3s as

the basis states of an X-type double-cut qubit (X4,Z4). To
complete the definition of this qubit, we have to specify the
anticommuting Pauli operators X 4 and Z 4. To that end, let
us first observe that any measurement of X3 alone suffices
to stabilize the code since X4 = X3 is then directly known
as well. This fact suggests X, = X3 (or, equivalently, X, =
X,) as convenient choice for the Pauli-X operator. One easily
verifies that the above |+) 4 states are directly eigenstates of X 4
with eigenvalues X4 = 1. The conjugate Pauli-Z operator
can then be chosen as Z,4 = Z3 Z4, which anticommutes with
X4 = X3 (or X4) and gives ZA|:|:)A = |F) 4. For plaquettes
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X 3 and X 4 located away from the code boundaries (as in
Fig. 2), Z , can be represented by an internal string operator not
involving boundary degrees of freedom. Indeed, all Z operators
appearing in the string Z4 will square to unity when combined
with 2 operators from the same part of the path in Z3, see
Fig. 2. In effect, only the Z operators along the internal path
connecting X 3 and X 4 will then contribute to Z A

We conclude that an X-type double-cut qubit (X4,Z4)
can be obtained by the combination of two X-type single-cut
qubits. We can thereby redundantly encode an arbitrary qubit
state,

[V)a =al+)a + Bl-)a, 13)

with complex-valued coefficients «, 8. In Sec. IV, we describe
how such a state may be initialized, manipulated, and read out
using the hardware elements introduced in Sec. II.

By following basically the same steps as just outlined,
one can also implement a Z-type double-cut qubit. This
is illustrated in Fig. 2 for the qubit (Zz,X ) formed from
the single-cut qubits corresponding to 25 and 26 (or 27).
Furthermore, completely analogous arguments apply to re-
dundant encoding schemes using the odd subspace. The choice
regarding which subspace is employed follows from the last
stabilization cycle before a pair of stabilizers is left open
to form the double-cut qubit. Since all proper double-cut
operators work within this subspace, this qubit property will
be kept throughout the computation (unless errors occur which
need to be handled in error correction).

IV. BASAL QUANTUM LOGICAL OPERATIONS

So far, we have discussed the implementation of a physical
qubit network and how logical qubits may be immersed into
it. Starting from there, the realization of QIP will advance in
three hierarchical stages. At the base level, we need protocols
to manipulate logical information, that is, to initialize logical
qubits, to change their state, to move and braid them, and to
read them out. These basal operations are constructed from
interferometric conductance measurements and/or electron
pumping protocols, relying on the access hardware in Sec. I C.
This will pave the way towards the second stage, the realization
of a minimal set of logical gates for universal quantum
computation. The third level implements algorithms and will
not be discussed here.

It is important to realize that the required number of basal
operations increases dramatically at each consecutive level.
Let us briefly illustrate this point, where we also provide
a short overview over this central section. First, given the
capability to initialize and read out qubit states and/or string
operators, see Sec. IV A, the movement of a logical qubit from
one plaquette to an adjacent one will require interferometric
readout, control measurements, and qubit flips depending on
outcomes, see Sec. IV B. Second, the formation of the braid
transformation, which is instrumental to the realization of the
workhorse gate of most QIP operations, the CNOT, then requires
several qubit moves, see Sec. IV C. Third, more complex
operations in turn involve sequences of CNOT and/or Hadamard
operations. Furthermore, the realization of phase gates hinges
on the availability of ancilla states, where we propose the
possibility to prepare Pauli eigenstates on a separate auxiliary
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system, followed by a state injection process transferring the
state to a code qubit, see Sec. IV D. Next, in Sec. IVE, we
show how to prepare and manipulate qubit states in terms of
general electron pumping protocols. In Sec. IV F, we then offer
a discussion of likely error sources and challenges in our code
architecture. While a description of quantum error correction
is beyond the scope of our work, we expect that (given this
toolkit of basal operations) one can largely follow the surface
code strategies reviewed in Refs. [10,11].

In view of this proliferation of complexity, maximum
efficiency and reliability in these basal operations will be
decisive for success. This is, we believe, where the present
approach has great advantages to offer. The fact that qubit
measurements and state changes are realized via relatively
undemanding single-step operations as compared to, say,
the five-step ancilla-state-based CNOT protocol proposed for
bosonic codes [10], will have an exponential impact on the
complexity of later design stages. Below we propose a set of
basal QIP operations realizing the first development stage.
With these operations in place, the implementation of all
gates needed for universal quantum computation is possible
as summarized in Sec. V. However, the essential novelties of
our approach are contained in the present section.

A. Initialization and projective measurements

For the initialization of stabilizer eigenstates, we may
simply take the last readout result. In case the string eigenstate
of a double-cut qubit is needed, we can utilize interferometric
conductance measurements of MCB Pauli operators, see below
and Sec. IIC. To that end, starting from a stabilized state,
say, for qubit ()A( A,Z 4) in Fig. 2, one first measures all
constituent Pauli-Z operators contributing to the string operator
7 4. The intermediately affected stabilizers outside of qubit A
then re-enter the readout cycle, and the Z4-string eigenstate
(identified by outcomes z = %) remains.

Various other operations also require the initializa-
tion/readout of MCB spin-1/2 states in definite Pauli (£, ¥, or
Z) eigenstates and/or the projective measurement of short string
operators. General string operators are written as a product of
a few MCB Pauli (or twice as many Majorana) operators.
Equivalently, they can be represented by (at most) two double-
cut qubit string operators and, if multiple nonequivalent strings
between two end points are used, a number of stabilizer
operators of the surface code, cf. Secs. IIC and III. The
initialization (measurement) of MCB Pauli and/or string
eigenstates (operators) can then be effected by conductance
interferometry as described next.

First, a given MCB spin can be sent into a Pauli eigenstate by
connecting a pair of leads (equipped with an interference link)
to the two Majorana states corresponding to the Pauli operator
in question, see Eq. (2). Figure 2 illustrates such a measurement
for the Pauli-£ operator connecting the stabilizers Zs and Z7.
The conductance then contains an interference contribution
sensitive to the measured Pauli eigenvalue, see Eq. (10), and
the measurement projects the system to the corresponding
eigenstate. In case that the opposite eigenstate is needed, one
can employ a single-electron pumping process (see Sec. I1 C)
to flip to the other eigenvalue. Alternatively, if only so-called
Clifford operations (mapping Pauli to Pauli operators) are
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FIG. 3. Similar to Fig. 2 but illustrating string operator measure-
ments, where S = X4Zp 1s measured by conductance interferometry
using the marked leads (orange and blue circles) sharing an interfer-
ence link (green). Noting the equivalent representation S=2X.27,,
an arbitrary state |Y) can be moved from the Z-type double-cut
qubit (Z(,,)A(a) to the adjacent X-type qubit ()A( b,Zb). An alternative
approach employs the stabilizer product operator M = Z,X,,, see
the main text.

performed, such flips can be processed by classical software,
see Ref. [10] for details.

