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Classification of “multipole” superconductivity in multiorbital systems and its implications
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Motivated by a growing interest in multiorbital superconductors with spin-orbit interactions, we perform the
group-theoretical classification of various unconventional superconductivity emerging in symmorphic O, D4, and
D6 space groups. The generalized Cooper pairs, which we here call “multipole” superconductivity, possess spin-
orbital coupled (multipole) degrees of freedom, instead of the conventional spin singlet/triplet in single-orbital
systems. From the classification, we obtain the following key consequences, which have never been focused
in the long history of research in this field: (1) A superconducting gap function with �9 ⊗ �9 in D6 possesses
nontrivial momentum dependence different from the usual spin- 1

2 classification. (2) Unconventional gap structure
can be realized in the BCS approximation of purely local (onsite) interactions irrespective of attraction/repulsion.
It implies the emergence of an electron-phonon (e-ph) driven unconventional superconductivity. (3) Reflecting
symmetry of orbital basis functions there appear not symmetry protected but inevitable line nodes/gap minima,
and thus, anisotropic s-wave superconductivity can be naturally explained even in the absence of competing
fluctuations.
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I. INTRODUCTION

In the celebrated microscopic theory by Bardeen, Cooper,
and Schrieffer (BCS) in 1957 [1], the superconducting state
is described as a condensation of Cooper pairs. The resulting
Cooper pair wave function or gap function plays a role of the
superconducting order parameter, which spontaneously breaks
the U(1) gauge symmetry below the transition temperature Tc.

The BCS theory excellently explained interesting phe-
nomena in the traditional superconductivity. However, the
class of heavy-fermion superconductors discovered around
1980 [2] and also the high-Tc cuprates [3] did not fit the
BCS theory. The power-law temperature behavior in various
thermodynamic quantities at low temperatures observed in
these superconductors was drastically different from the con-
ventional BCS superconductors. In the early stage, it was clear
that an extension of the BCS theory is inevitable. It was soon
discussed that spin fluctuations can lead to anisotropic pairing
states [4,5], in connection with superfluid 3He [6]. In such
unconventional superconductivity, one or more symmetries in
addition to the U(1) symmetry are broken below Tc.

For instance, phase-sensitive experiments such as π -
junction and angle-resolved measurements clarified that the
high-Tc cuprates and also CeCoIn5 possess the dx2−y2 -wave
pairing state [7–9], which belongs to B1g symmetry in
the tetragonal crystal structure. In such case, low-energy
excitations below Tc are dominated by nodal quasiparticle
excitations around symmetry-protected line nodes (gap zeros)
on the Fermi surfaces. This situation is incompatible with the
fully gapped s-wave state in the conventional BCS theory. The
gap structure is closely related to the pairing symmetry and the
pairing mechanism. Thus, the superconducting gap function,
which is one of the most fundamental quantities, continues to
be hotly debated in this research field.

*nomoto.takuya@scphys.kyoto-u.ac.jp

In this context, group-theoretical classification of the super-
conducting gap functions is important and useful to investigate
a variety of superconductors. Indeed, the early works [10–13]
of classification in major point groups are indispensable
for the analysis of various unconventional superconductors
including heavy-fermion superconductors [13], cuprates [14],
ruthenates [15–17], and so on.

In the last decade, novel superconductors beyond these
major classifications have attracted much attentions. For
instance, in the noncentrosymmetric superconductors, such
as CePt3Si [18], UIr [19], and LaBiPt [20] and so on, lack
of spatial-inversion (SI) symmetry admits the presence of
antisymmetric spin-orbit coupling (SOC), and then the spin
part of the pairing state breaks SU(2) symmetry. In this case,
the so-called parity mixing occurs between spin-singlet and
-triplet states, which are separable under the SI symmetry
and the time-reversal (TR) symmetry. Classification in these
noncentrosymmetric superconductors has been established
[21–26], and also the relation with the topological nature has
been discussed [27].

Regarding centrosymmetric superconductors, “classic”
heavy-fermion superconductor UPt3 has attracted continuous
attentions since its discovery [28,29]. There has been steady
progress in group-theoretical considerations about the gap
symmetry of UPt3 [30,31]. As Bloch states are bases of a small
representation of a little group, superconducting gap functions
can be also classified on the basis of the little group [32–34].
In the nonsymmorphic systems, representations of a little
co-group often become projective at Brillouin zone (BZ)
boundary [35]. This fact yields symmetry-protected line nodes
on the BZ boundary [30]. However, it still remains unclear
what type of pairing state is realized in UPt3.

In the previous study based on the first-principles approach,
two of the present authors found that UPt3 possesses the exotic
multigap structure with twofold line nodes, which are not
allowed in the classification of a single-orbital pseudospin
model [31]. Even with only this result, we can realize the
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importance of classification in the multiorbital systems. In
addition, it has been gradually recognized that the multiorbital
character of gap functions is important for understanding
the iron-based superconductors [36–38]. A complete set of
superconducting pairing states allowed in two/three orbital
models has been summarized in Refs. [39–43].

Thus, motivated by a growing interest in multiorbital
superconductors with spin-orbit interactions, we here perform
the group-theoretical classification of various superconducting
gap functions. We focus on the pairing states with zero total
momentum, and demonstrate the classification of unconven-
tional superconductivity emerging in symmorphic O, D4,
and D6 space groups. Complete sets of basis functions are
summarized in several tables. Because of the SOC, multiorbital
degrees of freedom appear as multipole characters. Similarly
to d vector in spin-triplet states, they can be specified
by multipole operators in the corresponding point groups.
Thus, we here call the generalized pairing state “multipole”
superconductivity.

From its important but complicated classification, we obtain
the following key consequences.

(1) A superconducting gap function with �9 ⊗ �9 in D6

possesses nontrivial momentum dependence different from
that in the usual spin- 1

2 classification. This is related to
twofold-symmetric line nodes found in the microscopic study
of UPt3 [31].

(2) Unconventional gap structure can be realized in the
BCS approximation with purely local (onsite) interactions
irrespective of attraction or repulsion. It implies the emergence
of an electron-phonon (e-ph) driven unconventional supercon-
ductivity. Although the conventional e-ph interactions favor
s-wave (A1g) pairing states, the Hund’s coupling and the e-ph
interactions in magnetically ordered states can enhance such
anisotropic pairing states.

(3) In anisotropic s-wave (A1g) states composed of the
pairing of orbitals with different symmetries, there appear
not symmetry-protected but inevitable line nodes/gap minima.
For example, a B2g pairing state of degenerate px and py

orbitals in tetragonal crystals is an s wave with line nodes
along kx/ky axis in band-based representation. A possibility
of such anisotropic s-wave pairing via interorbital pairing
can provide an interpretation for the emergence of accidental
nodes/gap minima as observed in several superconductors. It
is in sharp contrast to an anisotropic s-wave driven by two
kinds of competing interactions, such as e-ph interactions and
spin fluctuations, which was discussed for the appearance of
point nodes in (Y,Lu)Ni2B2C [44].

This paper is organized as follows. In Sec. II, we will
discuss the classification of superconducting order parameters
in multiorbital systems in terms of the local orbital bases that
transform as irreducible representations of the point group in
the system. Complete tables of the Cooper pair basis functions
for representative point-group symmetries O, D4, and D6 will
be demonstrated. In the final part in Sec. II, we will show
the relations between the band-based representation and the
orbital one, and clarify how the band-based Cooper pairs are
related to the orbital-based ones. In Sec. III, we will discuss
two models for the cubic Oh and tetragonal D4h point groups
as the applications of the present group theoretical analysis.
In the former case, we will discuss what kinds of anisotropic

pairing states can emerge near quadrupole ordered phases. In
the latter, we will point out the possibility of anisotropic pairs
mediated by local fluctuations. Finally, in Sec. IV, we will
summarize this study.

II. CLASSIFICATION OF SUPERCONDUCTING
ORDER PARAMETERS

In this section, we explain how to classify superconducting
order parameters in multiorbital systems. Our main interest
is to extend the classification of unconventional superconduc-
tivity [10–13] into generic multiorbital systems. Generally,
the conventional BCS superconducting state is characterized
by the presence of Cooper pairs with zero total momentum
and the breaking of U(1) gauge symmetry. Unconventional
superconductivity additionally breaks other symmetries, for
example, point-group symmetry of a given system.

In this paper, for simplicity, we consider the classification
of the BCS superconductivity with zero total momentum in
symmorphic-lattice systems with spatial inversion (SI) and
time-reversal (TR) symmetries, although our results of the
classification are applicable even in the strong-coupling super-
conductivity. In this case, superconducting order parameters,
i.e., the Cooper pair wave functions can be classified by
irreducible representations (IRs) of a point group P (see
Appendix A 1). Furthermore, one-particle states possess the
Kramers degeneracy, which can be labeled by a pseudo-spin- 1

2
at each k point.

In the previous studies [10–13], it was implicitly supposed
that the transformation property of the pseudo-spin- 1

2 equals to
that of pure-spin- 1

2 . Although such convention in band-based
representation is always applicable in systems we consider,
the knowledge of orbital character of band electrons contains
interesting and rich physics, as the multipole degrees of
freedom do. Thus, it will be useful to describe the pairing states
not in the band, but in the local orbital bases. In this paper, we
will explicitly write the transformation property of the Kramers
degeneracy in the orbital-based representation in generic
symmorphic-lattice systems with SI and TR symmetries.
Since the classification of superconducting order parameters
is very similar to that of localized multipole moment [45], we
call the classified multiorbital superconductivity “multipole”
superconductivity. In what follows, we will show several
definitions and transformation rules and, then, summarize the
consequences in several tables. Throughout this section, we
will discuss pair amplitudes rather than the gap functions
since the gap functions are readily calculated from the
pair amplitudes and the symmetry properties are identical
(see Appendix A 1).

A. Pair amplitude

First of all, let us introduce an electron creation operator
c
†
�α(r) with the orbital � and the spin α at the site r . From a

viewpoint of the classification, it is convenient to consider that
� indicates a basis function labeled by an IR of a given point
group P , and α denotes the Kramers degrees of freedom rather
than pure-spin- 1

2 . See Appendix A 2 for the case containing
two or more atoms in a unit cell. The one-particle part of
Hamiltonian is diagonalized by a unitary matrix u�α,nσ (k) with
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the band n, the pseudo-spin-σ and the wave number k. A
band-based creation operator c̃

†
nσ (k) is given by

c̃†nσ (k) = 1√
N

∑
r

∑
�α

c
†
�α(r) exp[ik · r]u�α,nσ (k) (1a)

≡
∑
�α

c
†
�α(k)u�α,nσ (k), (1b)

where N is the number of unit cells. The corresponding
annihilation operator is obtained by the Hermite conjugate
of Eq. (1).

