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Coexistence and interplay of quantum and classical turbulence in superfluid 4He:
Decay, velocity decoupling, and counterflow energy spectra
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We report complementary experimental, numerical, and theoretical study of turbulent coflow, counterflow, and
pure superflow of superfluid 4He in a channel, resulting in a physically transparent and relatively simple model
of decaying quantum turbulence that accounts for interactions of coexisting quantum and classical components
of turbulent superfluid 4He. We further offer an analytical theory of the energy spectra of steady-state quantum
turbulence in the counterflow and pure superflow, based on algebraic approximation for the energy fluxes over
scales. The resulting spectra are not of the classic Kolmogorov form, but strongly suppressed by the mutual
friction, leading to the energy dissipation at all scales, enhanced by the counterflow-induced decoupling of the
normal and superfluid velocity fluctuations.
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I. INTRODUCTION

Flows of quantum fluids, such as 4He below Tλ � 2.17 K,
displaying superfluidity and the two-fluid behavior, offer a
challenging field of fundamental research combining quantum
physics and fluid dynamics [1–3]. The phenomenological
two-fluid model, suggested by Landau and Tisza, describes
dynamics of superfluid 4He in terms of interpenetrating normal
and superfluid components that have their own densities ρn(T ),
ρs(T ), and velocities un(r,t), us(r,t). In this paper, we consider
finite temperature, above ∼1 K, where the normal component
behaves as a classical fluid with the kinematic viscosity νn(T ),
while the superfluid component is inviscid, νs = 0.

Due to the quantum mechanical restriction, the circulation
around the superfluid vortices is quantized in integer values
of κ = h/m � 10−3 cm2/s, where h is the Plank constant
and m denotes the mass of 4He atom. The singly quantized
vortices usually arrange themselves in a tangle that can be
characterized by vortex line density (VLD) L, i.e., total
length of the quantized vortex line in a unit volume. The
dynamical behavior of the tangle constitutes an essential
ingredient of quantum turbulence, the turbulence occurring in
quantum fluids displaying superfluidity. The quantization of
circulation in the superfluid component results in appearance
of characteristic “quantum” length scale: the mean separation
between vortex lines, � = 1/

√
L, which is typically orders

of magnitude smaller than the scale � of the largest (energy
containing) eddies [4,5].

There is a growing consensus [3,6,7] that the quantization
of vortex lines can be neglected at large scales R � � and that
quantum turbulence is similar to classical turbulence if excited
similarly, for example, in a steady channel flow by a pressure
drop [8–11] or when decaying behind a grid [12,13]. The
reason is that the interaction of the normal-fluid component
with the quantized vortex tangle leads to a mutual friction
force [4,5,14] “which couples together un(r,t) and us(r,t)
so strongly that they move as one fluid” [15]. On the other
hand, at small length scales R � �, the quantization of vortex
lines cannot be neglected and turbulence in superfluids has
essentially quantum character.

The pipe and channel flows of viscous fluids belong
to the class of most extensively studied classical flows
[16,17]. As for pipe and channel flows of superfluids, by
combining mechanical and thermal drive, a rich variety of
two-fluid turbulent flows with different direction and flow
ratio of the two components may be generated, representing
a very complex superfluid hydrodynamics system [11,18,19]
(see Fig. 1). The classical-like mechanical forcing (e.g., by
compressing a bellows) results in a coflow, the closest analog to
classical viscous channel flow, where both components move,
on average, with the same velocity: the mean normal-fluid
velocity Un is equal to the mean superfluid velocity U s (Fig. 1,
right). However, due to quantum-mechanical constraints on the
superflow, generated by individual lines, the velocity fields
are completely different from the normal-fluid motions at
scales R � �.

The normal and superfluid components of 4He may also be
made to flow relative to each other with a nonzero counterflow
velocity Uns ≡ Un − U s �= 0. The thermal counterflow, first
systematically investigated in pioneering experiments by
Vinen [20], is easily generated in a channel with one of its
ends sealed and equipped with a heater and open at the other
end to a superfluid helium bath (see Fig. 1, left). Here, both
components move relative to the channel walls. The heat flux
is carried away from the heater by the normal fluid alone,
and, by conservation of mass, a superfluid current arises in the
opposite direction: ρn Un + ρs U s = 0.