Next we describe how to measure string operators. As a
concrete example, an implementation of the Hadamard gate is
possible by measuring the string operator S =1%2=XuZp
in Fig. 3, see Secs. IV B and V B below. Noting that S affords
an equivalent representation as a product of four Majorana
operators, one can access S -eigenstates by activating the leads
connected to the outermost of these four Majoranas, see Fig. 3.
For leads sharing an interference link, in close analogy to
Eq. (10), the conductance will then depend on the eigenvalue
S = +£1. This interferometric measurement also implies a
projection to the corresponding string eigenstate.

An alternative measurement offering similar functionality
can be employed for the stabilizer product operator M =
Z, X »- To this end, one may activate the tunnel links surround-
ing Z, and X}, in Fig. 3 while quenching the one shared by
both stabilizers. Projection onto individual eigenstates is thus
avoided, and an adjacent pair of leads in stabilizer readout
configuration (cf. Sec. IIC) may access M = +£1. In this
intracode interferometry approach, no interference links are
required beyond those already needed for MCB Pauli operator
readout.

B. Moving logical qubits

Any gate implementation involves the transfer of logical
qubits, either as part of the process itself or to move information
to some desired storage zone afterwards. In the following, we
first discuss a single-cell shift where the target qubit is of the
same type as the source qubit, followed by the description
of how to perform a state transfer between adjacent qubits
of different (Z/X) type. Extended motion paths can then be
realized by iteration.

1. Same-type qubits

We start by describing the state transfer between two same-
type qubits. For concreteness, let us consider the single-cut
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qubit (Zg, X6) in Fig. 2, assumed to be prepared in an arbitrary
state |1). We wish to move |1) from this source qubit a, with
74 = Zs, to the adjacent target qubit b, given by (Z7,X7) in
Fig. 2, with Zb = 27. From the last stabilization cycle, the
target qubit has been prepared in a known stabilizer state, say,
the Pauli- Z eigenstate |0), with eigenvalue Z, = +1. We thus
start from the product initial state

[Wo) = |¥)a ®10)p = (2|0) + BI1))a @ |0)s, (14)

where all operations are designed such that only qubits
explicitly addressed during the move are affected and all other
physical qubit states can be factored out. When the move is
completed, Z, has become part of the stabilizer readout cycle,
while Z,, is left open and then contains the state |{). We note
that there is no need to specify where the string operators X,
and X, terminate. In fact, our protocol will directly apply to
a double-cut qubit, say, (Zz,Xp) in Fig. 2 with both strings
ending at Zs.

In order to move the logical information, one needs to
perform a projective measurement that entangles the source
and target qubits. Such a measurement can be implemented
by readout of the MCB Pauli operator %, = )A(a X », cf. also
Fig. 2, which we have already described in Secs. [l C and IV A.
Note that £, is precisely the string operator connecting Z, and
Zb. Assuming the measurement outcome x,;, = +1, the state
|W,) found after the readout is projected to the corresponding
eigenstate of X,,. (For the other outcome x,, = —1, see
below.) Switching to the Pauli-X basis and taking into account
(X.Xp) = xap = +1, we find the (not-normalized) state

W) =@+ Bl ++ap + (@ =Bl ——)ap.  (15)

For generic «, 8, this is an entangled state of the source and
target qubits.

We now include Z, in the next stabilizer readout cycle
(assuming outcome Z, = +1) but cease to measure Zp.
Switching back to the Pauli-Z basis and projecting the source
qubit to |0),, we arrive at

|W2) = 10)a ® ([0) + BI1)), = [0)a ® [¥)s- (16)

Evidently, we have achieved a perfect transfer of the state |)
from the source to the target qubit.

In the above discussion, we have made three assumptions
about measurement outcomes, namely Z;, = 41 for the initial,
Xqp = +1 for the intermediate, and Z, = 41 for the final
readout. However, different outcomes can be accomodated
by applying suitable Pauli-flip operators to the target qubit. In
particular, the state |¥;) in Eq. (16) can be reconstructed from
the bare final state | W )pare Obtained from the above protocol,

W) = (Zp)rye1(Xp) 2, 2,=—11%2) bare (17)

where the first (second) Pauli operator is only applied for
Xqap = —1 (for Z,Z;, = —1). For Clifford-only operations, as
mentioned above, the Pauli flips in Eq. (17) can be taken
into account by the classical software used for processing
measurement outcomes. We conclude that this protocol for
moving quantum information by one unit cell between same-
type stabilizers can be employed for arbitrary outcomes.

As with any unitary quantum operation, such a qubit move
affords either a Schrodinger interpretation, in which the state
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changes as [¥), ® |0), — |0), ® |¥);, or a Heisenberg view,
in which states remain invariant but the logical qubit operators
change as (Z X )a — (2 X )». The picture in which operators,
rather than states, are subject to manipulation will often be
more convenient in the description of logical qubit operations
below.

2. Different-type qubits

Finally, by a modified version of the above protocol, we
can also transfer a state |1) between different (Z/ X) types of
logical qubits, see Fig. 3. In that case, we start from an initial
two-qubit state

[Wo) = (]0) + BI1)a @ [+)p = [¥)a @ |+)s, (18)

where the state [{) is stored on the Z-type qubit a, and the X-
type target qubit b has been prepared in the X, = + eigenstate,
see Fig. 3. Instead of a single MCB Pauli operator, in the
present case we have to measure the string operator S = £,2;
in Fig. 3 in order to perform the move operation. Note that
S is equivalent to the product of the internal string operators
of both qubits, S= Xa 2;,. This measurement can be done
as described in Sec. IV A, and we momentarily assume the
outcome S = +1.

To show that the S-measurement indeed effects the state
transfer from a to b, we observe that, in analogy to Eq. (15),
the projection to S = +1 yields the intermediate state

W) =@+ Al+)a ®10)p + (@ = B)l=)a @ [1)p.  (19)

Letting qubit a enter the stabilizer readout cycle and assuming
the outcome Z, = +1, we arrive at the final configuration

W) = 10), ® (@|+) + Bl=))» = [0} ® (H[¥))y.  (20)

Recalling that the Hadamard (H) operation effectively ex-
changes X and Z operators [58], the final state of qubit b
is interpreted as the target state of an H operation applied
to the initial state |yy) of qubit a. For other measurement
outcomes, one again has to apply Pauli-flip operators (or
classical postprocessing) to qubit b.

