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We report a theoretical study of the ac response of superconducting quantum metamaterials (SQMs), i.e., an
array of qubits (two-level systems) embedded in a low-dissipative resonator. By making use of a particular example
of a SQM, namely the array of charge qubits capacitively coupled to the resonator, we obtain a second-order phase
transition between an incoherent (the high-temperature phase) and coherent (the low-temperatures phase) state
of photons. This phase transition in many aspects resembles the paramagnetic-ferromagnetic phase transition.
The critical temperature of the phase transition, T �, is determined by the energy splitting of two-level systems δ,
number of qubits in the array N , and the strength of the interaction η between qubits and photons in the cavity.
We obtain that the photon states manifest themselves by resonant drops in the frequency-dependent transmission
D(ω) of electromagnetic waves propagating through a transmission line weakly coupled to the SQM. At high
temperatures the D(ω) displays a single resonant drop, and at low temperatures a peculiar double-resonance
response has to be observed. The physical origin of such a resonant splitting is the quantum oscillations between
two coherent states of photons of different polarizations.
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I. INTRODUCTION

Great attention is devoted to a theoretical and experimen-
tal study of novel superconducting quantum metamaterials
(SQMs) [1–10]. The SQMs consist of an array of supercon-
ducting qubits, e.g., charge qubits [11], flux qubits [12], and
transmons [13], embedded in a low-dissipative resonator. Var-
ious macroscopic quantum coherent effects, such as coherent
quantum oscillations between two states, microwave-induced
Rabi oscillations, and Ramsey fringes, just to name a few, have
been observed in the SQMs. Moreover, since a strong long-
range interaction between qubits is provided by exchange of
resonators photons, one can expect a strong variation of the en-
ergy spectrum of the SQMs with respect to a set of noninteract-
ing qubits and, therefore, various collective coherent quantum
effects in the SQMs. Indeed, in the Ref. [6] instead of a large
amount of small different splittings, a single giant splitting has
been observed in the spectrum of the SQM, and this effect indi-
cates the presence of collective quantum beatings in the SQM.

The various quantum mechanical phenomena manifest
themselves by resonant drops in the frequency-dependent
transmission coefficient D(ω) of electromagnetic waves prop-
agating through the transmission line coupled (inductively or
capacitively) to the SQM [3–6]. Such measurement setup is
presented schematically in Fig. 1. The theoretical analysis
allowing one to express the transmission coefficient D(ω) in
terms of the quantum-mechanical time-dependent correlation
function of a system of qubits has been done in Ref. [14].

On the other hand, the interaction of photons with an array
of qubits results not only in the change of qubits spectrum but
also it can lead to the appearance of novel photon states in
the SQMs [8–10,15,16]. For example, it was predicted for the
chain of small Josephson junctions [15] and later for the chain
of SQUIDS biased in the macroscopic quantum regime, i.e.,
flux qubits [16], that at low temperatures the coherent state of
photons occurs. Moreover, the second-order phase transition

between the incoherent state of photons (the high-temperature
phase) and the coherent state of photons (the low-temperature
phase) has been established [16]. However, the physical
properties of the low-temperature phase have not been studied
yet, and the analysis of the transmission coefficient D(ω) for
different photonic states has not been carried out.

Therefore, in this article by making use of a specific SQM,
i.e., an array of charge qubits capacitively coupled to the
resonator (see Fig. 1), we provide an analysis of both the
phase transition and physical properties of the photon states
in the low-temperature phase. By making use of a generic
study of the transmission coefficient D(ω) we show that in
the high-temperature phase of photons the D(ω) shows a
single resonant drop at the photon frequency ωph. In contrast,
the low-temperature phase of photons manifests itself by a sin-
gle drop at low frequency ωR and a peculiar double-resonance
response at frequencies, ωph ± ωR . This phenomena has an
origin in the quantum beating between the coherent states of
photons of different polarizations, and ωR is the frequency of
such beatings.

The paper is organized as follows: In Sec. II we present
a particular model and elaborate the Hamiltonian and the
effective action of the SQM. In Sec. III we analyze in detail
the phase transition in the photonic states. Especially, we will
discuss the properties of the coherent low-temperature phase.
In Sec. IV we apply the generic analysis in order to obtain the
transmission coefficient D(ω) for different photonic states in
the SQMs. Section V provides conclusions.