In the orbital bases, a pair amplitude is defined as

F�α,�′α′(k) ≡ 〈c�α(k)c�′α′(−k)〉, (2)

where 〈. . .〉 denotes the thermal average, and the fermion
antisymmetry requires

F�α,�′α′(k) = −F�′α′,�α(−k). (3)

Hereafter, we will discuss the classification of F�α,�′α′(k).

B. List of irreducible representations for the Kramers sector

We perform the classification of the pair amplitude
F�α,�′α′ (k) in typical point groups O, D4, and D6. The
classification consists of that in the orbital sectors ��′, the
Kramers sector αα′, and the wave number k. Once the orbital
sectors are fixed, we can decompose F as

F�α,�′α′ (k) = [(���′(k)σ 0 + d��′(k) · σ )iσ y]αα′ , (4)

where σ 0 is a 2 × 2 identity matrix and σ = (σx,σ y,σ z) are the
Pauli matrices in the Kramers sector. The explicit form of the
Kramers pairs (α = ±) for typical orbitals in each point group
P is listed in Appendix B. From the transformation property
under the point-group operations, we classify the Kramers part

σ̄ μ ≡ σμiσ y (μ = 0,x,y,and z) (5)

into the corresponding IRs. The results are summarized in
Tables I–III. It should be noted that the generalized d vector
d��′(k) is no longer a net spin moment of Cooper pairs,
although we conventionally use the unit vectors x, y, and z.

Finally, the classification of F�α,�′α′(k) is completed by
classifying k dependence of the basis functions ���′(k) and
d��′(k). Representative examples of these basis functions are
listed in a column φ�(k) in Tables I–III. In SI invariant
systems, all IRs are classified into even/odd parity, which is
conventionally labeled with g/u. By adding the label g/u to
� in an appropriate manner, one can make tables for Oh, D4h,
and D6h groups straightforwardly. For a complete set of basis
functions φ�(k), see Ref. [46].

Now, we discuss the consequence of the lists in Tables I–III.
We realize that even in a single-orbital system, orbital character
can play crucial roles. Within the whole 32 point groups,
there exists one and only one nontrivial combination whose
transformation properties are completely different from the
other cases. That is �9 ⊗ �9 in D6 and the equivalent groups,
which do not include E1 representation in sharp contrast
to the other products �7 ⊗ �7 or �8 ⊗ �8. In this case, the
gap functions can show an anomalous k dependence, which

TABLE I. Basis functions of IRs in O group. σ̄ μ = iσμσ y

is represented by μ = 0,x, y,z, symbolically. Index a(b) of μa(b)

represents that the pair consists of one of the non-Kramers dou-
blet a(b) in Γ8 (Appendix B) and the other orbital Γ6 or Γ7.
μa± = − 1

2 (μa ± √
3μb) and μb± = 1

2 (−μb ± √
3μa). τμ’s are the

Pauli matrices in the orbital space spanned by the non-Kramers
degrees of freedom (a/b). ζ = cos θ (τ 0,τ 0,τ 0) + sin θ (τ z

−,τ z
+,τ z)

and η = cos θ (τ y,τ y,τ y) + i sin θ (τ x
−,τ x

+,τ x), where τ z
± = − 1

2 (τ z ±√
3τ x) and τ x

± = 1
2 (−τ x ± √

3τ z). θ is an arbitrarily real parameter.

IR φ�(k) �6 ⊗ �6/�7 ⊗ �7 �6 ⊗ �7

A1 k2
x + k2

y + k2
z 0

A2 kxkykz 0
E (3k2

z − k2,k2
x − k2

y)
T1 (kx,ky,kz) (x, y,z)
T2 (kykz,kzkx,kxky) (x, y,z)

IR �6 ⊗ �8 �7 ⊗ �8 �8 ⊗ �8

A1 τ 00
A2 τ y0
E (0b,0a) (0a, − 0b) (τ z,τ x)0
T1 (xb+, yb−,zb) (xa+, ya−,za) (ζ 1x,ζ 2 y,ζ 3 z)
T2 (xa+, ya−,za) (xb+, yb−,zb) (η1x,η2 y,η3 z)

explains the emergence of an exotic gap structure in the
microscopic study for UPt3 [31]. To the best of our knowledge,
this point has not been recognized so far, which is one of the
nontrivial results in this study.

As highlighted in �9 ⊗ �9 in D6 point group, it is note-
worthy that, in Tables I–III, the Kramers sector takes different
IRs, depending on the constituting orbitals. For example, direct
products for pure-spin- 1

2 s-orbital electrons in D4h point group,
which correspond to �6g ⊗ �6g in Table II, include A1g and
A2g representations. In contrast, �6g ⊗ �7g includes B1g and
B2g , while it does not include A1g and A2g representations.
Moreover, a spin-singlet state [47] described by 0 in �6g ⊗ �7g

belongs to B1g , while that in �6g ⊗ �6g belongs to the identity
representation. This is an essential aspect of the electron
pairing in multiorbital systems.

Note that, in Table I, the pairs including non-Kramers
doublet �8 are complicated because the �8 bases labeled by
a and b (see Appendix B) are inseparable under the point-
group operations. This degeneracy also can lead to the exotic
pairing state, as recently proposed for the superconductivity in
half-Heusler semimetal YPtBi [48–50]. About the interorbital
pairs including �8 states, the classification can be performed
by introducing the Pauli matrices τ

μ

a(b) acting on �8a(b) and
�6,7, which represent a part of 3 × 3 orbital matrix space
[see Eq. (7)].

TABLE II. Basis functions of IRs in D4 group.

IR φ�(k) �6 ⊗ �6/�7 ⊗ �7 �6 ⊗ �7

A1 k2
z 0

A2 kz z
B1 k2

x − k2
y 0

B2 kxky z
E (kx,ky) (x, y) (x, − y)
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TABLE III. Basis functions of IRs in D6 group. i = 7 (8)
corresponds to upper (lower) expressions.

IR φ�(k) �i ⊗ �i �9 ⊗ �9 �7 ⊗ �8 �i ⊗ �9

A1 k2
z 0 0

A2 kz z z
B1 k3

y − 3kyk
2
x y y

B2 k3
x − 3kxk

2
y x x

E1 (kx,ky) (x, ± y) (x, ∓ y)
E2 (2kxky,k

2
x − k2

y) (i z,0) (i z, ∓ 0)

C. List of full irreducible representations

Now, let us complete a list of IRs of gap functions, which
is constructed via the subduction of(

k dependence φ�(k)
) ⊗ (Kramers part) ↓ P (6)

(see Appendix A 1). The results are summarized in
Tables IV–VI. These basis functions obtained by the sub-
duction should still be antisymmetrized to meet the fermion
antisymmetry. For this purpose, it is instructive to explicitly
write the pair amplitudes of Eq. (4) as

F�α,�′α′ (k) =
∑
μν

dμν(k)τ ν
��′ σ̄

μ

αα′ , (7)

where the matrix τ ν
��′ characterizes the orbital sector of the

pair amplitudes. In the following, we call τ ν
��′ σ̄

μ

αα′ in Eq. (7)
a multipole part of the pair amplitudes and denote τ σ̄

symbolically. In terms of dμν(k), ���′(k) and d
μ

��′(k) in Eq. (4)
are given by

���′(k) =
∑

ν

d0ν(k)τ ν
��′ , (8a)

d
μ

��′(k) =
∑

ν

dμν(k)τ ν
��′ . (8b)

The dimension of matrix τ ν
��′ depends on a given set of the

two orbitals (� and �′). For example, τ ν
��′ is the Gell-Mann

matrix in three-orbital systems with �6 ⊗ �8 and �7 ⊗ �8 in O

group, which is implicitly reflected in μa,b in Table I. In other
cases, the τ ν

��′ is simply the Pauli matrix, which represents
the different orbital degrees of freedom or the non-Kramers
indices for �8 in O group. Remember that we are considering
a pair with a given set of orbitals � and �′, and the realized pair
in reality is generally in a linear combination of such pairs.

Hereafter, let us consider two-orbital systems for sim-
plicity. The generalization to generic multiorbital systems
is straightforward. For the τ σ̄ pairing states, we can define
orbital (o) singlet/triplet after spin (s) singlet/triplet. In what
follows, o-triplet s-singlet or o-singlet s-triplet is referred to
be multipole (m) singlet, while o-singlet s-singlet or o-triplet
s-triplet to be m-triplet. Note that the singlet (triplet) just means
odd (even) under the exchange of the corresponding indices.

Let us discuss the properties of dμν(k). First, the fermion
antisymmetry imposes a constraint

dμν(k)τ νσ̄ μ = −dμν(−k)(τ ν)T (σ̄ μ)T , (9)

where AT denotes the transpose of the matrix A. From this
relation, one can see that dμν(k) should be even (odd) under
the transform k → −k for m-singlet (-triplet) pairings. Next,

the TR symmetry imposes another constraint

dμν(k)τ νσ̄ μ = −dμν∗(−k)(τ ν)T (σ̄ μ)T . (10)

From Eqs. (9) and (10), we find that dμν(k) is real whenever
the TR symmetry is preserved. Note also that the multipole
part of pair amplitudes τ σ̄ is TR even (odd) for m-singlet
(-triplet), according to the fact (τ ν)T (σ̄ μ)T = −τ νσ̄ μ for m-
singlet and τ νσ̄ μ for m-triplet. Furthermore, the SI symmetry
requires that pair amplitudes belong to the even- or odd-parity
representation, which is denoted by the index g or u:

dμν(k) = (−)P dμν(−k) for �g IRs, (11a)

dμν(k) = (−)P+1dμν(−k) for �u IRs, (11b)

where P = 0 for ν = 0,z and is equal to the total parity of
two orbitals � and �′ for ν = x,y. Therefore, the m-singlet
and -triplet pairings correspond to the even- and odd-parity
representations when the two orbitals have the same parity.

As a demonstration, let us mention a two-orbital system
with �6g and �7g orbitals in D4h point group. Both orbitals
are twofold-degenerate Kramers doublets. This two-orbital
model has been studied as a minimal model of iron-based su-
perconductors [39,40]. The decomposition of direct products
is given by �6g ⊗ �6g = �7g ⊗ �7g = A1g ⊕ A2g ⊕ Eg and
�6g ⊗ �7g = B1g ⊕ B2g ⊕ Eg (Table II). Here, let us consider
two examples of pairing states:

0 in �6g ⊗ �6g (A1g), (12a)

z in �6g ⊗ �7g (B2g). (12b)

These basis functions can be easily read from the third and the
fourth columns in Table II. Next, we attach a function φ�(k)
in Table II to the bases (12a) and (12b). For simplicity, we
consider the following k dependence:

φB1g (k) 0 in �6g ⊗ �6g (B1g = B1g ⊗ A1g), (13a)

φA2g (k) z in �6g ⊗ �7g (B1g = A2g ⊗ B2g). (13b)

These two are both B1g IRs and we can find them in Table V.
However, they are not the final expression yet. Finally, we
need to antisymmetrize Eqs. (13a) and (13b). Equation (13a)
is already an antisymmetric expression since φB1g (k) is an
even function and 0 is antisymmetric (odd). As for Eq. (13b),
it is necessary to antisymmetrize the orbital sectors �6g and
�7g . Since φA2g (k) is even and z is symmetric (even), we
should take an o-singlet τ y . Thus, we obtain the final form
of the gap function with B1g m-singlet, φA2g (k) τ y z. This is
the outline to construct pair amplitudes with a specific IR in
multiorbital systems.