Finally, a variant of this protocol can be implemented by
using the stabilizer product operator M = Z,X,. After initial
preparation of a string eigenstate Z, = +1 and entangling
qubits a and b via measurement of M, one then obtains the
Hadamard-transformed state on qubit » by measurement of the
string operator X,,.

We conclude that the state |y) initially stored on the Za
stabilizer of qubit a has been transferred to storage in the X,
stabilizer of qubit b. Since they are of different (Z/X) type,
this transfer effects a Hadamard gate on the logical state, cf.
Sec. V B below.

C. Braiding logical qubits

The motion of logical qubits leaves information unchanged
unless the strings forming part of the construction of cut-
qubits are crossed. By contrast, when moving one qubit
around another one, such a crossing must necessarily occur.
Using the same convention for string definitions (cf. Sec. III)
before and after this qubit braid transformation, the crossing
enforces a transformation of qubit operators equivalent to the
fundamental CNOT operation, see below and Sec. VA. In
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FIG. 4. Similar to Fig. 2 but now for a braid operation of logical
qubits (Z4,X4) = (Zo,Xo) and (X 3,Z5) = (X{,Z{). The stabilizers
Zo (yellow) and X f, (blue) are highlighted, and a choice for the string
operators X, (thick red line) and Zé (blue solid line) is shown. By
iterating the single-step operations in Sec. IVB (or by analogous
multi-step moves), qubit A is moved to ZA = 24 and )A(A = X4. We
then bring A back to the initial position by encircling B. After a
full loop, one has crossed the string Z. This braid transformation
entangles both qubits according to Eq. (23) and thereby implements
a CNOT gate.

the following we illustrate this concept for the basic braid
operation of transferring a Z-type qubit around an X-type
qubit.

To this end, consider (Z4,X 1) and (X,Zp) in Fig. 4 with
the shown convention for string operators. We aim to move
A along a closed loop encircling B. This operation affects
B because, in the process, the A g-string emanating from
the X s plaquette must be crossed, i.e., (2 A /B,}? A/B initial =
(ZA/B,X A/B)final changes both qubits. To understand how,
imagine Z4 moved along the loop in Fig. 4, for instance by a
sequence of single-step movements as described in Sec. IV B.
Up to a known sign, this brings (2 Afinal = (ZA)initial back
to the original configuration. We stress that the same initial
and final conventions are taken to define the string operators
X4 and Zg, which escape directly towards the top and the
right boundary in Fig. 4, respectively. The string operator X 4
will then change as ()A( Afinal = X ]Oop(f( A)initial, Where the loop
operator

Xioop = Xo1 %12+ - %70 2D

comprises the product of all MCB Pauli operators X; ;11 adding
to the string along its stepwise extension around the loop in
Fig. 4.
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The operator (21) affords the alternative representation
Xioop = X{XEXIXS, (22)

where X f denotes the X operators tiling the area surrounded by
the loop. The equivalence of both representations follows from
the fact that of the 4 x 4 Pauli-X operators entering the product
of X operators in Eq. (22), all those sitting on links in the bulk
of the area will pairwise square out. The uncompensated £ at
the loop boundary are precisely those appearing in Eq. (21).
Now, of the four X¢ stabilizers appearing in the product (22),
three are part of the readout cycle and thus only contribute a
known sign to the result. The only exception is X g =X B, and
(up to that sign) we arrive at (X Dfinal = (X p)initiat (X 4 initiat-

Finally, the change of Zp follows from the interpretation
in which the motion of A around B is viewed as one of B
around A. This amounts to a crossing of the Zp string with
the X A strmg, and by the argument above, we have (Z B)final =
(Z A)mmal(Z B )mmal At the same time, X p remains unchanged
in the process, (XB)hna] - (XB)mmal

These braiding rules are summarized by the four basic
transformation laws (with identity ),

iA®ZB — ZA®ZB,
i@ Xs— X (23)

ZA®iB — 2A®i3,
Xa®1Ip — X4 ® X,
The braid operation is of paramount importance in that it

implements the CNOT operation on the two qubits A and B,
see Sec. VA.

D. State injection

It may often be convenient to initialize a state in a separate
auxiliary system, where the state is subsequently injected into
a target logical qubit near the boundary of the bulk surface
code. A setup allowing for such a state injection process is
shown in Fig. 5, where an auxiliary MCB with Pauli operators
(%4,¥4,24) 1s tunnel coupled to a MCB within the code but
located at its boundary. This process can be particularly
helpful for generating the ancilla states needed for phase gate
implementations (see Sec. V) since the state preparation can
be optimized on a separate device away from the code.

Initially, the auxiliary MCB a is assumed to be decoupled,

e., tunnel couplings to the code are turned off. We then
imagine preparing an arbitrary state [¢) = «|0) + S8]1) on this
MCB, without affecting the decoupled code state. For instance,
Pauli eigenstates can be directly initialized as discussed in
Sec. IV A. As target qubit, we consider the double-cut qubit
(Zy,Xp) near the code boundary in Fig. 5. Assuming the
initialization Z;, = +, we thus start from

Wo) = [¥)a @ 10)s. (24)

We next switch on the tunnel couplings connecting MCB a to
the code and cease to measure the two Z-stabilizers defining
the target qubit. To achieve the state transfer from a to b,
we then perform a projective measurement of the operator
X, = }A(b)%a (green square in Fig. 5), which anticommutes
with both Z, and %,. This can be done by conductance
interferometry using a pair of leads attached to (say) the upper
two Majorana states in the X « loop, similarly to the stabilizer
readout described in Sec. II C.
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FIG. 5. Setup for state injection into the surface code. An
auxiliary MCB with Pauli operators (£,,¥,,Z,) is tunnel coupled to
a MCB belonging to the code but located near a (Z-type) boundary.
An arbitrary state |1/) may now be prepared on the decoupled MCB
a. Pauli eigenstates can be initialized by conductance interferometry,
where the green dotted line indicates a lead pair (with interference
link) for measuring J,. Subsequently connecting MCB a to the code,
ring exchange processes identify the operator X, = X,%, (green
square), where X, is the internal string operator for the double-cut
code qubit (Z,, X ;). By measuring X, via conductance interferometry,
and finally disentangling MCB a from the code (by measurement of
Z4), | W) is transferred to the target qubit b.

We can verify the state transfer from MCB a to the code
qubit b as follows. By writing |Wy) in the Pauli-X basis for
both qubits and then projecting to the X, eigenstate with, say,
X. = +, we obtain the intermediate state

W) =@+ B+ + (@ =Bl — ). (25

We now disentangle both qubits by measuring Z, on MCB a via
conductance interferometry. Assuming the outcome z, = +,
we arrive at the final state,

[Ws) = [0), ® (@]|0), + BI1)s) = 0)a & [Y)p- (26)

For other outcomes, one may have to apply Pauli flip operators
as described for a qubit move in Sec. IV B.