II. MODEL, HAMILTONIAN, AND EFFECTIVE
ACTION OF SQM

Let us to consider a particular SQM containing the array
of N small voltage gated Josephson junctions, i.e., charge
qubits. Each qubit is capacitively coupled to the resonator. The
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FIG. 1. The schematic of the measurements setup: the transmis-
sion line inductively coupled to the particular SQM, i.e., an array of
charge qubits embedded in the resonator.

schematic of such SQM is presented in Fig. 1. The classical
description of the SQM is based on the Lagrangian formalism,
and the Lagrangian of the whole system, i.e., the array of
qubits interacting with the resonator, consists of three parts:
the photons field, the array of Josephson junctions, and the
interaction between them:

L = Lph + LJJ + Lint . (1)

The explicit expression for the Lagrangian is derived from the
classical equation of motion, where the resonator is charac-
terized by time-dependent current and voltage distributions,
In and Vn, and the dynamics of a single Josephson junction
is described by the time-dependent Josephson phase, ϕi(t).
These equations are written as

In+1 − In = Ic sin(ϕn) + �CJ

2e

d2ϕn

dt2
= C0

d

dt

[
Vn − �

2e

dϕn

dt

]
,

Vn − Vn−1 = L0
dIn

dt
, (2)

where C0 and L0 are the capacitance and the inductance per
unit length of the resonator; Ic and CJ are the critical current
and the capacitance of a Josephson junction, accordingly. In
the continuum limit we introduce the coordinate-dependent
charge distribution, Q(x,t), as I (x,t) = dQ(x,t)/dt (x is the
coordinate along the resonator). By making use of the analysis
elaborated in [16–18] we obtain

Lph = m

[
Q̇2 − c2

0

(
∂Q

∂x

)2]
, (3)

where the effective mass m = L0l/2; l is the length of the
resonator, and c0 is the velocity of electromagnetic waves in
the resonator.

The Lagrangian of the array of N small Josephson junctions
LJJ is written as

LJJ = EJ

∑
i

{
1

2ω2
p

[
ϕ̇i+

√
C0

CJ

2eVi/�

]2

−[1− cos ϕi]

}
,

(4)

where EJ is the Josephson coupling energy, and ωp is the
plasma frequency of the Josephson junction.

The last part of Lagrangian describes the capacitive in-
teraction between the electromagnetic field and the array of
Josephson junctions:

Lint = �

2e

∑
i

Q(t,xi)ϕ̇i . (5)

Next, we greatly simplify a whole problem by taking into
account the interaction of arrays of qubits with a single cavity
mode. This assumption is valid for a low-dissipative resonator
in the frequency range of ω � ωph as all self-frequencies of
the resonator are well separated from each other. In this case
the photon mode Q(x,t) = Q(t) cos(knx), where kn are the
wave vectors of cavity modes. Substituting this expression in
Eqs. (3) and (5) we obtain

Lph = m

2

(
Q̇2 − ω2

0Q
2
)
, (6)

where ω0 = c0kn is the photon frequency of the resonator. The
interacting Lagrangian is written in the following form:

Lint =
∑

i

η̃iQ(t)ϕ̇i , (7)

where η̃i = �

2e
cos(knxi). With an assumption that the size of

the array of qubits is much smaller than the resonator size, all
parameters η̃i are equal to η̃.

The equilibrium state of the SQM is described by the
partition function Z that can be written through the path
integral in the imaginary-time representation as

Z =
∫

D[Q]D[ϕi] exp

{
−1

�

∫
�/kBT

0
dτL[Q(τ ),ϕi(τ )]

}
.