Before the end of this section, let us make some remarks
on interorbital pairings in Tables IV and VI. One is that
representations of some basis functions are mixed parity
and ambiguous. For example, φA1 (k) × (z,i0) belongs to
E2 representations of �7 ⊗ �9 in Table VI. Depending on
φA1 = φA1g or φA1u , the basis functions are classified into two
types of basis functions

φA1g (k) × (τ y z,τ x0) (m-singlet), (14a)

φA1u(k) × (τ x z, − τ y0) (m-triplet), (14b)

after considering the fermion antisymmetry.
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TABLE IV. Basis functions of IRs in O group. The following abbreviations are used: φ�
i = φ�

i (k), φE
1± = 1

2 (−φE
1 ± √

3φE
2 ), φE

2± =
− 1

2 (φE
2 ± √

3φE
1 ), and φ

T1
i (k) = ki , φT2 (k) = k̃i with i = 1,2,3. Basis fucntions in �6 ⊗ �8 space are obtained by replacing μa → μb,μb →

−μa with μ = 0,x, y,z in the table of �7 ⊗ �8 space. The other notations are the same as in Table I.

IR �6 ⊗ �6 / �7 ⊗ �7

A1 φA1 0 k1x + k2 y + k3 z
A2 φA2 0 k̃1x + k̃2 y + k̃3 z

E (φE
1 ,φE

2 )0 ( k1√
3

x + k2√
3

y − 2k3√
3

z,k2 y − k1x),(k̃1x − k̃2 y, k̃1√
3

x + k̃2√
3

y − 2k̃3√
3

z)

T1 (k1,k2,k3)0 (φA1 x,φA1 y,φA1 z),(k2 z − k3 y,k3x − k1 z,k1 y − k2x),
(φE

1+x,φE
1− y,φE

1 z), (k̃2 z + k̃3 y,k̃3x + k̃1 z,k̃1 y + k̃2x)
T2 (k̃1,k̃2,k̃3)0 (φA2 x,φA2 y,φA2 z),(k2 z + k3 y,k3x + k1 z,k1 y + k2x),

(φE
2+x,φE

2− y,φE
2 z), (k̃2 z − k̃3 y, k̃3x − k̃1 z,k̃1 y − k̃2x)

IR �6 ⊗ �7

A1 φA2 0 k̃1x + k̃2 y + k̃3 z
A2 φA1 0 k1x + k2 y + k3 z

E (φE
2 , − φE

1 )0 (k1x − k2 y, k1√
3

x + k2√
3

y − 2k3√
3

z),( k̃1√
3

x + k̃2√
3

y − 2k̃3√
3

z,k̃2 y − k̃1x)

T1 (k̃1,k̃2,k̃3)0 (φA2 x,φA2 y,φA2 z),(k2 z + k3 y,k3x + k1 z,k1 y + k2x),
(φE

2+x,φE
2− y,φE

2 z),(k̃2 z − k̃3 y,k̃3x − k̃1 z,k̃1 y − k̃2x)
T2 (k1,k2,k3)0 (φA1 x,φA1 y,φA1 z),(k2 z − k3 y,k3x − k1 z,k1 y − k2x),

(φE
1+x,φE

1− y,φE
1 z),(k̃2 z + k̃3 y,k̃3x + k̃1 z,k̃1 y + k̃2x)

IR �7 ⊗ �8/�6 ⊗ �8 (μa → μb,μb → −μa)

A1 φE
1 0a − φE

2 0b {k1xa+ + k2 ya− + k3 za,(k → k̃ ,a → b)}
A2 φE

2 0a + φE
1 0b {k̃1xa+ + k̃2 ya− + k̃3 za,(k̃ → k,a → b)}

E (φA1 0a, − φA1 0b),(φA2 0b,φ
A2 0a), {( k1√

3
xa+ + k2√

3
ya− − 2k3√

3
za,k2 ya− − k1xa+),(k → k̃,a → b)},

(φE
1 0a + φE

2 0b, − φE
2 0a + φE

1 0b) {(k̃1xa+ − k̃2 ya−,
k̃1√

3
xa+ + k̃2√

3
ya− − 2k̃3√

3
za),(k̃ → k,a → b)}

T1 (k10a+,k20a−,k30a), {φA1 (xa+, ya−,za),(A1 → A2,a → b)},
(k̃10b+,k̃20b−,k̃30b) {(φE

1+xa+,φE
1− ya−,φE

1 za),(φE
1 → φE

2 ,a → b)},
{(k2 za − k3 ya−,k3xa+ − k1 za,k1 ya− − k2xa+),(k → k̃,a → b)},
{(k̃2 za + k̃3 ya−,k̃3xa+ + k̃1 za,k̃1 ya− + k̃2xa+),(k̃ → k,a → b)}

T2 (k̃10a+,k̃20a−,k̃30a), {φA1 (xb+, yb−,zb),(A1 → A2,b → a)},
(k10b+,k20b−,k30b) {(φE

1+xb+,φE
1− yb−,φE

1 zb),(φE
1 → φE

2 ,b → a)},
{(k2 za + k3 ya−,k3xa+ + k1 za,k1 ya− + k2xa+),(k → k̃,a → b)},
{(k̃2 za − k̃3 ya−,k̃3xa+ − k̃1 za,k̃1 ya− − k̃2xa+),(k̃ → k,a → b)}

IR �8 ⊗ �8

A1 φA1τ 00,φE
1 τ z0 + φE

2 τ x0, φA2τ y0 {k1ζ
1x + k2ζ

2 y + k3ζ
3 z,(k → k̃ ,ζ → η)}

A2 φA2τ 00,φE
2 τ z0 − φE

1 τ x0, φA1τ y0 {k̃1ζ
1x + k̃2ζ

2 y + k̃3ζ
3 z,(k̃ → k,ζ → η)}

E (φA1τ z,φA1τ x)0,(φA2τ x, − φA2τ z)0, {( k1√
3
ζ 1x + k2√

3
ζ 2 y − 2k3√

3
ζ 3 z,k2ζ

2 y − k1ζ
1x),(k → k̃,ζ → η)},

(φE
1 τ z − φE

2 τ x, − φE
2 τ z − φE

1 τ x)0, {(k̃1ζ
1x + k̃2ζ

2 y, k̃1√
3
ζ 1x + k̃2√

3
ζ 2 y + 2k̃3√

3
ζ 3 z),(k̃ → k,ζ → η)}

(φE
1 ,φE

2 )τ 00, (φE
2 , − φE

1 )τ y0
T1 (k1, k2, k3)τ 00, {φA1 (ζ 1x, ζ 2 y, ζ 3 z),(A1 → A2,ζ → η)},

(k̃1, k̃2, k̃3)τ y0, {(φE
1+ζ 1x, φE

1−ζ 2 y, φE
1 ζ 3 z),(φE

1 → φE
2 ,ζ → η)},

(k1τ
z
−, k2τ

z
+, k3τ

z)0, {(k2ζ
3 z − k3ζ

2 y, k3ζ
1x − k1ζ

3 z, k1ζ
2 y − k2ζ

1x),(k → k̃,ζ → η)},
(k̃1τ

x
−, k̃2τ

x
+, k̃3τ

x)0 {(k̃2ζ
3 z + k̃3ζ

2 y, k̃3ζ
1x + k̃1ζ

3 z, k̃1ζ
2 y + k̃2ζ

1x),(k̃ → k,ζ → η)}
T2 (k̃1, k̃2, k̃3)τ 00, {φA2 (ζ 1x, ζ 2 y, ζ 3 z),(A2 → A1,ζ → η)},

(k1, k2, k3)τ y0, (φE
2+ζ 1x, φE

2−ζ 2 y, φE
2 ζ 3 z),(φE

2 → φE
1 ,ζ → η)},

(k̃1τ
z
−, k̃2τ

z
+, k̃3τ

z)0, {(k̃2ζ
3 z − k̃3ζ

2 y, k̃3ζ
1x − k̃1ζ

3 z, k̃1ζ
2 y − k̃2ζ

1x),(k̃ → k,ζ → η)},
(k1τ

x
−, k2τ

x
+, k3τ

x)0 {(k2ζ
3 z + k3ζ

2 y, k3ζ
1x + k1ζ

3 z, k1ζ
2 y + k2ζ

1x),(k → k̃,ζ → η)}
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TABLE V. Basis functions of IRs in D4 group.

IR �6 ⊗ �6 / �7 ⊗ �7

A1 φA1 0 φA2 z,φE
1 x + φE

2 y
A2 φA2 0 φA1 z,φE

2 x − φE
1 y

B1 φB1 0 φB2 z,φE
1 x − φE

2 y
B2 φB2 0 φB1 z,φE

2 x + φE
1 y

E (φE
1 ,φE

2 )0 φA1 (x, y),φA2 ( y, − x),
φB1 (x, − y),φB2 ( y,x),

(φE
2 , − φE

1 )z

IR �6 ⊗ �7

A1 φB1 0 φB2 z,φE
1 x − φE

2 y
A2 φB2 0 φB1 z,φE

2 x + φE
1 y

B1 φA1 0 φA2 z,φE
1 x + φE

2 y
B2 φA2 0 φA1 z,φE

2 x − φE
1 y

E (φE
1 , − φE

2 )0 φA1 (x, − y),φA2 ( y,x),
φB1 (x, y),φB2 ( y, − x),

(φE
2 ,φE

1 )z

Another is a special case in �6 (7) ⊗ �8 of O group in
Table IV as noted in Sec. II B. Since the pair can be �6 (7) ⊗ �8a

or �6 (7) ⊗ �8b, we need two kinds of τ matrices: one for
�6 (7) ⊗ �8a and the other for �6 (7) ⊗ �8b.

Tables IV–VI are one of the main results in this paper. Even
considering systems with two or more orbitals, the present
results can be always applied by focusing on the 4×4 submatrix
embedded in the entire space. Therefore, the basis functions
in Tables IV–VI are sufficient for any symmorphic systems.
Although Tables IV–VI seem to be rather complicated, they
include important physical information about the pairing
mechanism. This is because one can deduce what kinds
(symmetry) of order parameters are realized when the system
shows a characteristic fluctuation since we have classified the
superconducting order parameters in the orbital bases, which
is easily related to the form of the characteristic interaction. In
Sec. III, we will see this point by discussing several examples.

D. Band-based representations

So far, we have discussed the pair amplitudes and their
basis functions in orbital-based representations. Here, let us
examine the relation between the orbital-based and the band-
based representations since many observables strongly depend
on the (band-based) energy gap on the Fermi surfaces.