We have thereby injected an arbitrary ancilla state |y) from
the auxiliary MCB (where it has been prepared) to a target qubit
of the surface code. Another injection step can then take place
as soon as the logical information on the target qubit has been
transported away from the code boundary.

E. Multistep pumping protocols

A major challenge for any universal quantum computation
scheme is to implement a non-Clifford gate such as the general
phase gate P(0), where the single-qubit operator

P(9) = "2 27)

performs a Bloch sphere rotation around the Z axis. In
particular, the 7 gate (also called the /8 gate) follows by
choosing the phase angle § = —m/8 [58]. As discussed in
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Sec. VD below, it may be advantageous to realize the phase
gate operation on an arbitrary logical qubit state |i/) by first
generating ancilla states using 2(6). Such a state can then be
consumed in a quantum circuit that entangles the logical and
ancilla qubits during intermediate steps of the protocol, where
the (perfect copy of an) initial ancilla state is given by

|Ag) = P(O)I+) = (°10) +e7|1))/v/2.  (28)

For a successful phase gate implementation, we thus have
to be able to accurately prepare this specific ancilla state. In
what follows, we show that this task can be achieved in our
code architecture by means of a four-step adiabatic electron
pumping protocol. The latter can be experimentally realized
by sweeping gate voltages on quantum dots which in turn are
tunnel coupled to individual Majorana states, see Sec. I C.

As an ancilla qubit, we consider the Z-type double-cut qubit
(Z , X ) in Fig. 6. By means of an interferometric measurement,
see Sec. IV A, the qubit is assumed to be initially prepared in
the |+) eigenstate of the internal string operator X. We show
below that the state |Ay) in Eq. (28) can then be generated
by a multistep pumping protocol employing two pairs of
single-level quantum dots denoted by (0,2) and (3,4) in Fig. 6.
Each dot has a gate-tunable level energy ¢; and is attached
to the respective Majorana operator y; (with j =0,2,3,4).
The system will be operated in a parameter regime where
each dot pair holds a single electron. For simplicity, we
consider antisymmetric energy configurations, where only the
two energies &,/ With

g/2 =80 =—8, &p/2=63=—¢4, (29)

are changed during the protocol. With the large positive energy
scale D, by slowly varying ¢, from —D — +D (or in reverse
order +D — —D), a single electron will be adiabatically
pumped from dot 0 — 2 (or vice versa). By sweeping &5,
we can similarly pump an electron between dots 3 and 4.

Let us first address the dot pair a = (0,2) with fermion
operators (dy,d,) subject to the condition dgd0 + d;d2 =11t
is instructive to describe this dot pair by the equivalent spin-1/2
operator S, = (S%,Sz,5%) with

S: = Ldidy — didy), SF=did,, S; =S, (30)

where ST = S$* +£iS;. We denote the eigenstate of S% to
eigenvalue +1/2 as |1/ |).. The corresponding occupation
number states on this dot pair are [10)py = |1), and |01)p, =
[{)a, see Fig. 6. By steps as detailed in Sec. IIC, after a
Schrieffer-Wolff projection to the charge ground state of the
MCBs, transfer processes between dots (0,2) are then encoded
by the effective spin-1/2 Hamiltonian

H,=¢e, S+ T,ST+TIs;, T,=it’X+Y. (3l

The transfer operator 7, comes from summing over all possible
tunneling paths through the code which connect the two dots.
We here assume that physical qubits surrounding the double-
cut qubit in Fig. 6 are either in a stabilized state or turned off
(see Sec. I1C). In either case, there are only two different path
contributions to 7,,, where the complex-valued amplitudes ty
and 1, depend on the intracode tunnel couplings f; along the
respective paths. They also contain an overall prefactor due to
the dot-Majorana tunnel couplings, cf. Eq. (11).
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FIG. 6. Upper panel: Phase gate implementation for a Z-type
double-cut qubit (Z, X), initialized in the eigenstate |+) of the internal
string operator X = iy;y,. Two pairs of single-level quantum dots
(dark/light blue and dark/light green squares connected to yy,, and
34, Tespectively) are activated to pump single electrons through the
code. After running a four-step pumping protocol the final qubit state
is |Ag) = P(0)|+), where the phase gate operator P(6) has tunable
angle 0, see Eq. (41). By using the alternative dot configuration 0 —
0’ (yellow square), parametrically different angles 6 can be generated.
Lower panel: Schematic illustration of the four-step protocol (32)
obtained by sweeping the dot energy levels ¢, see Eq. (29), via gate
voltages. Intermediate states of the auxiliary (a,b) spin variables are
also specified in the physical dot occupation number representation.
Straight dashed lines show idealized protocols, where ¢,(f) during
step (iii) is a time-reversed copy of step (i) and similarly for ¢,
during steps (ii) and (iv). The solid curve is for a realistic (imperfect)
protocol, see the main text.

The first path ~¢) proceeds along the direct yp — y; link
in Fig. 6. Since it includes in- and out-tunneling events via
0, the Majorana operator y, appears twice and thus squares
out. Hence this contribution to 7, involves the internal string
operator X = iy, see Eq. (31). The second path involves an
additional loop around the stabilizer Z, which generates the
Pauli operator ¥ = —i ZX and thereby explains the term ~7, ¥
in Eq. (31). Because of the destructive interference mechanism
discussed in Sec. II C, we obtain #; = 0 by choosing an integer
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backgate parameter ng (detuning Ang — 0) for the MCB
hosting yo. Since #; involves more tunneling events than 7,
we can then tune the relative strength of both paths over a wide
range, |t5/1;| &~ AngEZ /%, where 7 denotes a typical value
of [#y].

Similarly, processes employing the dot pair b = (3,4) can
be described in the spin language. Defining spin-1/2 operators
5';, as in Eq. (30) but with dy — d3 and d, — dj, the effective
spin Hamiltonian H,, is as in Eq. (31) with a — b. However,
the respective coupling ratio ¢, /#; | is now much smaller, since
the longer path encircling the Z plaquette is both subject to
destructive interference and suppressed by orders in |7 |/E¢,
see Fig. 6.

Using a four-step shuffling sequence alternating between
dot pairs a and b, single electrons are then transferred back and
forth between the two dots in a given pair. This forced transfer
process employs interfering tunneling paths running through
the code itself and will allow us to manipulate the logical qubit
state in a controllable manner. In fact, gate voltage sweeps of
gqp are equivalent to independent magnetic field changes,
where the field is always oriented along the respective z axis
and may induce spin flips |1)4/, — |{ )4/ Or vice versa. The
two spins Sa » in turn interact with the code qubit (Z,X), see
Eq. (31), resulting in a gate-voltage steered motion of the qubit
state on the corresponding Bloch sphere. Our protocol starts
out from the initial spin configuration |1 1), corresponding
to dots 0 and 3 (2 and 4) in an occupied (empty) state. It then
consists of four steps, see Fig. 6,

1 Db 2 14 Dab 2 14 Dab B 14 Dap <2 14 M

(32)

After the cycle has been completed, the initial spin configura-
tion is reached again. In each step, either ¢,(¢) [during steps (i)
and (iii)] or &,(¢) [during (ii) and (iv)] is varied, whereas the
respective other parameter is held constant at large absolute
value |ep/4] = D > |Th/a|, i.e., Hy/, does not influence that
part of the protocol.