(8)

In order to describe the quantum dynamics of small Josephson
junctions array interacting with the resonator electromagnetic
field, we consider the particular case as all Vi are equal to the
same value of eV0 = √

CJ /C0(�ωp)2/4EJ . In this case the
quantum dynamics of a single Josephson junction is truncated
to the dynamics of a two-level system (TLS) [11]; i.e., the
Hamiltonian HJJ of Josephson junctions array is written as

HT LS = δ
∑

i

σ (i)
x , (9)

where 2δ is the splitting between energy levels of the
TLS. In the particular case of the array of charge qubits,
2δ = EJ . Correspondingly, the interaction of TLSs with the
electromagnetic field of the resonator is described by the
Hamiltonian, Hint , as

Ĥint = ηQ(t)
∑

i

σ̂ (i)
z , (10)
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where η = �
2ω2

p

2EJ
η̃/�, and σ̂z, σ̂x are the corresponding Pauli

matrices. In adiabatic regime as the self-frequency of the res-
onator ω0 is less than δ/� we obtain the adiabatic energy levels:
E± = ±

√
δ2 + (ηQ)2 of a single qubit interacting with the

electromagnetic field of the resonator. For such adiabatic levels
the partition function of an array of qubits interacting with
electromagnetic field is Zqubits = ∏N

i=1 cosh[E+/(2kBT )]. By
making use of the procedure elaborated in Ref. [16] we trace
the expression of the partition function Z [Eq. (8)] over the
variables ϕi and obtain the effective nonlinear Lagrangian
which depends on the photon variable Q only:

Zeff =
∫

D[Q] exp

{
−1

�

∫
�/kBT

0
dτLeff[Q(τ )]

}
,

Leff = m

2

[
Q̇2 + ω2

0Q
2
] − kBT N ln cosh

[√
δ2 + (ηQ)2

2kBT

]
.

(11)

Thus, one can see that the interaction of photons of resonators
with the array of qubits results in the effective nonlinear
interaction between photons.

III. PHASE TRANSITION IN STATES OF PHOTONS

The photonic states stabilized in the SQMs are essentially
determined by the type of the effective Q-dependent potential

U (Q) = m

2
ω2

0Q
2 − kBT N ln cosh

[√
δ2 + (ηQ)2

2kBT

]
. (12)

The potential changes its form at the transition temperature
T � = δ{kB ln[(1 + α)/(1 − α)]}−1, where the parameter α =
2mδω2

0
Nη2 . At high temperatures, i.e., T > T �, the U (Q) has a

single minimum at Q = 0 [see Fig. 2(a), blue line]. In this
case the photon state is the incoherent one, and the thermal
distribution of photons over the Fock states occurs [19].
The interaction between photons results in a decrease of the
frequency of photons, ωph, to ω1 = ω0

√
1 − 1

α
tanh δ

2kBT
. For

the incoherent state of photons the Kerr type of nonlinearity,
KQ4/4, occurs in the SQM. The Kerr constant K has a
following form:

K(T ) = N

η4
4δ3

[
tanh(x) − x

cosh2(x)

]
,x = δ/(2kBT ). (13)

The Kerr constant is rather small in the limit T � T �. The
temperature dependence of K is shown in Fig. 2(b).

However, at low temperatures T � T � the effective poten-
tial U (Q) has two minima at Q± separated by the maximum
at Q = 0 [see Fig. 2(a), red line]. At temperatures that are
not far from the transition temperature T � the values Q±
are still small, and it is written explicitly as Q± = ±

√
m|ω1|2

K
.

Each minimum corresponds to the coherent state of photons
[19]. These states are characterized by nonzero values of
the quantum-mechanical average of the charge amplitude,
〈Q〉 = Q±, and the Poissonian distribution of photons over

(a)

(b)

(c)

FIG. 2. (a) The effective potential U (Q) describing the inter-
action of photons in the SQM: high-temperature incoherent phase
(blue line, kBT = 3.3δ) and low-temperature coherent phase (red
line, kBT = 0.7δ). (b) The temperature dependence of the Kerr
nonlinearity parameter K(T ). For panels (a) and (b) the value of
parameter α = 0.3 was used. (c) The temperature dependence of
the photon frequency ωph, i.e., ω1 for T > T � and ω2 for T < T �,
for different parameters α = 0.2 (blue line), α = 0.3 (red line), and
α = 0.8 (magenta line).
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the Fock states [19]. The frequency of such photon field
is also renormalized, to ω2 = ω0

√
2( 1

α
tanh δ

2kBT
− 1). The

temperature dependence of the photon frequency in a whole
range of temperature is shown in Fig. 2(c) for different values
of parameter α.