As usual, an intraband Cooper pair amplitude can be defined
by (the band index omitted)

F̃σσ ′(k) = [(�(k)σ 0 + d(k) · σ )iσy]σσ ′, (15)

with pseudo-spin-singlet amplitude �(k) and triplet d(k).
Strictly, pseudo-spin-σ (σ ′) = ↑,↓ is the Kramers index for a
given band. From Eqs. (1) and (2), one can obtain the relation
between the band- and the orbital-based pair amplitudes

F̃σσ ′(k) =
∑

�α,�′α′
u∗

�α,σ (k)u∗
�′α′,σ ′ (−k)F�α,�′α′ (k). (16)

Before discussing the details, let us explain our phase
convention. We use a convention that the degenerate pair for a
given k satisfies

(�I )c†�±(k)(�I )−1 = ∓c
†
�∓(k) (17)

TABLE VI. Basis functions of IRs in D6 group. Expressions for
�7 (8) correspond to upper (lower) signs.

IR �7 ⊗ �7 (upper)/�8 ⊗ �8 (lower)

A1 φA1 0 φA2 z,φE1
1 x ± φ

E1
2 y

A2 φA2 0 φA1 z,φE1
2 x ∓ φ

E1
1 y

B1 φB1 0 φB2 z,φE2
1 x ± φ

E2
2 y

B2 φB2 0 φB1 z,φE2
2 x ∓ φ

E2
1 y

E1 (φE1
1 ,φ

E1
2 )0 φA1 (x, ± y),φA2 ( y, ∓ x),

(φE2
2 x ± φ

E2
1 y,φE2

1 x ∓ φ
E2
2 y),

(φE1
2 , − φ

E1
1 )z

E2 (φE2
1 ,φ

E2
2 )0 φB1 (x, ± y),φB2 ( y, ∓ x),

(φE1
2 x ± φ

E1
1 y,φE1

1 x ∓ φ
E1
2 y),

(φE2
2 , − φ

E2
1 )z

IR �9 ⊗ �9

A1 φA1 0 φA2 z,φB1 y,φB2 x
A2 φA2 0 φA1 z,φB2 y,φB1 x
B1 φB1 0 φB2 z,φA1 y,φA2 x
B2 φB2 0 φB1 z,φA2 y,φA1 x
E1 (φE1

1 ,φ
E1
2 )0 (φE2

1 ,φ
E2
2 ) y,(φE2

2 , − φ
E2
1 )x,

(φE1
2 , − φ

E1
1 )z

E2 (φE2
1 ,φ

E2
2 )0 (φE1

1 ,φ
E1
2 ) y,(φE1

2 , − φ
E1
1 )x,

(φE2
2 , − φ

E2
1 )z

IR �7 ⊗ �8

A1 φB1 y,φB2 x φ
E2
1 z − iφ

E2
2 0

A2 φB2 y,φB2 x φ
E2
2 z + iφ

E2
1 0

B1 φA1 y,φA2 x φ
E1
1 z − iφ

E1
2 0

B2 φA2 y,φA1 x φ
E1
2 z + iφ

E1
1 0

E1 (φE2
1 ,φ

E2
2 ) y, φB1 (z, − i0),φB2 (i0,z),

(φE2
2 , − φ

E2
1 )x (φE1

2 z − iφ
E1
1 0,φ

E1
1 z + iφ

E1
2 0)

E2 (φE1
1 ,φ

E1
2 ) y, φA1 (z, − i0),φA2 (i0,z),

(φE1
2 , − φ

E1
1 )x (φE2

2 z − iφ
E2
1 0,φ

E2
1 z + iφ

E2
2 0)

IR �7 ⊗ �9 (upper)/�8 ⊗ �9 (lower)

A1 φ
E1
1 x ∓ φ

E1
2 y φ

E2
1 z ± iφ

E2
2 0

A2 φ
E1
2 x ± φ

E1
1 y φ

E2
2 z ∓ iφ

E2
1 0

B1 φ
E2
1 x ∓ φ

E2
2 y φ

E1
1 z ± iφ

E1
2 0

B2 φ
E2
2 x ± φ

E2
1 y φ

E1
2 z ∓ iφ

E1
1 0

E1 φA1 (x, ∓ y), φB1 (z, ± i0),φB2 (i0, ∓ z),

φA2 ( y, ± x), (φE1
2 z ± iφ

E1
1 0,φ

E1
1 z ∓ iφ

E1
2 0)

(φE2
2 x ∓ φ

E2
1 y,φE2

1 x ± φ
E2
2 y)

E2 φB1 (x, ∓ y), φA1 (z, ± i0),φA2 (i0, ∓ z),

φB2 ( y, ± x), (φE2
2 z ± iφ

E2
1 0,φ

E2
1 z ∓ iφ

E2
2 0)

(φE1
2 x ∓ φ

E1
1 y,φE1

1 x ± φ
E1
2 y)

under the time-reversal (�) and spatial inversion (I ) opera-
tions. Using this convention, one obtains

u�+,↑(k) = (−1)P�u∗
�−,↓(k), (18a)

u�+,↓(k) = (−1)P�+1u∗
�−,↑(k), (18b)
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where P� is the parity of the orbital �. Furthermore, in
centrosymmetric systems, one can take

u�α,σ (k) = u�α,σ (−k)(−1)P̄� , (19)

with P̄� ≡ P� + P0, where P0 is the parity for a reference
orbital �0 of the band electron concerned (see the definition of
�0 below).

Although the sum of �(�′) in Eq. (16) contains all of orbitals,
it is sufficient to consider the case of two orbitals �(�′) = 1,2
in the discussion below. In Eq. (7), F�α,�′α′ (k) is expressed by
d

μν

��′ (k), which is related to �(k) and d(k) in the following
way: (

�(k)
d(k)

)
= (−1)P̄�

∑
s=±

∑
ν=0,x,y,z

Ws
ν (k)

(
d0ν

s (k)
�dν
s (k)

)
, (20)

with [ �dν
s (k)]μ = d

μν
s (k), d

μν
± = 1

2 (dμν

12 ± d
μν

21 ), and Ws
ν (k)

are transformation matrices defined below. When the two
orbitals have the same parity P1 = P2, due to the fermion
antisymmetry, only W+

0,x,z and W−
y are nonvanishing, and the

others are zero:

W+
ν (k) =

(
w0

0ν 0 0 0
�0 − �wxν �wyν − �wzν

)
, (21a)

W−
y (k) = i

(
0 −w0

xy w0
yy −w0

zy

�w0y
�0 �0 �0

)
, (21b)

where ν = 0, x, and z. Here, �0 = (0,0,0)T and

w0
μν = (−1)P� (uσμτνu∗), (22a)

�wμν = [
Re(uσ̄μτ νu),Im(uσ̄μτ νu), − w0

μν

]T
, (22b)

with

(uσμτνu′) ≡
±∑

αα′

1,2∑
��′

u�α,↑(k)σμ

αα′τ
ν
��′u

′
�′α′,↑(k), (23)

and σμ → σ̄ μ. Even when the two parities are different
P1 �= P2, Ws

ν can be easily obtained by multiplying (−1) and
replacing W±

ν → W∓
ν in Eqs. (21a) and (21b). Note also that

in this case, W±
ν (k) = −W±

ν (−k) holds from Eq. (19).
Equation (20) indicates that F̃σσ ′(k) is the product ofWs

ν (k)
and the orbital based F�α,�α′(k). Thus, the k dependence of
W±

ν (k) can yield additional nodes in the band-based gap
functions [51]. We will discuss this aspect in Sec. III, but
before that, we need to explain how to fix the phase ambiguity
involved in W±

ν (k).
Generally, when the TR and SI symmetries are held,W±

ν (k)
is accompanied by at least U(2) phase ambiguity for every
band and at every k point, due to the U(1) gauge and the
Kramers degeneracy. In order to remove such ambiguity, a
natural phase-fixing procedure is necessary. Here, we consider
assigning an IR of the point group to each band n in such a
way that the IR corresponds to that of the dominant orbital �0

for the band n. Indeed, the choices of the IRs are arbitrary, but
the above choice is one of natural ways as explained below.
This can be performed by the following procedure: for the

dominant orbital component �0 in the band n, u�0±,n∓(k) are
set to zero and u�0±,n±(k) to a real number, respectively (see
Appendix C 1). This way of the phase convention naturally
connects generic situations to the orbital-diagonal limit, where
there exist no hybridizations between different orbitals. With
this, the band n and the main orbital �0 have the same symmetry
without ambiguity. Therefore, Tables IV–VI are still valid in
the band-based Cooper pairs (see Appendix C 2).

Using the phase-fixed bases, one can discuss the additional
nodes through W±

ν (k). Information of the IR in the orbital-
based Cooper pairs is encoded in W±

ν (k) and, thus, W±
ν (k)

can possess nodes if this belongs to an anisotropic IR.
Equation (20) means that the k dependence of the band-
based pair amplitudes is determined by a product of W±

ν (k)
and the orbital-based ones. This implies that even local
orbital pairs can be transformed into anisotropic ones in the
band representation, and also non-A1g interorbital pairs can
lead to anisotropic A1g band-based pairs in connection with
non-A1g W±

ν (k). In the next section, we will discuss these
mechanisms to realize anisotropic superconductivity in detail.

III. EXAMPLES

In this section, we discuss (i) the pairing states emerging
in close proximity to (anti)ferroic quadrupole ordering, (ii)
a mechanism of anisotropic s-wave (A1g) pairing state, and
(iii) anisotropic pairing states mediated by local fluctuations.
The case (i) is a generalization of spin-fluctuation mechanism:
d-wave pairing state [4,5] next to antiferromagnetic phases,
or p wave to ferromagnetic phases. We will discuss these
features unique to multiorbital superconductors, which are our
main results in this paper. Here, we focus on gap functions
rather than the Cooper pair amplitudes since the former can be
more easily obtained in actual calculations.