The full system then includes the code qubit (Z , X ) and the
(a,b) spins, i.e., the two dot pairs. We start from the initial
product state

[Wo) = («|0) + BI1)) @ T Nar = V) ® [T Nav,  (33)

with arbitrary code qubit state |v/). In order to prepare the
ancilla state |Ag), one puts @ = B = 1/+/2 such that |y) =
|+), cf. Eq. (28). For a study of the subsequent time evolution
under the time-dependent steering protocol in Eq. (32), it is
convenient to introduce the effective parity operators

Pa=2S82, P,=282, Pu=48:852, (34

which have eigenvalues P, p,/1oc = 3=1. We observe that during
steps (1) and (iii) of the above protocol, Pa is conserved,
[P..H] = [P.,H,] = 0, since H, here reduces to an irrelevant
constant as explained above. Similarly, P, is conserved during
steps (ii) and (iv). In addition, the operator 75t0t in Eq. (34) is
conserved during the entire protocol, and we can separately
consider the parity sectors Py = +1.

Let us first discuss the P, = +1 sector, where one
effectively starts from the initial state |0) ® [ 1), With
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amplitude «, see Eq. (33). (For P, = —1, see below.) Under
the protocol (32), the effective parities P, , develop as

P, —+1 —I—l i) (i) Gi) )

(1) (i) (iii)
- -1 —

(iv) +1,

M4 (35)

Pp=+1 -1 +1

In each step of the protocol, by exploiting conservation of
Pior and one of the P, parities, only two basis states are
dynamically relevant. For instance, during step (i) where P, =
41 is conserved, those two states are |0)® 11)q and |1) ®
[4 Map. On the other hand, during step (iii) with conserved
parity value P, = —1, they are given by |0) ® || | ). and
[1) ® |1 |)ap, see Fig. 6. The physics during step (i) and (iii)
is then described by the respective simple 2 x 2 Hamiltonian

(Po=£1) _ €a i(tff + tg)
H! - [_i ey ) (36)

The corresponding Hamiltonian for steps (ii) and (iv) follows
by letting a — b in Eq. (36). Similarly, by taking into account
the constraints (35) and the above discussion, the state after
each of the four steps in Eq. (32) will be given by

10) @11 Das = 1) ® 1 Vs > 10} ® 14 L)ap

S e D <> 100 @11 Nap G7)
up to a crucial phase factor discussed next.

We now analyze the steered qubit motion on its Bloch
sphere in more detail. During step (i), spin a is flipped,
[M)a = |{)a, and the qubit state is dragged from the north
to the south pole, |0) — [1), at azimuthal angle

sy _, =arg[—i(r} — 1)) (38)

Since the entire qubit motion proceeds under this angle, the
latter can be read off from H("«=*D by letting &, — 0, see
Eq. (36). In the next step (ii), which is governed by H;P”:_l),
spin b is also flipped by a respective gate sweep applied to dot
pair (3,4). Thereby the code qubit is forced to move back to
the north pole but under the different azimuthal angle

8(11)

o =arg[—i(n +1)]. (39)

This difference to Eq. (38) arises because spin b employs the
transfer operator 7}, instead of T,. We then proceed with step
(iii), where spin a returns to the state | 1), and thereby drives the
qubit once more from north to south pole. This happens at the
azimuthal angle 8" = arg[i (¥ +13)]. In the final step (iv),
spin b is also flipped back to |1),. With 8 = arg[i(r} — )],
we thus have returned to the initial state up to a phase factor.
The logical qubit state has then been steered twice from
north to south pole (and back) on the Bloch sphere. Dynamical
phases always cancel out under this protocol (see below), and
the phase acquired by the qubit state has a purely geometric
origin. This non-Abelian Berry phase can be obtained from the
solid angle Q2p_ -1 encircled during a full cycle on the Bloch
sphere as 6 = /2 [70]. Since we move directly between
both poles (with different azimuthal angles), one easily obtains

Q+_

| ii iii iv
= _E[(SQ—SS)MS)—(S;’]. (40)
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The Berry phase can thus be decomposed into two parts
depending only on #;* or 7, parameters. With 6, = 89 +
8% and 6, = —(8" + 81"), we find

0 =6, + 0,

x LY
Oasp = tan~! <2|t;¢”’/i|2 singoa/b)7 41)
|tf/b| - |t;¢/b|
where ¢,/ is the relative phase difference between f, s and
fup- As discussed above, the regime with |7 /7y < 1 is
naturally expected for the setup in Fig. 6, resulting in 6, — 0
and hence 6 >~ 6,,.

To complete the discussion, we now address the other
parity sector Pyx = —1, where one starts out from the initial
state |1) ® |1 1)qp with amplitude B, cf. Eq. (33). The
corresponding time evolution can be recovered from the above
expressions for Py = +1 by the replacement P, /5, — —Py/p,
implying 84" o §& Y iy Bq. (40). Further taking into
account that the tunneling processes (i) and (iii) [and (ii) and
(iv)] are related by Hermitian conjugation, i.e.,

sV = o, 88" = -8 42)
the solid angle for Py = —1 follows as Q_ = —Q,, and

hence the Berry phase —6 will be picked up. In effect,
with @ = B = 1/+/2 in Eq. (33), i.e., by preparing the qubit
in the |+4) state, the final state after running the four-step
protocol is precisely given by the ancilla state | Ay) in Eq. (28).
Remarkably, we can thereby realize a static and parametrically
tunable phase angle 0, see Eq. (41). With 6 >~ 6,, a main
handle to adjust this angle is given by the backgate detuning
parameter An, on the MCB hosting yp, see Fig. 6. Assuming
small detuning, |An,| < 1, wefind0 ~ |t5/1;| ~ AngE2 /P
up to the prefactors in Eq. (41).

By alternative choices of dots for the pump protocol, one
may change the parametric dependencies of the phase gate
angle 6. Using the quantum dot 0 — 0 (yellow square) in
Fig. 6, the ratio of tunneling amplitudes |£7/2;| becomes
independent of the scale 7/ E... Still, now adjusting the backgate
parameter n), of the box hosting y; in Fig. 6, one may tune
and/or quench the tunneling amplitude ¢). To leading order,
the protocol then yields the phase angle & ~ An’, while 7/E,
can be changed independently.