In this way, the counterflow velocity Uns, proportional
to the applied heat flux, is created along the channel, soon
accompanied by a tangle of vortex lines. In pure superflow,
sketched in Fig. 1, middle, superleaks (i.e., filters located at
the channel end with submicron-sized holes permeable only
to the inviscid superfluid component) allow a net flow of
the superfluid component in the channel: U s �= 0, while the
normal-fluid component is remaining, on average, at rest:
Un = 0. In both cases, the fields us(r,t) and un(r,t) are
expected to be different at all scales. Thermal counterflow
and pure superflow therefore represent two special cases of
counterflow, characterized by nonzero difference in mean flow
velocities of the superfluid and normal components.
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FIG. 1. Flow channels for the study of counterflow, pure super-
flow, and coflow. S and N stand for superfluid and normal components.
Counterflow is produced thermally by a heater. Superflow and coflow
are driven mechanically by a bellows. The turbulence is probed in
the middle of the channel by second sound, excited and detected by
mechanical vibration of a porous membrane.

In this paper, we report on complementary experimental,
analytical, and numerical studies of the VLD decay L(t) of

three categories of turbulent channel flows of superfluid 4He,
aiming to characterize the quantitative difference between the
statistics of turbulence in the coflow on one hand, and the
counterflow and superflow on the other. Our study is based on
detailed analysis of the VLD decay from three different initial
values of L0 ∼ 104, 105, and 106 cm−2, in all three types of the
flows, obtained at different temperatures in the same channel.
Although part of them was previously published [9,21], the
whole set of data was never presented simultaneously, thus
covering the large span of experimental parameters in a
systematic manner, which allows their meaningful theoretical
analysis. Our results represent substantial extension of a recent
paper by Gao et al. [22], which considered only decaying
counterflow. The experimental technique is shortly reviewed
in Sec. II A and sketched in Fig. 1.

In Figs. 2 and 3, we present the typical experimental
time dependencies of L(t) decaying by two–three orders of
magnitude and analyze them in Sec. II B. We demonstrate that
the initial stage of decay in all three types of the flow, including
the coflow regime, typically follows a form

L(t) ⇒ LQ(t) = b1L0|τ1|
t − τ1

, L0 ≡ L(t = 0), (1a)
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FIG. 2. Experimental data of the VLD decay L(t)/L0 in the coflow (in the 7-mm channel), normalized by initial VLD L0. The lines
correspond (from top to bottom) for L0 � 104 (blue lines), 105 (green lines), and 106 (red lines). The explicit values of L0 are shown in figures.
Data for T = 1.35 K are shown in panels (a) and (b), and for T = 1.45 K in panels (c) and (d). The panels (b) and (d) emphasize the details
of the short-time behavior. Quantum t−1 fits [Eq. (1a)] are shown by dashed dark green lines, while the classical t−3/2 fits [Eq. (1b)] by black
dotted-dashed lines.
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FIG. 3. Experimental data for the VLD decay L(t)/L0 at T = 1.45 K, normalized by initial VLD L0. The results for counterflow are shown
in (a) and (b), for superflow in (c) and (d). In all panels, the lines correspond to (from top to bottom) L0 � 104 (blue lines), 105 (green lines),
and 106 (red lines). The explicit values of L0 are shown in the figure. As in Fig. 2, quantum t−1 fits [Eq. (1a)] are shown by dashed dark green
lines, while the classical t−3/2 fits [Eq. (1b)] by black dotted-dashed lines. The panels (b) and (d) show the initial stages of the decay.

with two fitting parameters: the virtual origin time τ1 and
the dimensionless parameter b1. The asymptotics (1a) may
be rationalized in the framework of the Vinen equation for
L(t) [20] as the decay of random tangle of quantized vortex
lines. The energy spectrum of this vortex tangle in the
superfluid component (the energy distribution between scales,
presented in the k space) EQ

s (k) is dominated by the intervortex
scales �k ∼ 1.

The late stage of the decay, discussed in Sec. II B, follows
a t−3/2 asymptotics [13] and may be described by

L(t) ⇒ Lcl(t) = b2L0|τ2|3/2

(t − τ2)3/2
, (1b)

with two new fitting parameters: τ2 and b2. It is commonly
believed that the dependence (1b) is caused by the classical
Richardson-Kolmogorov cascade in the superfluid component,
with Ecl

s (k) ∝ k−5/3 spectrum. The parameters of the flows,
chosen for the analysis and the fitting parameters, are summa-
rized in Table I.