A. �8 model in a cubic lattice

First, let us consider a model with non-Kramers doublet �8u

on a simple-cubic lattice. It may be related to recently discov-
ered superconductivity in Pr-based 1-2-20 compounds [52,53].
Local bases |�8a,b; ±〉 are fourfold degenerate with the orbital
a, b and the Kramers degeneracy ±. For simplicity, as a
pairing interaction Hint, we take the nearest-neighbor Eg-
orbital (quadrupole) fluctuations

Hint = 1

N

∑
q

∑
i

v(q)MEi
g
(−q)MEi

g
(q), (24)

MEi
g
(q) =

∑
k

∑
12

[
M̂Ei

g

]
12c

†
1(k)c2(k + q), (25)

where the sum of 1 (2) symbolically represents the sum of
the fourfold local bases |�8a,b; ±〉, and the matrices of the
multipole part M̂Ei

g
are defined by

M̂E1
g
= τ zσ 0

2
, M̂E2

g
= τ xσ 0

2
. (26)

Here, [τ νσμ]12 = τ ν
a1a2

σμ
σ1σ2

with aj = a or b and σj = ±. The
momentum dependence of the pairing interaction is v(q) =
2v(cx + cy + cz), where v is a constant, cμ = cos qμ (μ =
x,y,z), and the lattice constant is set to unity. Note that the
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normalization condition Tr[M̂Ei
g
M̂

†
E

j
g

] = δij is satisfied, where

Tr is taken for both the orbital and the Kramers indices.
Now, let us solve a superconducting gap equation within

the mean-field theory (see Appendix A 1). It is convenient to
decouple Eq. (24) into each Cooper channel. To this end, we
rewrite v(q) as follows:

v(k − k′) = v
∑

�

∑
i

φ�
i (k)φ�

i (k′), (27)

where � runs over A1g , Eg , and T2g IRs, and i is the label for
different bases in Eg and T2g . The basis functions φ�

i (k) are
defined as follows:

φA1g =
√

2

3
(cx + cy + cz), (28a)

φ
Eg

1 = 1√
3

(2cz − cx − cy), (28b)

φ
Eg

2 = cx − cy, (28c)

φT1u

μ =
√

2sμ, (μ = x,y,z) (28d)

with sμ = sin kμ. These basis functions meet the orthonormal-
ity condition

1

N

∑
k

φ�
i (k)

(
φ�′

j (k)
)∗ = δij δ��′ . (29)

Then, we can decompose the pairing interaction into the zero-
momentum Cooper channels

Hint = − 1

2N

∑
�α

∑
i

v�
α �

†
�i,α��i,α, (30)

�
†
�i,α =

∑
k

∑
12

[
ϕ̂�

α,i(k)
]

12c
†
1(k)c†2(−k). (31)

Here, the form factor ϕ̂�
α,i(k), which will be calculated below

and shown in Eqs. (34) and (35), is regarded as a basis function
of the Cooper channel labeled by �, i, and α. The k dependence
of gap functions is determined by one or a linear combination
of ϕ̂�

α,i(k) (Appendix A 1).
For the decomposition into the Cooper channels, it is

convenient to use the identity

2σ 0
14σ

0
23 =

∑
μ

σ̄
μ

12σ̄
μ∗
43 , (32)

and similar ones for the orbital components. Signs arising from
these decompositions are summarized in Table VII, which
is also useful to understand what kinds of Cooper channel
are attractive. In the present case, we obtain the following
decomposition:∑

i=z,x

[τ iσ 0]14[τ iσ 0]23

= 1

2

∑
μ

([τ 0σ̄ μ]12[τ 0σ̄ μ]∗43 − [τ yσ̄ μ]12[τ yσ̄ μ]∗43). (33)

This indicates that the pairing interaction is v for o-singlet and
−v for o-triplet.

Now, let us illustrate a possible phase diagram. In the case
of v > 0 (antiferroic Eg fluctuations), the o-singlet channels

TABLE VII. Signs ci
μν involved in the decomposition from parti-

cle hole (ph) to the Cooper channels: 2τμ
a1a4

τμ
a2a3

= ∑
ν c1

μντ
ν
a1a2

τ ν∗
a4a3

for the orbital sector, and 2σμ
σ1σ4

σμ
σ2σ3

= ∑
ν c2

μνσ̄
ν
σ1σ2

σ̄ ν∗
σ4σ3

for the spin
sector.

Cooper channels

ph channels τ 0τ 0∗ τ xτ x∗ τ yτ y∗ τ zτ z∗

2τ 0τ 0 1 1 1 1
2τ xτ x 1 1 −1 −1
2τ yτ y −1 1 −1 1
2τ zτ z 1 −1 −1 1

σ̄ 0σ̄ 0∗ σ̄ x σ̄ x∗ σ̄ y σ̄ y∗ σ̄ zσ̄ z∗

2σ 0σ 0 1 1 1 1
2σ xσ x −1 −1 1 1
2σ yσ y −1 1 −1 1
2σ zσ z −1 1 1 −1

τ yσ̄ μ in Eq. (33) are attractive. Thus, the gap functions for the
following channels can be realized:

φA1g ηνμ, φ
Eg

1,2η
νμ, φT1u

μ τ y0, (34)

which belong to, respectively, T2g , T2g,1g , and T2u IRs in
Table IV. Following the symmetrization procedure in Sec. II C,
we find that μ = 0 components in Eq. (34) are forbidden due to
the fermion antisymmetry since φA1g (k) and φEg (k) are even
functions in k. Thus, it is natural that the superconducting
states in close proximity to an antiferroic quadrupole ordered
phase belong to three-dimensional representations. In this
regard, it is very interesting to explore what kinds of supercon-
ducting state are realized in Pr-based 1-2-20 compounds under
high pressures, where the quadrupole order is suppressed [52].

Next, in the case of v < 0 (ferroic quadrupole fluctuations),
o-triplet channels τ 0σ̄ μ in Eq. (33) are favored. The gap
functions in attractive channels are

φA1g τ 00, φ
Eg

1,2τ
00, φT1u

μ ζ νμ, (35)

which belong to, respectively, A1g , Eg , and {A1u, Eu, T1u,2u}
IRs. Again, the fermion antisymmetry requires μ �= 0 in
Eq. (35). It should be noted that the intersite fluctuations can
lead to an A1g pairing state.

Finally, let us illustrate schematic phase diagrams expected
for antiferroic fluctuations in Fig. 1(a) and for ferroic ones
in Fig. 1(b). The superconducting states in Fig. 1(a) are
expected to be three-dimensional representations, while, in
Fig. 1(b), there are several candidates for the superconductivity
within the present analysis. Fluctuations beyond the mean
field approximation may favor some of the gap functions.
Elaborated calculations are needed to clarify this. Note that
the present results are based on a simple model, and the details
depend on the electronic structures in actual materials.

It is often hard to observe quadrupole orderings exper-
imentally. Several materials have been reported to exhibit
quadrupole orders: CeB6 [45,54], PrPb3 [55,56], Pr-based 1-2-
20 compounds [57], and so on [58]. As far as we know, among
these systems, superconductivity is observed only in Pr-based
1-2-20 compounds [52,53]. Strictly speaking, as Pr-based
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I

AFQ

g

T

(a)

g II

FQ

g

T

(b)

FIG. 1. Schematic phase diagram near (a) antiferroic and (b)
ferroic quadrupole (Eg) ordered phase as a function of temperature
T and a control parameter g, such as pressures. IRs of the obtained
superconductivity belong to T1g, 2T2g , and T2u in the region I, while
A1g, A1u, Eg, Eu, T1u, and T2u in the region II.

1-2-20 compounds are nonsymmorphic systems, our theory
is not directly applicable. However, the pressure-temperature
phase diagram for PrV2Al20 [59] is similar to Fig. 1(a). We
can expect the emergence of unconventional three-dimensional
superconductivity mentioned above.

B. �6u and �7u model in a tetragonal lattice

The second example is a two-orbital model with px/py or-
bitals in a two-dimensional square lattice with D4h symmetry.
This corresponds to a model for BiS2-layered superconductors
LaO1−xFxBiS2 [60]. Under D4h symmetry, px and py orbitals
are classified into �6u and �7u:

c
†
�6u,± = 1√

2

(
ic

†
px,∓ ∓ c

†
py,∓

)
, (36a)

c
†
�7u,± = 1√

2

(
ic

†
px,∓ ± c

†
py,∓

)
. (36b)

Here, c
†
px,y ,σ is the creation operator for the px,y orbital with

the pure-spin-σ = ±, while c
†
�6u,7u,α

is that for the �6u,7u orbital

with the Kramers degrees of freedom ±. In terms of c
†
�6u,7u,α

,
we define the noninteracting Hamiltonian by

H0 =
∑

k

∑
12

[ĥ(k)]12c
†
1(k)c2(k), (37)

with

ĥ(k) = (h0(k)τ 0 + �τz + hx(k)τ x)σ 0 + hy(k)τ yσ z. (38)

Following Ref. [61], we set

h0(k) = t1(cx + cy) + t2cxcy + t3(c′
xcy + cxc

′
y) − μ, (39a)

hx(k) = t4(cx − cy), (39b)

hy(k) = [t5 + t6(cx + cy)]sxsy, (39c)

where c′
x,y = cos 2kx,y and (t1,t2,t3,t4,t5,t6,μ) = (−0.334,

1.948,0.166,−0.214,−1.572,−0.220,−1.40) in the units of
eV. The additional � term in Eq. (38) simply comes from the
atomic SOC for the Bi p electrons, and we set � = −0.15.
Note that the model (37) holds D4h symmetry, although the
actual material LaO1−xFxBiS2 belongs to nonsymmorphic

space group. Hereafter, by using the model (37), we dis-
cuss unconventional superconductivity due to two kinds of
pairing mechanisms: (A) an intersite orbital density wave
fluctuations [62,63], and (B) a local fluctuation, e.g., driven
by electron-phonon interactions.

First, let us consider fourfold-symmetry-breaking orbital
fluctuations. For simplicity, we consider B1g and B2g type
orbital fluctuations, which are, respectively, described by
M̂B1g

= τ xσ 0/2 and M̂B2g
= τ yσ z/2 in �6u ⊗ �7u space. The

corresponding pairing interaction is given by

Hint = 1

N

∑
q

∑
�=B1g,B2g

v�(q)M�(−q)M�(q), (40)

with v�(q) = 2v�(cx + cy). For q = k − k′, v�(k − k′) can
be decomposed into A1g , B1g , and Eu IRs:

φA1g = cx + cy, (41a)

φB1g = cx − cy, (41b)(
φ

Eu

1 ,φ
Eu

2

) =
√

2(sx,sy). (41c)

Thus, Eq. (40) simply reads as

Hint = − 1

4N

∑
μν

vμν
∑
1234

[τ νσ̄ μ]12[τ νσ̄ μ]∗43

×
∑
kk′

∑
�i

φ�
i (k)φ�

i (k′)c†1(k)c†2(−k)c3(−k′)c4(k′), (42)

with � = A1g, B1g , or Eu. Here, vμν are given as follows:

4vI = −(vB1g + vB2g ), (43a)

4vII = −(vB1g − vB2g ), (43b)

4vIII = (vB1g − vB2g ), (43c)

4vIV = (vB1g + vB2g ), (43d)

where the indices I–IV indicate the following sets of (μ,ν):

I : (0,0), (z,0), (x,x), (y,x), (44a)

II : (x,0), (y,0), (0,x), (z,x), (44b)

III : (0,y), (z,y), (x,z), (y,z), (44c)

IV : (x,y), (y,y), (0,z), (z,z). (44d)

From the same analysis as in Sec. III A, for example,
φ(k)τ 00 is favored for the ferroic B1g/B2g fluctuations, while
φ(k)τ 0x for the ferroic B1g and the antiferroic B2g fluctuations,
and so on. When we focus on even-parity pairing states, the
gap functions favored by the present interactions are listed as
follows:

I : ϕ̂
A1g

1 = φA1g τ 00, ϕ̂
B1g

1 = φB1g τ 00, (45a)

II : ϕ̂
A1g

2 = φB1g τ x0, ϕ̂
B1g

2 = φA1g τ x0, (45b)

III : ϕ̂A2g = φB1g τ y z, ϕ̂B2g = φA1g τ y z, (45c)

IV : ϕ̂
A1g

3 = φA1g τ z0, ϕ̂
B1g

3 = φB1g τ z0,(
ϕ̂

Eg

1,1,ϕ̂
Eg

1,2

) = φA1g τ y(−x, y),(
ϕ̂

Eg

2,1,ϕ̂
Eg

2,2

) = φB1g τ y(x, y). (45d)
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These orbital-based gap functions ϕ̂�
i are transformed into the

band-based ones ϕ̃�
i via unitary transformations as discussed in

Sec. II D. It should be noted that the band-based ϕ̃�
i is crucially

important in low-energy excitations observed experimentally.
In what follows, let us elucidate the nodal structure of ϕ̃�

i .
For the case I, the nodal structures of ϕ̃’s solely come from

those in ϕ̂
A1g

1 or ϕ̂
B1g

1 since τ 00 is A1g . In contrast, in the case

II, due to a unique property of multiorbital systems, both ϕ̃
A1g

2

and ϕ̃
B1g

2 possess nontrivial nodal structure along kx ± ky = 0

lines. In the orbital based ϕ̂
B1g

2 , since the k dependence of

φA1g belongs to A1g , the nodal structures of ϕ̃
B1g

2 come from
the unitary matrix through Eq. (20). Indeed, τ x0 is B1g IR in
Table II. The elements of the unitary matrix, which transform
into the band mainly composed of �6u orbital, are given by

(u�6u+,↑, u�6u−,↑) ∼ (1, 0),

(u�7u+,↑, u�7u−,↑) ∼ (e2iθk , e−iθk ),

with θk being the angle in the kx-ky plane. Then,

[W+
x (k)]11 ∼ cos 2θk ∼ k2

x − k2
y, (46)

which has, indeed, B1g symmetry (Appendix C 2). As for the
gap function with A1g symmetry, it is commonly considered
that it does not have symmetry-protected nodes. However,
for ϕ̂

A1g

2 in Eq. (45b), since both φB1g and Eq. (46) have

line nodes along kx ± ky = 0, ϕ̃
A1g

2 possesses B1g-like gap
nodes [Fig. 2(c)]. Although these nodes are not symmetry
protected, one can expect that a specific fluctuation leads to
such accidental nodes in A1g gap functions.

Figure 2(a) depicts the schematic phase diagram for
the even-parity sector obtained by numerical calculations.
The corresponding nodal structures are summarized in

AF-B1g

B1g A1g

A2g

I II

III IV

(a)

(c) (d)

vB1g

0

0

0.2

0.4

1.0

0.8

0.6
0

0.4

-0.4

0.8
0.6

0.2

-0.8
-0.6

-0.2

(b)

−π

π

ky

kx

0

0.5

1.0

-1.0

-0.5

1.5

-1.5−π πF-B1g

F-B2g AF-B2g
vB2g

FIG. 2. (a) Schematic phase diagram of the simple two-orbital
model for BiS2-layered superconductors. B1g and B2g type ferroic
(F)/antiferroic (AF) orbital fluctuations have been considered. A
typical band-based gap structure ϕ̃�(k) is illustrated in (b) � = B1g ,
(c) A1g , and (d) A2g states. The (green) solid lines indicate the Fermi
surface in this model.

Figs. 2(b)–2(d). The region around IV is regarded as a normal
state because the corresponding Tc is very low due to the fact
that the attractive pairs are in interband pairing rather than
intraband pairing. Figure 2(c) clearly shows that the A1g gap
function is strongly anisotropic as discussed above. It should be
emphasized that this orbital-driven anisotropic A1g gap is not
specific to the present model, but can commonly appear in any
multiorbital superconductors. This mechanism may provide a
clue to understanding gap anisotropies in, e.g., CeRu2 [64] and
PrOs4Sb12 [65,66]. Furthermore, the appearance of the A2g gap
structure can be also regarded as a characteristic property of
multiorbital systems because if the k dependence of the gap
function comes only from φA2g (k), φA2g (k) must take the form
of φA2g (k) ∼ sin kx sin ky(cos kx − cos ky). To realize such gap
function in a single-orbital system, there need to be much
longer-range interactions than in the present nearest-neighbor
model.

C. Nodal gap derived from local fluctuations

Next, we focus on local fluctuations with no k dependence.
First, we show that only the local fluctuations can induce
anisotropic and nodal superconductivity [51] in sharp contrast
to a naive expectation. As in Sec. III B, we consider B1g and
B2g fluctuations, setting a constant v�(q) = v� in Eq. (40).
In this case, the basis functions in the orbital basis are also
independent of k. Therefore, the possible gap functions in
attractive channels are

I : ϕ̂
A1g

1 = τ 00, (47a)

II : ϕ̂B1g = τ x0, (47b)

III : ϕ̂B2g = τ y z, (47c)

IV : ϕ̂
A1g

2 = τ z0,
(
ϕ̂

Eg

1 ,ϕ̂
Eg

2

) = τ y(−x, y), (47d)

where I–IV represent the regions specified in Eqs. (44a)–(44d).
Note that any odd parity ϕ̂�u is not allowed in stark contrast
to the cases in Sec. III B. As typical examples, we focus on
the ϕ̃B1g and ϕ̃B2g . As mentioned in Sec. III B, ϕ̃B1g and ϕ̃B2g in
the band representation must have nodes. The k dependence
of ϕ̃B1g (ϕ̃B2g ) come from u(k) and shows line nodes along
kx ± ky = 0 (kxky = 0).

Repulsive

Repulsive

Attractive

A1g

B2g

I II

III IV

(a) (b)

0

−π

π

ky

kx

0

0.2

0.4

-0.4

-0.2

0.5

0.3

0.1

-0.5

-0.3

-0.1

−π π

Attractive

vB1g

vB2g

FIG. 3. (a) Schematic phase diagram for local (onsite) B1g and
B2g fluctuations in the same model as in Fig. 2. (b) The momentum
dependence of the band-based gap function for B2g state appearing
around the region III.
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Figure 3(a) depicts the vB2g -vB1g phase diagram. We find
that, due to only local fluctuations, anisotropic B2g gap
structure can emerge in the region around III. The obtained
B2g nodal structure is illustrated in Fig. 3(b). In particular, for
large repulsion of vB1g , the nodal superconductivity with B1g

symmetry can be induced by only repulsive local interactions.
This can be understood via Table VII; the repulsion in the B1g

channel leads to the attractive interaction in the B2g channel.
Thus, in multiorbital systems, anisotropic gap structure can be
also realized in the BCS approximation of purely local (onsite)
interactions. This indicates that anisotropic pairing states can
emerge without characteristic momentum-dependent fluctu-
ations in multiorbital systems, which differs from the case
of single-orbital systems. It also implies that in multiorbital
systems, the electron-phonon (e-ph) interaction can lead to
anisotropic superconductivity. In what follows, let us elucidate
local fluctuations arising from e-ph couplings.

In general, a specific phonon mode couples to electronic
multipoles with the same IR. Local nonmagnetic multipoles in
the present two-orbital model with �6u and �7u are written as

M�(r) =
∑

12

[M̂�]12c
†
1(r)c2(r), (48)

with � = A1g, B1g , or B2g , and M̂�’s are given by

M̂A1g
= τ 0σ 0

2
, M̂B1g

= τ xσ 0

2
, M̂B2g

= τ yσ z

2
. (49)

Integrating out the phonon degrees of freedom, we obtain an
effective interaction

Hint = −
∑

�

g2
�

��

∑
r

M�(r)M�(r), (50)

where g� is the local e-ph coupling and �� is the local phonon
frequency for � = A1g , B1g , and B2g mode. Following the
procedure in Secs. III B and III C, Eq. (50) can be decomposed
in the same way as in Eq. (42) with appropriate vμν . Using
Table VII, we obtain, e.g., 4v0x = vA1g + vB1g − vB2g , and
so on. Note that such interactions v� = g2

�/�� are always
positive, different from the electron-electron interactions.
Therefore, since A1g pairing channel τ 00 is always attractive
in all the phonon modes, namely, 4v00 = ∑

� v� , we rerealize
that a fully gapped A1g state is the most favorable.

One possibility of e-ph mediated anisotropic superconduc-
tivity arises when the Hund’s coupling and the pair hopping
term of onsite Coulomb repulsions are taken into account.
For example, local interactions are 4v00 = U + J for τ 00
pairing, and 4v0x = 4vzy = U − J for τ x0 and τ y z, with the
intraorbital repulsion U and the Hund’s coupling J . Thus,
the presence of the onsite Coulomb repulsions works against
the isotropic pairing state as is well known. Another possibility
is the k-dependent interaction via the e-ph coupling, but here
we do not go into detail. Instead, let us focus on the fact that,
e.g., τ 0τ 0 × σ zσ z = −1 in Table VII, which indicates that TR
symmetry-breaking mode can suppress A1g pairing states. It
implies that the e-ph interaction may lead to anisotropic pairing
states in a magnetically ordered state. These mechanisms
for e-ph driven anisotropic superconductivity in combinations
with other degrees of freedom are fascinating issues and we
leave the detailed analysis to our future works.

IV. CONCLUSION

We have constructed a complete table of irreducible rep-
resentations of superconducting gap functions in symmorphic
multiorbital systems. Classification in the orbital-based pairing
(gap) functions offers novel entries in the classification tables.
The Cooper pairs in multiorbital systems can be regarded as
ones with multipole degrees of freedom, and we have called
it “multipole superconductivity.” From this viewpoint, we find
that unconventional (anisotropic) superconductivity can be
realized not only by the momentum dependence of the pairing
interactions, but also by the orbital degrees of freedom.

One of the nontrivial results appears in the system com-
posed of �9 ⊗ �9 orbitals in D6 group. The transformation
properties of the Cooper pairs are not explained by those for
the pure-spin- 1

2 in the conventional classification. This is an
important consequence of orbital degrees of freedom.