Last, we address the effect of errors, see also Sec. IVF
below. First, energy splittings between the Z = £ qubit
states can result from the static stabilizer Hamiltonian (5)
or from the Majorana-dot tunnel couplings entering the
pumping Hamiltonian, cf. Eq. (36). However, noting that our
four-step protocol involves intermediate parity flips in both
subsectors, Py — —Pyp, We observe that as long as the
control parameters &, (¢) run back and forth in a time-reversed
manner during the respective steps (i) and (iii) and then (ii) and
(iv), dynamical phases cancel out automatically. Even under
imperfect gate control, see the lower panel of Fig. 6, such
contributions are expected to echo out. In particular, by n > 1
repetitions of a protocol with small phase angle 6/, the Berry
phase 6 comes with a more efficient cancellation of dynamical
phases. Second, assuming time-reversed gate sweeps, the four-
step pumping sequence (32) affords a topological protection
in the control parameter space (&,,¢p), i.€., the pumped phase
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will be independent of the precise time dependence of &, 5(t)
as long as the intermediate steps of the protocol in Eq. (32) are
reached. Third, we note that small deviations from adiabaticity
are permitted if diabatic errors are eliminated by intermediate
charge measurements on the dots [68]. We emphasize that
the static code parameters yielding 6 in Eq. (41) can be
adjusted and fine-tuned. Since the protocol forms a closed
loop in control parameter space, in principle, it can be run
indefinitely. For instance, after preparing the desired ancilla
state |Ag), this state can be postprocessed or verified by state
tomography. One can then readjust the code parameters in
order to optimize the protocol. Finally, charge dephasing may
be a challenge, in particular if the anticrossing energy |7, /bl
is very small. Extensions of the protocol (cf. Refs. [68,71])
should be possible and can be used to tackle some of the
challenges outlined here. We leave a detailed investigation to
future work.

To conclude, the presented phase gate protocol follows from
a gate-steered rotation in the hybrid low-energy subspaces
of the quantum dots and the code qubit. Such control and
rotations are possible since single-electron tunneling events
generate logical string operators acting on the code space, see
Sec. IIC. As electrons traverse the code, these strings drag
along Z- and X-type excitations, which can be created and
braided in nontrivial interleaved pumping sequences. In the
manipulations applied to our code architecture, the coupling
to different Pauli operators or strings naturally arises from
superpositions of tunneling paths through the code.

F. Errors and challenges

Having discussed a framework of elemental quantum
logical operations sufficient to the implementation of gates,
we are now in position to address likely sources of errors
or other physical mechanisms detrimental to the functioning
of the system. Generally speaking, we expect the topological
protection of the elementary Majorana particles (on which
our approach is based) to manifest itself in long coherence
and qubit lifetimes. This may turn out to be an important
mechanism keeping the need for active error correction at tol-
erably low levels. Second, a general advantage of the stabilizer
code approach is that Clifford gates do not require active error
correction [58]. Measurement errors then merely need to be
kept track of, which can be done by classical software [10]. We
thus are confident that the present Majorana-based code can
be implemented with a reasonably low operational overhead.
Likely error sources and/or challenges include the following.

1. Dynamical phase errors

These errors are caused by the effectively random (but
static) coupling constants generated by tunneling processes
encircling single or multiple stabilizers. As a consequence,
the time evolution even of stationary states leads to dynamical
phases. The ensuing errors are correctable if, in each cycle,
they affect less than half of the stabilizers defining an encoded
logical qubit [10,11]. Generally, it will thus be advantageous
to reduce or quench off the tunnel couplings contributing to a
logical qubit. Increasing the physical to logical qubit ratio then
exponentially suppresses the remaining detrimental tunneling
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terms and therefore provides exponential protection against
dephasing errors.

2. MCB errors

A second class of dynamical errors has its origin in the
less-than-perfect design of the MCBs. The functioning of our
approach rests on the approximate degeneracy of the two
quantum states realized by a MCB in the strong charging
limit. That qubit degeneracy gets lifted when the Majoranas
constituting it hybridize with each other, e.g., due to the
finite length of the MCB semiconductor quantum wires. The
actual splitting for realistic geometries is not yet known and
additional experiments on simple Majorana-based qubits will
be needed to estimate these error rates. In terms of MCB Pauli
operators (2), such residual overlaps act as effective magnetic
fields. In general, these Pauli errors are correctable.

A qualitatively different class of errors originates in
quasiparticle poisoning. For example, quasiparticles may jump
on and off neighboring MCBs. Such processes are efficiently
suppressed by the charging energy, which in practice results
in charge stability over very long times (hours). Nonetheless,
quasiparticle poisoning can have detrimental consequences to
the operation of the surface code when Cooper pairs on a
given MCB are likely to break up—a process which has been
experimentally verified to occur at time scales beyond 10 ms
for single nanowires [25]. If the electrons recombine with
two different Majorana states, then this will create a Pauli
error, which is straightforward to detect via an observable
change of the stabilizer states connecting to the MCB. Such
Pauli errors can again be corrected. On the other hand, if only
one quasiparticle recombines with a Majorana state, the error
is hard to correct since the system leaves the computational
subspace. Such an event will manifest itself in a flip of the
fermion parity operator P, on a single MCB, in addition to
flips of the adjacent Z and X stabilizers. This error is not
correctable anymore, since we do not read out the operator 751
needed to unambiguously detect it in the present scheme.

Once such an error has occurred, we are left with an out-of-
subspace Majorana system plus an isolated quasiparticle. The
latter may remain idle on the MCB for some time. Eventually,
the original state of the system gets restored (vanishing of
the error) or recombination with another Majorana state takes
place (return to the computational subspace plus a Pauli
error). If the out-of-subspace time exceeds typical operation
times and/or quasiparticle poisoning errors occur on logical
qubits, then the functioning of the code gets compromised.
Fortunately, errors of this type betray themselves via correlated
flips of neighboring stabilizers Z and X. If they turn out to be
important, then measurements of the box parity operators P,
should be implemented. However, this will require a more
modified approach than presented here.

3. Conductance interferometry and readout scheme

Our conductance readout schemes require reference arms
for path interference. Quantum coherence will only be
preserved if the length of these arms is shorter than the
phase coherence length in the relevant material. Since the
distance between (zero-energy) Majorana states on a given
MCB should be larger than the coherence length in the
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topological superconductor [13,14], this sets a minimum
length for the reference arms as well. The magnitude of a
realistic topological gap is not known, but one expects a decay
length of Majorana states in the um regime [26]. However,
even if the coherence length of the reference arm is of order
um, the conductance measurement has to be done at low
voltages to avoid decoherence of interference signals. All
factors considered, it might be favorable to use a topological
wire to extend the coherence of the reference arm, similarly
to the interferometer suggested by Fu [46]. (We note that
such long links are needed only along the wire direction in
Fig. 1.) Again one will have to rely on experimental progress
to determine what the best solution is, and therefore we leave
this as an open challenge.