Moreover, these two coherent states of photons are degen-
erate states having the same energy but they differ by the
polarization of electromagnetic field. These two polarizations
are characterized by the phase of the electromagnetic field,
φ, which can take two definite values, 0 and π . Both states
correspond to a well-known “lasing” electromagnetic field
[19]. However, close to the transition temperature as the
Q± is small, the macroscopic quantum tunneling through the
barrier [see Fig. 2(a)] results in a small splitting  between
these two coherent photonic states. As a consequence the
coherent quantum Rabi oscillations between these macro-
scopic quantum photon states with the frequency ωR = /�

can be established. The frequency of such oscillations is
small, and it is obtained in the quasiclassical approximation
as

ωR = /� = ω2 exp

[
− 2

3�

√
2mK(T )Q3

+

]
. (14)

Notice here that in the limit T → 0 and for a large number
of qubits N , the number of photons in the coherent state
that is proportional to Q± is also large, and the tunneling
exponent becomes exponentially small: ∼ exp −N2. Hence,
the tunneling vanishes and the photonic condensate breaks
the symmetry by choosing phase of the electromagnetic wave
either 0 or π . Therefore, our analysis provides a direct
possibility of visualizing the transition from quantum few-
phonon coherent states with Rabi oscillations and character-
istic frequency ωR , to the classical “lasing” electromagnetic
field.

IV. AC RESPONSE OF A QUANTUM METAMATERIAL

As was shown in Ref. [14] the coherent quantum-
mechanical oscillations arising in the SQM are directly
observed by measurements of electromagnetic wave (EW)
propagation in the transmission line coupled to the SQM.
Similarly, the different states of photons considered in the
Sec. III manifest themselves in the frequency-dependent trans-
mission coefficient, D(ω). The measurement setup allowing
such observation is shown in Fig. 1. The EW propagation
in the transmission line is determined by the following
equation:

1

c2
0

∂2q(y,t)

∂t2
− ∂2q

∂y2
= κδ(y − y0)Q(y0,t), (15)

where y is the coordinate along the transmission line,
q(y,t) is the charge distribution in the EW, and κ

is the inductive coupling between the transmission line
and the SQM. The Hamiltonian of the SQM interact-
ing with the EWs in the transmission line is written
as

Ĥ = ĤSQM − κq(y0,t)Q(y0,t). (16)

FIG. 3. The frequency-dependent transmission coefficient D(ω)
for the incoherent (blue curve) and coherent (red curve) photon states.
The parameters ω1 = 0.8ω0 corresponding to the temperature kBT =
4δ, ω2 = 2ω0 (kBT = δ), ωR = 0.1ω0, and γ = 0.03ω0 were used.

The right-hand part of Eq. (15) is determined by the quantum-
mechanical average of Q(t), i.e.,

〈Q(t)〉 = κ

∫ t

0
dsχQQ(t − s)q(s),

where χQQ(t) = i
�
〈[Q(t),Q(0)]〉 is the imaginary part of the

correlation function C(t) [20]. By making use of the Fourier
transformation we arrive at the well-known problem of the
propagation of EWs in the 1D channel in the presence of a
single scatterer. Thus, we obtain the transmission coefficient
as

D(ω) = 1

1 + cκIm(χQQ)
ω

. (17)

Therefore, the singularities of the χQQ(ω) determine the res-
onant drops in the D(ω) dependence. In the high-temperature
incoherent photon state the χQQ(ω) is the response function
of the harmonic oscillator of the frequency ω1. By making use
of a standard analysis [20] we obtain

χ incoh
QQ (ω) = 1

2mω1

1

ω1 − ω − iγ
, (18)

where γ is the dissipation parameter. Therefore, the frequency
dependence D(ω) shows a single resonant drop at the fre-
quency ω1 (see Fig. 3, blue curve) as the incoherent state of
photons occurs in the SQM.