We have also clarified how the superconducting gap nodes
appear in multiorbital systems. We have explained the relation
between the gap functions in the orbital bases and those in the
band ones. The momentum dependence of the band-based gap
functions depends on that of the orbital-based ones and the
unitary matrix transforming the two bases. The latter depends
on the IR for the corresponding Kramers degrees of freedom
in the orbital bases, which include both the pure-spin and
the orbital angular momentum and are generally not only the
pure-spin- 1

2 .
On the basis of the present group-theoretical analysis,

we have discussed a cubic �8u model and tetragonal �6u +
�7u models. In the former model, superconductivity with
anisotropic three-dimensional representations emerges in the
vicinity of an antiferroic quadrupole ordered phase. In the
latter, we have discussed the formation of anisotropic gap
functions including anisotropic s-wave (A1g) type functions
induced by various orbital fluctuations. We have also pro-
posed nodal/anisotropic superconductivity mediated by local
fluctuations, which can be realized only in the multiorbital
systems. Our findings imply that fluctuations arising from
e-ph couplings also may induce anisotropic superconductivity
with the help of the TR symmetry breaking and the local
Coulomb interactions, although the conventional local e-ph
interactions favor isotropic s-wave pairing. We hope that this
study provides a renewed interest in multiorbital systems and
encourages experimental research for new superconducting
materials.
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APPENDIX A: GENERAL CONSIDERATION
OF CLASSIFICATION

In the main text, we have classified superconducting gap
functions according to IRs of a given point group P . Here, we
show that superconducting order parameters can be charac-
terized by IRs of P in both symmorphic and nonsymmorphic
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space group G. Moreover, in symmorphic systems, the form
of gap functions can be determined by considering only the
spin-orbital coupled degrees of freedom.

1. Classification under space group G

Let us consider a BCS-type model Hamiltonian H = H0 +
Hint, under a space group G,

H0 =
∑

k

∑
12

[ĥ(k)]12c
†
1(k)c2(k), (A1)

Hint = − 1

2N

∑
kk′

∑
1234

v14,32(k − k′)

× c
†
1(k)c†2(−k)c3(−k′)c4(k′), (A2)

where ĥ(k) is a Hermitian matrix describing the band structure,
and the subscripts (1–4) symbolically represent the orbital,
the spin, and the atomic site degrees of freedom. In this
Hamiltonian, H0 and Hint should, respectively, be invariant
under any operation g in the space group G. That is to say,
[H0,g] = 0 and [Hint,g] = 0. The space-group element g is
denoted as g = {p|a} in Seitz notation, where p is an operation
of the point group P associated with G, and a is a translation.
From [H0,g] = 0, we obtain

Û (g; k)ĥ(k)Û †(g; k) = ĥ(pk) (A3)

using the following relation:

g c
†
1(k) g−1 =

∑
2

c
†
2(pk)[Û (g; k)]21, (A4)

where the matrix Û (g; k) describes the transformation property
of c

†
1(k), which generally depends on k. As for Hint, one can

expand v14,32(k − k′) into the following form:

v14,32(k − k′) =
∑

�

∑
i

v�
[
ϕ̂�

i (k)
]

12

[
ϕ̂�

i (k′)
]∗

43. (A5)

Here, the sum of � contains nonequivalent IRs of P and the
label i denotes degenerate bases in the same �. v� can be
regarded as a pairing interaction in the � IR channel, which is
a real number due to the Hermitian of Hint. The matrix ϕ̂�

i (k)
is the ith basis function for the � IR of P , which transforms
according to

Û (g; k)ϕ̂�
i (k)Û T (g; −k) =

∑
j

ϕ̂�
j (pk)D(�)

ji (p), (A6)

where D(�)
ji (p) is the representation matrix of � IR. Equa-

tion (A6) can be obtained from a requirement that

�
†
�i =

∑
k

∑
12

[
ϕ̂�

i (k)
]

12c
†
1(k)c†2(−k) (A7)

satisfies the following transformation properties:

g �
†
�i g−1 =

∑
j

�
†
�jD

(�)
ji (p). (A8)

Thus, Hint is written as follows:

Hint = − 1

2N

∑
�

∑
i

v��
†
�i��i. (A9)

This clearly shows that Hint is certainly invariant under any
operation g.

Now, let us confirm the requirements of basis functions:

ϕ̂�
i (k) = −(

ϕ̂�
i (−k)

)T
, (A10a)

1

N

∑
k

Tr
[
ϕ̂�

i (k)ϕ̂�′†
j (k)

] = δij δ��′ . (A10b)

The first equation (A10a) is evident from Eq. (A5), while
the second one (A10b) can be derived by using the grand
orthogonal theorem among IRs:∑

k

Tr
[
ϕ̂�

i (k)ϕ̂�′†
j (k)

]

= 1

m

∑
k

∑
p

Tr
[
ϕ̂�

i (pk)ϕ̂�′†
j (pk)

]

= 1

m

∑
k

∑
i ′j ′

Tr
[
ϕ̂�

i ′ (k)ϕ̂�′†
j ′ (k)

]∑
p

(
D(�)

ii ′ (p)
)∗D(�′)

jj ′ (p)

= 1

d�

δij δ��′
∑

k

∑
i

Tr
[
ϕ̂�

i (k)ϕ̂�†
i (k)

]
,

where m is the order of P , and d� the dimension of �. Thus,
with the appropriate normalization, we can choose ϕ̂�

i (k) to
satisfy Eqs. (A10a) and (A10b).

Next, we apply the mean-field theory to Eq. (A2), and
introduce the superconducting order parameter

[�̂(k)]12 = 1

N

∑
k′

∑
34

v14,32(k − k′)〈c4(k′)c3(−k′)〉

= 1

N

∑
k′

∑
34

v14,32(k − k′)F43(k′). (A11)

Substituting Eq. (A5) to (A11), we obtain

�̂(k) =
∑

�

∑
i

Δ�
i ϕ̂�

i (k), (A12a)

Δ�
i = v� 1

N

∑
k

∑
12

F12(k)
[
ϕ̂�

i (k)
]∗

12. (A12b)

Just below the transition temperature T = Tc, we can
linearize F12(k) as

F12(k) = T
∑

n

[Ĝ(k,iωn)�̂(k)Ĝ∗(−k,iωn)]12, (A13)

with Matsubara frequency ωn = πT (2n + 1). The one-
particle normal Green’s function Ĝ(k,iωn) meets a similar
relation to Eq. (A3):

Û (g; k)Ĝ(k,iωn)Û †(g; k) = Ĝ(pk,iωn). (A14)

Finally, from Eqs. (A12b) and (A13), and the grand orthogonal
theorem, we obtain the gap equations as follows:

Δ�
i = v�Δ�

i

1

d�

T

N

∑
k

∑
j

∑
n

× Tr
[
Ĝ(k,iωn)ϕ̂�

j (k)Ĝ∗(−k,iωn)ϕ̂�†
j (k)

]
. (A15)
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It should be noted that the gap equation (A15) is decoupled in
each �, and also does not depend on the label i. This fact means
that the gap function just below Tc can be classified according
to IRs of P in both symmorphic and nonsymmorphic systems.
In practice, ϕ̂�

i (k) may be a linear combination of several basis
functions in the same IR, namely, ϕ̂�

i (k) = ∑
α C�αϕ̂�

α,i(k).
After diagonalizing the matrix v�

αβ = v�C�αC∗
�β , Hint takes

the form of Eq. (30) in the main text. The generalization to
such situations is straightforward.

2. Classification in symmorphic systems

In a symmorphic space group, apart from the lattice
translations T , all generating symmetry operations leave at
least one common point fixed. The generators consist of
the elements in the semidirect product of T and the point
group P [35]. In this case, for all point-group operations
p = {p|0} ∈ P , we can always set Û (p; k) in Eq. (A4) to
be k independent Û (p). This can be verified by the following
discussions.

Let us denote c
†
�αb(r) as the electron creation operator,

where � indicates a basis function labeled by an IR of P ,
α and b denote the Kramers degrees of freedom and the
position of the atom within a unit cell, respectively. r represents
the position for the unit cell (lattice vector) and we also
define the relative position for the b atom rb in a unit cell.
In general, space-group operations exchange the equivalent
atoms in the same or the different unit cells. Considering the
Fourier transform

c
†
�αb(k) = 1√

N

∑
r

c
†
�αb(r) exp[ik · (r + rb)], (A16)

we can see the symmetry property of c
†
�αb(k):

g c
†
�αb(k) g−1 = e−ipk·a ∑

α′b′
c
†
�α′b′ (pk)D′

b′b(p)D′′
α′α(p),

(A17)

where g = {p|a} ∈ G. Here, D′(p) and D′′(p) are the
unitary matrices corresponding to the exchange of equivalent
atoms and the rotation of the Kramers degrees of freedom,
respectively. Since the phase factor e−ipk·a in Eq. (A17) is
irrelevant to the point-group operations alone, for all p ∈ P ,
Û (p; k) appearing in Eq. (A4) becomes k independent.

Equation (A17) also indicates that c†�αb(k) is a basis function

for a reducible representation of P regarding c
†
�αb(k)

p�→
p c

†
�αb(p−1k)p−1 as the action of p. Therefore, in the usual

manner, we can construct the basis functions of the IRs of P

from c
†
�αb(k) by using the projection method. The obtained

basis c
†
�i(k) satisfies

p c
†
�i(k) p−1 =

∑
j

c
†
�j (pk)[D̂(�)(p)]ji , (A18)

where � and i are the IR of P and its basis, respectively.
D̂(�)(p) is the corresponding representation matrix. Here, we
omit the other labels for simplicity. Due to the unitarity of
the irreducible decomposition, we can always rewrite the
Hamiltonian in the new basis c

†
�i(k).

By using c
†
�i(k) given above, Eq. (A1) can be divided into

each block for IRs of P :

H0 =
∑

k

∑
�1�2

∑
ij

[ĥ(k; �1�2)]ij c
†
�1i

(k)c�2j (k), (A19)

where ĥ(k; �1�2) satisfies

ĥ(pk; �1�2) = D̂(�1)(p)ĥ(k; �1�2)D̂(�2)†(p). (A20)

Similarly, Eq. (A7) leads to

��
i =

∑
k

∑
�1�2

∑
j1j2

[
ϕ̂�

i (k; �1�2)
]
j1j2

c
†
�1j1

(k)c†�2j2
(−k),

(A21)

D̂(�1)(p)ϕ̂�
i (p−1k; �1�2)(D̂(�2)(p))T

=
∑

j

ϕ̂�
j (k; �1�2)D(�)

ji (p). (A22)

Equation (A22) indicates that ϕ̂�
i (k; �1�2) with � IR can

be obtained from the subduction �k ⊗ (�1 ⊗ �2) ↓ P [see
Eq. (6)], where �k denotes the IR of the momentum transform:

ϕ̂�
i (k)

p�→ ϕ̂�
i (p−1k).

Note that Eq. (A20) is similar to the case of � = A1g in
Eq. (A22), apart from the IR for the Kramers sector. It is given
by �1 ⊗ �2 for (A22), while �1 ⊗ �∗

2 for (A20). Therefore, the
tables shown in this paper will be helpful also in constructing
a generic tight-binding model in multiorbital systems.

Finally, let us comment on nonsymmorphic systems. In
this case, the above discussion is no longer applicable due to
inevitable k dependence in the phase factor of Û (g; k). An
available alternative method [30,32–34] is the classification
based on a little group at a given k point. This is applicable
in both symmorphic and nonsymmorphic systems, but beyond
the scope of this paper and we leave it as a future study.