A natural way to rationalize these observations is to assume
that the turbulent energy spectrum of the superfluid component
Es(k) consists of two parts:

Es(k) = EQ

s (k) + Ecl
s (k), (2)

(i) the classical region spanning large scales from the integral
length scale � down to the intervortex distance �, where it is
followed by (ii) a quantum contribution EQ

s (k), corresponding
to the random tangle of quantized vortex lines, having a form
of a peak. Qualitatively, it is sketched in Fig. 4 and explained
in more details in Sec. II C.

Section III is devoted to phenomenological modeling of
the entire set of experimental data, in a unified manner, which
stems from understanding of the underlying spectral properties
of the studied flows. The previous analytical results [22]
required by the model are shortly reminded for self-sufficiency
of the presentation.

First of all, based on explained above forms of the energy
spectra for coflow, Fig. 4(a), we suggest in Sec. III A a “basic
model” of the VLD decay [Eq. (17)], in which the quantum
decay term (9a) and the classical energy source term (16)
are present from the very beginning of the decay, t = 0. This
model reproduces both quantum and classical asymptotics,
given by Eqs. (1), in agreement with the observations in
coflow, shown in Figs. 2 and 3. Based on the basic model,
in Sec. III B we present a more detailed (but still prelim-
inary) discussion of the underlying physics, hidden in its
fitting parameters. Although the model explains small- and
large-time asymptotics of the L(t) dependence, it fails to
describe the crossover regime between them, even for the
coflow.
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TABLE I. Column #2 shows types of the flow and channel width of chosen 12 sets of experiments, numbered in first column from 1 to 12).
Next 17 columns display: #3, temperature T in K; #4, #5, and #6, superfluid, normal fluid, and counterflow velocities Us, Un, and Uns in cm/s;
#7, initial VLD L0 in cm−2; #8, Reynolds number Reτ , estimated via counterflow velocity Uns and normal-fluid kinematic viscosity νn; #8–#12:
parameters of the fits (1a) for the Vinen’s (∝t−1) decay and for the hydrodynamic (∝t−3/2) decay(1b), namely #9 and #11, dimensionless b1

and b2 and #10 and # 12, time origins τ1 and τ2 in seconds; #13, ratio of the initial VLD L0 to L1, lowest value of L(t) in the t−1 fit at the time
t = t1 (shown in #15); #14, ratio of the VLD L1 to L2, the initial (largest) value of L(t) in the t−3/2 fit at the time t = t2 (shown in #16); #17
and #18, model parameters d1 and d2, related to b1 and b2 by Eqs. (10) and (18b) (with α = 0.06 for T = 1.45 K and α = 0.04 for T = 1.35
K); #19, ratio of the initial VLD L0 to L2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Type of T Us Un Uns L0 × 10−4 Reτ b1 τ1 b2 τ2 L0/L1 L1/L2 t1 t2 d1 d2 L0/L2

the flow (K) (cm/s) (cm/s) (cm/s) (cm−2) (s) (s) (s) (s)

1 0.69 0.69 0 0.86 139 −1.27 −1.26 −2.22 −0.08 2.3 3.9 2.0 14 0.54 −0.0035 8.97
2 1.35 4.99 4.99 0 13.3 797 −1.19 −0.26 −0.22 −0.05 5.9 4.3 1.4 5.3 1.73 −0.019 25.4
3 Co- 22.4 22.4 0 106 3092 −1.15 −0.11 −0.001 1.15 12.5 4.7 1.3 3.6 5.36 0.0049 58.8
4 flow, 0 6.0 843 −1.04 −0.8 −0.03 −1.0 1.7 3.05 −0.0092 4.16
5 7 mm 1.45 4.99 4.99 0 20.0 3276 −1.09 −0.28 −0.05 −0.2 5.6 3.6 1.6 4.5 3.70 −0.0039 20.2
6 22.4 22.4 0 80.0 −1.25 −0.13 0.006 0.5 7.7 13 1.2 5.0 7.92 0.0046 100
7 Counter- −0.09 0.95 1.05 0.96 0.96 −1.02 −0.41 0.03 6.0 2.0 7.0 1.5 2.7 0.24 0.0547 14.0
8 flow, 1.45 −0.29 2.89 3.18 11.2 775 −0.90 −0.04 0.18 0.1 6.3 2.9 0.7 8.1 0.25 0.0070 18.3
9 10 mm −0.77 7.77 8.54 92.5 1888 −0.61 −0.013 −0.25 −0.01 13.2 38 0.1 3.1 0.45 −0.0019 502
10 Super- 0.96 0 0.96 1.21 176 −1.40 −0.18 −0.01 −7 6.3 2.9 0.4 32 0.18 −0.0340 18.3
11 flow, 1.45 2.67 0 2,67 10.4 467 0.49 0.07 −0.003 −5.8 17.2 3.9 0.2 6.0 0.22 −0.0516 67.1
12 10 mm 7.41 0 7.41 113 1246 0.25 0.04 −0.015 −0.15 9.1 5.5 0.1 12 0.68 −0.0065 50.1