Another important issue is to perform stabilizer mea-
surements on a sufficiently fast time scale. However, the
conductance in the readout scheme will be small because
the MCBs are operated in the cotunneling regime, and hence
the necessary integration time might be long. Fortunately, there
are also different measurable quantities that rely on the same
topological interferometry as discussed here. One possibility
is to read out tunneling times by charge measurements, which
means that one could change the design by replacing the
normal leads with dots and charge sensors [57]. This is aknown
technology with readout times below microseconds [72] and
offers the advantage that only one dot needs to be coupled
to each Majorana state (instead of a lead and a dot). Also
in this case, actual experimental realizations will determine
the best strategy. An interesting question, where the answer
depends on the actual readout strategy, is how fast a projective
measurement can be. It will also be important to understand
better, on a theoretical level, the time scales for projective
measurements when the measured quantities are tunneling
rates rather than the transferred charge.

4. 2D vs 3D architecture

When discussing hardware solutions, errors, and their
countering, one should have in mind that the 3D integration
envisioned in Ref. [12], cf. also Fig. 1, with controllable tunnel
junctions connecting the code to another layer containing gate
electrodes and probe leads, may be difficult to realize. This is
not a fundamental obstacle but something that still needs to be
developed along with the topological wire layouts. The first
demonstration experiments should therefore be designed in a
purely 2D setup [57], where one can also address charge vs
conductance readout and the role of quasiparticle poisoning.

V. LOGICAL GATES FOR UNIVERSAL
QUANTUM COMPUTATION

We now turn to logical gates in the present code ar-
chitecture, which can be implemented by known quantum
circuits [10,19,58,73] once the basal quantum operations in
Sec. IV have been realized. We consider the set {é’ JH. ST }
of elementary gates, containing the cNoT C, the Hadamard
H, and the phase gates S and 7. This set is sufficient for
universal quantum computation [58]. Since 72 = §, the § gate
is formally not necessary for a minimal set, but access to a
simple and efficient realization is highly desired in practice.
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A. Controlled-NOT gate

We first recall that in the Schrodinger picture, the CNOT
acts on a two-qubit state as [4) ® |¥g) — C(|¥a) ® |¥p)),
where the unitary operator

(I -2)
2

I+27 . .
( )a A o Ry 3)

¢ = 5 QIp+
flips the target qubit B iff the control qubit A is in a
down-state [58]. The Schrodinger description of C in Eq. (43)
is equivalent to a Heisenberg transformation, @A ® @B —
C'(O4 ® Op)C. This transformation is recovered by the
braiding-induced manipulation of operators in Eq. (23), see
Sec. IV C. Since all other transformations of the two-qubit
operator algebra can be constructed from Eq. (23), those
four rules are sufficient to fully characterize the CNOT gate
[58]. As shown in Sec. IVC, cf. also Fig. 4, the rules in
Eq. (23) can be directly implemented by braiding a pair of
different-type logical qubits. We note that the CNOT operation
for same-type qubits can also be obtained by a variant of our
protocol. However, since braiding is limited to different-type
qubits, one then needs additional ancilla qubits serving as
target of an intermediate CNOT, cf. Refs. [10,19]. Last, as
both qubit move and braid operations allow for straightforward
iteration on qubits with larger stabilizer and/or string distances
(d > 1), the corresponding extension of the CNOT follows
directly.

B. Hadamard gate

The Hadamard gate applies the operator H = (X + Z2)/v/2
on a single logical qubit state, |) — H|¥), mapping Z
eigenstates |0 /1) to X eigenstates | + /—) (Schrodinger) or,
equivalently, exchanging X /Z — Z/X (Heisenberg) [58]. An
important advantage of the Majorana surface code comes from
the fact that the H gate can be realized by moving logical
information between adjacent qubits of different (X/Z) type
[19]. This process effectively exchanges X and Z operators.
Fortunately, such moves can be performed in a rather simple
manner in our code architecture, see Sec. IV B. The key
ingredient is an interferometric conductance measurement
of a string operator, as illustrated in Fig. 3 for the case
of minimal string extension (with code distance d = 1). An
alternative scheme employs stabilizer product operators, see
also Sec. IV B.

In order to improve error resilience, ad > 1 generalization
of either approach to qubits with longer connecting strings
and/or larger holes is possible. In the latter case, sequential
application of the above manipulations to all constituent
elementary qubits implements the Hadamard gate. Similarly,
for longer strings, &d sequential nonstabilizer measurements
are needed. Fault tolerance is then retained because all
measured operators commute with local pairs of Z- and
X-type stabilizer (or string) operators, thus allowing for error
checks.

C. S gate

We now turn to the implementation of the § gate, which
acts on a single logical qubit state |y) by creating a 77 /2 phase
shift between the up- and down-components. Using the phase
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) Sap)

A~ A~

|Ag) H Hi— |As)

FIG. 7. Quantum circuit for S‘—gate implementation [10]. We start
from |W)iniia = |¥) ® |As), with an arbitrary state |{) stored on the
logical qubit and the Y eigenstate |Ag), see Eq. (45), on the ancilla
qubit. One then applies a CNOT (with the ancilla as target), followed
by a Hadamard on the ancilla. Repeating this sequence once more,
one arrives at | W) = (S|¥)) ® |As).

gate operator P(0) = €% in Eq. (27), this is achieved by the
operator

S = ™4 P(—m/4) = diag(1,i). (44)

To realize the § gate, we consider the two-qubit protocol in
Fig. 7 [10,58], which employs an ancilla qubit in addition to
the logical qubit. Here the ancilla is prepared in the Pauli-Y
eigenstate

|As) = 8|4+) = (10) +il1)/+/2, (45)

or, equivalently, |Ag) = §T|+). Note that Y|As) = |As) and
Y|As) = —|As), where |Ag) is equivalent to |Ag—_,4) in
Eq. (28). By applying a sequence of CNOT and Hadamard
gates, the circuit in Fig. 7 arrives (in the absence of errors)
at the product state |V)gna = (S’ |Y)) ® |Ag), containing the
desired state S|v/) on the logical qubit. At the same time, one
recovers the original ancilla state.