APPENDIX B: BASIS FUNCTIONS IN
DOUBLE-VALUED REPRESENTATIONS

In this Appendix, we list some basis functions for double-
valued IRs in O, D4 and D6 group. In the list below, |j ; jz〉
represents the basis of the total angular momentum j and the
z component jz in SU(2) symmetry group.

(i) O group:

|�7; ±〉 =
√

1

6

∣∣∣∣5

2
; ±5

2

〉
−

√
5

6

∣∣∣∣5

2
; ∓3

2

〉
,

|�8a; ±〉 =
√

5

6

∣∣∣∣5

2
; ±5

2

〉
+

√
1

6

∣∣∣∣5

2
; ∓3

2

〉
, (B1)

|�8b; ±〉 =
∣∣∣∣5

2
; ±1

2

〉
,

|�8a; ±〉 = ±
∣∣∣∣3

2
; ∓3

2

〉
,

|�8b; ±〉 = ±
∣∣∣∣3

2
; ±1

2

〉
. (B2)
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(ii) D4 group:

|�6; ±〉 =
∣∣∣∣5

2
; ±1

2

〉
,

|�7; ±〉 = cos θ

∣∣∣∣5

2
; ±5

2

〉
+ sin θ

∣∣∣∣5

2
; ∓3

2

〉
, (B3)

|�6; ±〉 = ∓
∣∣∣∣3

2
; ±1

2

〉
,

|�7; ±〉 = ∓
∣∣∣∣3

2
; ∓3

2

〉
. (B4)

(iii) D6 group:

|�7; ±〉 =
∣∣∣∣5

2
; ±1

2

〉
, |�8; ±〉 =

∣∣∣∣5

2
; ±5

2

〉
,

|�9; ±〉 =
∣∣∣∣5

2
; ∓3

2

〉
, (B5)

|�7; ±〉 = ∓
∣∣∣∣3

2
; ±1

2

〉
,

(B6)
|�9; ±〉 = ∓

∣∣∣∣3

2
; ∓3

2

〉
.

In SI invariant systems, these basis functions are classified
into even or odd parity, following the orbital angular momen-
tum � = j ∓ s with the spin s = 1

2 . Under the time-reversal
operation �, we take the following convention,

�|j ; jz〉 = (−1)j+jz |j ; −jz〉, (B7)

and thus, the basis functions defined above meet � |�; ±〉 =
∓ |�; ∓〉 for any �.

APPENDIX C: SYMMETRY ARGUMENT
OF BAND-BASED REPRESENTATION

Here, we describe a procedure to fix the U(2) phase
ambiguity in the band-based representation, and demonstrate
that the gap structure looks apparently different, depending
on the choice of the fixed phase, although the structure of
excitations is unchanged.

1. Phase-fixing procedure

Let us consider an N -orbital system. If all the orbitals
are independent and not hybridized with each other, then any
electron in the band representation consists of single orbital;
a unitary matrix u(k) is an identity matrix. No matter how
complicated the band structure is, we can line up orbital indices
in such a way that the dominant orbital in each band is arranged
in a diagonal position of the matrix u(k). After this procedure,
we now fix the U(2) gauge.

Under the presence of the SI and TR symmetries, the
following relation holds:

(�I ) c†nσ (k) (�I )−1 =
∑
σ ′

c
†
nσ ′ (k)(iσ y)σ ′σ . (C1)

Substituting Eq. (1) into the both sides of Eq. (C1), we obtain

u�α,nσ (k) = (−1)P�

∑
α′σ ′

(iσ y)αα′u∗
�α′,nσ ′(k)(iσ y)†σ ′σ , (C2)

where P� is the parity of the orbital �. In what follows, we
focus on the 2 × 2 submatrix û(k; �n), where [û(k; �n)]ασ ≡
u�α,nσ (k). From Eq. (C2), we find that each submatrix û(k; �n)
satisfies

û(k; �n)û†(k; �n) = | det û(k; �n)|I2×2, (C3)

which is independent of P�. Here, I2×2 is the 2 × 2 identity
matrix. Let us consider the following matrix:

K̂n(k) = 1√| det û(k; nn)| û(k; nn). (C4)

Then, the U(2) phase ambiguity can be fixed by redefining the
unitary matrix as follows:

ũ�α,nσ (k) = [
û(k; �n)K̂†

n(k)
]
ασ

. (C5)

Indeed, this matrix diagonalizes H0, and the phase for the
� = n component is fixed to be positive real as

ũnα,nσ (k) =
√

| det û(k; nn)|δασ . (C6)

In the main text, u(k) means this ũ(k), unless otherwise noted.
It should be noted that the unitary matrix preserves the Kramers
label α for each orbital. In other words, if the nth orbital
belongs to a � IR, the corresponding band electron also belongs
to the same � IR. It is useful to discuss the nodal positions in the
band-based gap functions as will be shown in Appendixes C 2
and C 3. In addition, the unitary matrix obtained in the above
way smoothly connects to the 2N × 2N identity matrix in the
limit where there is no hybridization between different orbitals,
which is one of the desirable properties as a diagonalizing
matrix.

Note that the gap structure in the multiorbital systems
strongly depends on the way of the phase fixing, although
observable quantities are unchanged. Depending on the way,
meaningless complicated structure can appear in the obtained
gap structure. We will demonstrate this point in Appendix C 3.

2. Symmetry of unitary matrix and band-based pair amplitude

Here, let us study the symmetry of the unitary matrix
u�α,nσ (k). In our case, due to the phase fixing mentioned in
Appendix C 1, we can explicitly discuss the symmetry. In
actual calculations, we first diagonalize H0 in the irreducible
Brillouin zone (BZ). At this stage, the obtained unitary matrix
still has an arbitrary phase. Then, we fix the phase, following
the procedure explained in Appendix C 1. The unitary matrix
in the whole first BZ can be obtained by the following
transformation:

û(pk; �n) = D̂(��)(p)û(k; �n)D̂(�n)†(p), (C7)

where �� (�n) denotes IRs of � (n), and k is in the irreducible
BZ. Note that Eq. (C7) is similar to Eq. (A20). This indicates
that our unitary matrix has the same structure as ĥ(k) with
respect to the symmetry. From this property, the symmetry of
the band-based gap functions is readily available from that of
orbital-based ones.
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Indeed, using Eqs. (A18) and (C7), we obtain

p c̃†nσ (k) p−1 =
∑
�αα′

c
†
�α(pk)[D̂(��)(p)]αα′u�α′,nσ (k)

=
∑
�ασ ′

c
†
�α(pk)u�α,nσ ′(pk)[D̂(�n)(p)]σ ′σ

=
∑
σ ′

c̃
†
nσ ′ (pk)[D̂(�n)(p)]σ ′σ . (C8)

This transformation property for the band n is the same as the
orbital-based case in Eq. (A18). Therefore, when we consider
the band-based pair amplitude

F̃nσ,n′σ ′(k) ≡ 〈c̃nσ (k)c̃n′σ ′(−k)〉, (C9)

the symmetry arguments in Sec. II hold for these band-based
gap functions. Also, it is evident that Tables IV–VI are
valid. However, as mentioned in the main text, such band-
based arguments are insufficient to understand a variety of
multiorbital superconductivity because the pairing interactions
can be more clearly defined in the orbital-based representation.
Indeed, in the band-based representation, we will miss the
presence of additional nodes as discussed in Sec. III, which are
not symmetry protected but inevitable from the orbital-based
viewpoint. Thus, it is clear that the unitary matrix u�α,nσ (k)
can possess significant information about k dependence of
gap functions.

3. Efficacy of the phase fixing

Finally, let us demonstrate an advantage of our phase-fixing
method. We consider a two-orbital model constructed from
�7g and �9g orbitals in D6h group. The general form of ĥ(k)
in Eq. (A1) is given as

ĥ(k) = h
A1g

1 τ 0σ 0 + h
A1g

2 τ zσ 0 + h
E1g

1 τ yσ x

−h
E1g

2 τ xσ y + h
E2g

1 τ yσ z + h
E2g

2 τ xσ 0, (C10)

where h�
1,2 consists of basis functions of � IRs:

h
A1g

1 = −t0

(
cos

√
3kx + 2 cos

√
3kx

2
cos

3ky

2

)
− μ,

h
A1g

2 = −t1, h
E1g

1 = t2s
′
x sin kz, h

E1g

2 = t2s
′
y sin kz,

h
E2g

1 = 2t3s
′
xs

′
y, h

E1g

2 = t3(s ′2
x − s ′2

y ),

with

s ′
x = sin

√
3kx + sin

√
3kx

2
cos

3ky

2
,

s ′
y =

√
3 sin

3ky

2
cos

√
3kx

2
.

Here, we set t0 to the unit of energy and (t1,t2,t3) =
(0.25,0.05,0.05) and μ = −1.20. With these parameters, the

π−π
−π

π

k

k

(a) (b) (c)

(d) (e) (f)

0

0.5

1.0

-1.0

-0.5

FIG. 4. Band-based gap functions of the lower band in kz = π

plane. (a) dx , (b) dy , and (c) dz components of the band-based gap
functions are obtained by our phase-fixing procedure, where the
Kramers index is labeled by that of the major �9g orbital. (d) dx ,
(e) dy , and (f) dz components of the gap functions, labeled by the
Kramers index of the minor �7g orbital. Green dashed lines denote
gap nodes.

dominant component of the lower (upper) band is almost
composed of �7g (�9g) orbital. Below, we will focus on the
band mainly composed of �9g and will not discuss the other
band for simplicity.

For example, let us consider one of E2u pairing states in
�9g orbital, i.e., φ

E1u

1 y for �9 ⊗ �9 pairs in Table VI:

ϕ̂E2u (k) = φ
E1u

1 (k)(τ 0 − τ z) y, (C11)

with φ
E1u

1 (k) = s ′
x . Here, τ 0 − τ z represents the pair in �9 ⊗

�9. In Fig. 4, we illustrate the band-based gap function for the
lower band, which is evaluated via Eq. (16). Figures 4(a)–4(c)
depict, respectively, dx , dy , and dz components with our
phase-fixing method, where the upper (lower) band is smoothly
connected with the �7g (�9g) orbital. Through the unitary
matrix, dx and dz components are induced, but the magnitude
is very small. The dy component is almost the same as φ

E1u

1 (k)
given in Eq. (C11). In contrast, one can see the complicated
gap structures in Figs. 4(d)–4(f), the magnitudes of which are
comparable to each other. Here, the Kramers index for the
lower band is labeled by that for the minor �7g orbital. At a
glance, there seem to exist complicated additional nodes. The
gap amplitude

√|d|, however, is identical to that shown in
Figs. 4(a)–4(c), and is independent of the way of the phase
fixing. This demonstrates that our phase-fixing method is
effective and useful in the discussion about the gap structures
in the multiorbital systems.
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