The most striking disagreement between the simple “basic”
model and observations, seen in Fig. 3, is a “bump” (nonmono-
tonic behavior) in the L(t) dependence, in the counterflow
and superflow cases. This behavior may be explained by the
delay in the delivery of the energy flux from the classical to
the quantum part of the spectra suggested in the recent paper
by Gao et al. [22] for the special case of decaying thermal
counterflow required for the evolution from a more localized
in k spectrum, sketched in Fig. 4(b), toward the K41 spectrum,
shown in Figs. 4(a) and 4(c).

An essential part of our further analysis is based on the
reported in Sec. III C results of the numerical simulations of the
energy spectra evolution, that allowed to clarify the details of
the energy-flux delay in the decaying counterflow turbulence.

This delay is accounted for in the “improved model” of
the VLD decay, formulated in Sec. III D. In this section, we
suggest an analytical expression of the L(t) dependence, that
agrees with the main experimental observations in the entire
duration of the decay: the known short-time ∝1/t and long
time ∝1/t3/2 asymptotes as well as the bump in the L(t)
dependence at the crossover times.

Following analysis of our experimental findings, we de-
velop in Sec. IV an analytical theory of the steady-state
quantum turbulence in the counterflow and pure superflow, that
results in prediction of the energy spectra and velocity structure
functions in a reasonable agreement with known experimental
results. Our theory is based on the algebraic approximation for
the energy fluxes over scales. The resulting spectra are strongly
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FIG. 4. Sketch of the stationary superfluid turbulent energy spectrum in log-log coordinates log Es(k) vs log(k�). According to Eq. (2), the
spectrum Es(k) consists of a classical E cl

s (k) and a quantum EQ
s (k) part, colored in light blue and cyan, respectively. In the coflow (a), Ecl

s (k)
consists of a cascade part EK41

s (k) ∝ k−5/3 (for k < k×, k× = ρ
/ρn) and a thermodynamic equilibrium part ETD

s (k) ∝ k2 for 1/� � k > k×. In
the counterflow and pure superflow (b), the quantum contribution EQ

s (k) and the classical thermal bath part ETD

s (k) look similar to that in coflow,
while the cascade part, the supercritical LNV spectrum Esp [Eqs. (7)] terminates at some k∗ < 1/� and does not provide energy to the quantum
vortex tangle in the stationary regime. After switching off the counterflow or pure superflow, the spectrum shown in (b) evolves to that shown
in (c), switching on the energy flux toward quantum vortex tangle after some delay.
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suppressed by the mutual friction, leading to the energy
dissipation at all scales, enhanced by the counterflow-induced
decoupling of the normal and superfluid velocity fluctuations.

In the final Sec. V we summarize our main results and
discuss the issues that remain out of the scope of this research.
In particular, we stress that our simple analytical theory of
the steady-state energy spectra of quantum turbulence in
the counterflow adopts some uncontrolled approximations
and simplifications, widely used in the studies of classical
hydrodynamic turbulence. In the further studies of quantum
turbulence, these assumptions have to be either better justified
or relaxed. Nevertheless, we consider our findings as a natural
and perhaps even required step in this direction.