The S-gate implementation then boils down to a reliable
generation of |Ag) ancilla states. In principle, these could
be obtained by direct ¥ measurements on the qubits of the
code. However, since many ancilla states have to be generated
in practice, an attractive alternative is offered by the state
injection approach in Sec. IV D. Here one first prepares MCB
Pauli-y states on a separate auxiliary box. In a second step, this
MCB qubit state is transferred (injected) to a selected ancilla
qubit in the code. Given that this preparation scheme relies on
projective measurements, the obtained states are expected to
naturally have high fidelity with |As) in Eq. (45) [74], possibly
obviating the need for magic state distillation [5]. This route
can offer a significant reduction of the large ancilla preparation
overhead needed in other surface code architectures (see, e.g.,
Ref. [10] and references therein) and could thereby pave the
way towards an efficient experimental realization of Clifford
operations.

D. T gate

With the set {C’ A8 } discussed up to now, we can
only perform Clifford operations [58]. The Gottesman-Knill
theorem [75] states that a Clifford-only quantum computer
offers no quantum speedup since Clifford-based computations
can be carried out efficiently on a classical computer [11].
Although such a system can still be highly useful as platform
for many QIP tasks, universal quantum computation requires
an additional non-Clifford gate, for example the 7 gate [58].

174514-18



ROADMAP TO MAJORANA SURFACE CODES

~

|¥) P(20)—P(0)[)
| Ap)

My
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FIG. 8. Quantum circuit for implementing a phase gate P(9),
see Eq. (27), with arbitrary angle 6 [73]. The 7 gate follows
for 6 = —m/8, see Eq. (46). Starting from the two-qubit state
W) inital = |¥) ® |Ag), with arbitrary state |¢) on the logical qubit
and the ancilla state | A4) in Eq. (28), a CNOT is followed by a Pauli-Z
measurement (M) on the ancilla (outcome Z = 41). Double lines
indicate classical information processing, where £(26) is applied to
the logical qubit iff Z = —1. The final logical qubit state is P(9)[).

This gate is equivalent to the 6 = —m /8 phase gate,
T = ™/#P(~1/8) = diag(1,e"™*), (46)

and is also used to achieve universality in other
Majorana-based quantum computation approaches, see, €.g.,
Refs. [38,71]. Possibly with minor modifications, our proposal,
see Sec. IV E and below, can be useful to (or make use of) those
schemes as well.

Our phase gate implementation uses the quantum circuit in
Fig. 8, which entangles a logical qubit containing an arbitrary
state |y) with an ancilla qubit state | Ay ). The latter follows by
applying P(0) to the |+) eigenstate of the ancilla, see Eq. (28).
After a CNOT, one measures the ancilla Pauli-Z component
(outcome Z = +£1). For Z = +1, one directly obtains the
desired state ﬁ(@)h{/) on the logical qubit. However, for
Z = —1, one obtains P(—6)|v) and then has to apply the
operator 13(26) to correct the result. Since, for 6 = —m/8,
the operator P(20) represents the relatively simple Clifford
operation $in Eq. (44), when using the circuit in Fig. 8, the
T gate will be much easier to realize than arbitrary-0 phase
gates. The above protocol also can be used to implement the
S gate (0 = —m/4), where P(20) is equivalent to the Pauli
operator Z. However, since one here loses the ancilla state, the
S-gate implementation in Sec. V C is more efficient if ancilla
preparation constitutes the bottleneck.

In order to implement the 7 gate in our code architecture,
one may first generate the ancilla states |Ag—_5/3) by the
multistep electron pumping protocol in Sec. IV E. These states
are then processed by the circuit in Fig. 8, which yields the
desired logical qubit gate, T'|v/). For elementary QIP tasks and
first experimental checks, we expect that our pumping protocol
can directly yield ancilla states of sufficiently high fidelity. In
such basic cases, phase gate operations may directly be applied
to logical qubit states without the need for additional magic
state distillation steps [5], thus resulting in a significantly
reduced overhead in both hardware and operation. The above
route towards tunable phase gates also works for setups
composed of a few elementary MCB qubits [57].

VI. CONCLUSIONS

We have discussed a Majorana surface code platform based
on topological semiconductor qubits, where the nodes of the
network are Majorana-Cooper boxes hosting four Majorana
bound states. The fermion parity of each MCB is fixed
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by the charging energy, leading to a two-level (spin-1/2)
system protected by the nonlocal properties of Majorana
states. These nonlocal properties give a natural anisotropic
coupling [18] between neighboring MCBs, which is ideal for
a surface code implementation where stabilizers, consisting of
products of * or Z Pauli operators surrounding a plaquette, are
being measured. Building on this platform, we here took the
crucial next step to introduce concrete and arguably realistic
ways of operating this surface code architecture. It is worth
noting that the Majorana surface code avoids the use of
extra measurement qubits as in bosonic codes [10,43-45],
where our readout protocols are based on interfering electron
paths.

The surface code architecture presented here offers a
fault-tolerant set of gates, including CNOT and Hadamard.
To complete the group of Clifford gates, we have shown
how the S gate can be implemented via state injection of
an ancilla state into the code, which for advanced QIP tasks
may be augmented by a magic state distillation protocol.
In order to make the surface code computation universal,
one needs a single non-Clifford gate, for example, a phase
gate with arbitrary phase angle. We here take advantage
of the unique characteristics of the Majorana surface code
hardware to propose qualitatively new implementations of gate
operations in terms of a multistep single-electron pumping
protocol. This protocol has the interesting property that it
always gives a phase gate, where the phase angle of the gate
is protected in the sense that it depends on fixed and tunable
tunnel coupling amplitudes but not on the detailed timing of
the protocol, cf. Sec. IVE. In this respect, it is similar to
other schemes for adiabatic non-Clifford gates [33,38]. We
finally note that the adiabatic approximation can be partially
circumvented in our protocol if confirmation measurements
ensure that the expected final state has been reached. It is worth
mentioning that an alternative and completely measurement-
based universal approach using Ising genons in Majorana wire
networks has recently been proposed in Ref. [76].

In view of currently unknown experimental perspectives,
the realization of hybrid platforms comprising different types
of Majorana-based architectures [30-39] may offer practical
advantages. With the state injection protocol in Sec. IV D,
we have proposed a route to couple other systems to the
Majorana surface code or to related setups composed of
MCB-based qubits. To investigate the feasibility of our surface
code proposal, first experimental tests should focus on select
building blocks of the full setup. This will allow one to
characterize important system parameters, e.g., lifetimes of
MCB qubits, readout times, and so on. Among the first steps
could be to demonstrate error correction in devices containing
a few qubits, similar to what has been done for bosonic codes
with superconducting qubits [41-43,45]. Besides considering
specific error correction schemes, such tests would also be
necessary to investigate the feasibility of using MCBs as
fundamental qubits.

To conclude, we hope that our proposal will stimulate
further experimental and theoretical work towards quantum
computation based on Majorana systems. In particular, we
believe that the idea of using parity-fixed Majorana boxes
with four Majorana states as elementary qubits opens very
promising perspectives in this context.
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