The situation drastically changes for the low-temperature
phase, where the photonic states have four low-lying coherent
states with the energies E1,2 = ±/2, E3,4 = �ω2 ± /2.
Moreover, the external EW can excite the transitions between
different parity states, i.e., E1 → E2, E1 → E4, and E2 →
E3. By making use of the generic expression [20]

C(t) =
∑

n

ρn

∑
m

exp[i(En − Em)t]|〈m|Q|n〉|2, (19)

where ρn is the equilibrium density matrix and 〈m|Q|n〉 are the
matrix elements for the Q operator, the quantum-mechanical
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correlation function of the low-temperature photonic state
contains three resonant terms:

χ coh(ω) = Q2
+

ωR − ω − iγ

+ �

mω(ω2 + ωR − ω − iγ )

+ �

mω(ω2 − ωR − ω − iγ )
. (20)

It leads to a single drop at low frequencies �ωR and a
double-resonant drop around the photon frequency ω2 in the
frequency dependence of the transmission coefficient D(ω)
(see Fig. 3, red line). Therefore, such resonant structure of the
frequency-dependent transmission coefficient is a fingerprint
of macroscopic quantum oscillations between two coherent
states of photons.

V. DISCUSSION AND CONCLUSIONS

The observation of predicted effects can be made in
the setup schematically shown in Fig. 1. The experimental
realization of such setup is an array of qubits incorporated
in a coplanar waveguide [4–6]. The typical values of energy
level difference δ/h � 5 GHz, and the photon frequency ω0 �
500 MHz has to be chosen to establish the adiabatic regime.
The length of resonator � = λ/2, where λ is the wave length,
allows us to incorporate in the resonator up to 1000 qubits. The
transition temperature T � is mostly determined by the ratio
of two capacitances, C0 and CJ (C0 	 CJ ), and therefore,
T � is tunable in a wide region: from T � � 100δ/kB �
25 K (α = 0.02) to � 0.5δ/kB � 125 mK (α � 0.7).
Moreover, the double-resonance frequency splitting ωR �
10–100 MHz can be observed for temperatures close to the
transition temperature. A crucial condition to observe the phase
transition in photon states and quantum beatings between two
coherent states of photons is a low dissipation in the SQM,
i.e., γ < ωR . Notice here that these effects are not washed
out in the presence of a weak disorder in qubits and resonator
parameters, i.e., δ, η, and α. However, a slight detuning of
qubits from the symmetry point results in the additional term
proportional to σ̂z in the Hamiltonian [Eq. (9)], and in this case
the symmetry between two coherent photon states is broken,
and the double-resonant response cannot be observed.

In conclusion we have studied the various equilibrium
photon states occurring in the SQM, i.e., an array of super-

conducting qubits embedded in a low-dissipative resonator.
We considered the adiabatic nonresonant regime as the photon
energy of resonator �ω0 is much smaller than the energy
splitting of qubits, δ. In this regime we obtained the second-
order phase transition in the states of photons. At high
temperatures T > T � the incoherent state of photons can be
realized. In this case the interaction between photons and
qubits results in a substantial decrease of the photon frequency
as the temperature becomes closer to the transition temperature
T � [see Fig. 2(c)]. Moreover, the temperature-dependent Kerr
type of nonlinearity having a quantum origin occurs in the
SQM [see Fig. 2(b)]. At low temperatures (T < T �) the
coherent states of photons with two different polarizations
occur in such a SQM. The frequency of coherent photons
increases with temperature [see Fig. 2(c)]. The density of
photons in these states is determined by the macroscopic
value of Q±. Each state corresponds to a well-known “lasing”
electromagnetic field. However, it is most interesting that
these two macroscopic coherent states of photons have equal
energies, but they are divided by the barrier. Thus, the coherent
quantum oscillations of frequency ωR between coherent states
of photons can be provided by quantum tunneling through the
barrier [see Fig. 2(a)]. The frequency ωR is determined by
Eq. (14).

By making use of an analysis of the EW propagation in
the transmission line coupled to the SQM (see setup in Fig. 1)
we obtain that different photon states manifest themselves
as resonant drops in the frequency-dependent transmission
coefficient D(ω) (see Fig. 3). The incoherent state of photons
displays a single drop at ω = ω1 but the coherent state of
photons has to show three resonant drops: at small frequency
ωR and double-resonant drop at frequencies ω2 ± ωR . The
observation of such resonant structure in the D(ω) dependence
provides direct evidence of macroscopic quantum oscillations
between two coherent states of photons.
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