II. DECAY OF THE VORTEX TANGLE IN COFLOW,
COUNTERFLOW, AND SUPERFLOW

A. Experiment

The superflow and the coflow of superfluid 4He are both
mechanically forced by a low temperature bellows through
a square cross-section brass channel, illustrated in Fig. 1.
The same channel can be configured to attain superflow,
coflow, and thermal counterflow. For superflow, sintered silver
filters (superleaks) block the viscous normal component. Two
vertical brass flow channels have been used, both with the
test section 105 mm in length and has an internal square
cross section of side 7 and 10 mm, therefore with a factor 2
change in cross-sectional area. For coflow, the superleaks are
removed and the lower one is replaced by a flow conditioner
made from a dense pack of 10-mm-long capillaries of 1 mm
diameter, intended to cut larger-scale turbulent eddies. The
counterflow is prepared by closing one end of the channel with
a resistive wire heater and leaving the other end open. A full
description of the mechanically driven superflow apparatus and
the measurement technique is given in Ref. [23]. Counterflow
is studied as in previous Prague experiments [24,25].

Turbulence is detected by measuring the extra attenuation
of second sound caused by the scattering of normal-component
thermal excitations by the vortex lines. Second sound is
generated and detected by a pair of vibrating porous mem-
branes located in the walls of the channel at its midpoint; the
sound travels across the channel, which acts as a resonator.
The time-dependent attenuated amplitude of second sound
at resonance a(t) can be related to the instantaneous VLD
L(t) (assuming random and not extremely dense tangle [23])
through the equation L(t) = 6π�f0

Bκ
[ a0
a(t) − 1], where a0 and

�f0 are the amplitude and full width at half maximum of the
second-sound amplitude resonant curve for quiescent helium,
and B is the mutual friction coefficient of order unity, tabulated
in Ref. [26]. The attenuation of second sound measures the
length of vortex line per unit volume weighted by a factor
sin2 θ , where θ is the angle between any element of vortex line
and the direction of propagation of the second sound.

We have performed mechanically driven coflow, superflow,
and thermally driven counterflow decay measurements, in the
two channels of widths 2� = 7 and 10 mm, in the temperature
range between 1.25 to 2.10 K, and for different values of
velocities chosen such to produce initial steady-state VLD
L0, spaced almost exactly one decade apart: 104, 105, and

106 cm−2. For every combination of temperature and starting
line density we have measured typically 150 individual decays,
under nominally identical experimental conditions and we
have ensemble averaged these samples, allowing us to resolve
up to four orders of magnitude of decay on L(t).

B. Experimental data and their preliminary analysis

In this paper, we restrict ourselves by discussing 12 typical
data sets of experiments, characterized in Table I, which are
chosen to illustrate the basic ideas of this research. For T =
1.45 K we discuss three sets withL0 ∼ 104, 105, and 106 cm−2

for coflow (sets #3, #4, and #5), counterflow (sets #7, #8, and
#9) and superflow (sets #10, #11, and #12). In addition, we
analyze the coflow sets for lower T = 1.35 K with the same
L0 ∼ 104, 105, and 106 cm−2 (sets #1, #2, and #3).

The experiments were conducted in the channels of two
different widths. For coflow, we have more representative
experimental data with 7-mm channel, while for superflow and
counterflow more representative data were obtained with 10-
mm channel. We found no significant differences between 7-
and 10-mm-channel results for a given flow type and therefore
compare below the most representative results regardless of
the channel width.

1. Coflow

We begin to analyze the time evolution of L(t) from the
decaying coflow turbulence, which, in some sense, is the
simplest case. The VLD L(t) is decaying monotonically, as
illustrated in Fig. 2 for both temperatures T = 1.35 K [shown
in Figs. 2(a) and 2(b)] and T = 1.45 K [shown in Figs. 2(c) and
2(d)] and for all three initial values ofL0: 104 cm−2 (blue lines),
105 cm−2 (green lines), and 106 cm−2 (red lines). There is
no qualitative difference between two presented temperatures,
except that for higher T = 1.45 K the VLD L(t) is decaying
slightly faster. Thus, there is no reason to analyze these cases
separately.

Our first step is an analysis of the initial stage of the coflow
turbulence decay shown in Figs. 2(b) and 2(d) (for T = 1.35
and 1.45 K) fitted by t−1 law (1a), as shown by dashed lines.
The fitting parameters b1 and τ1, given in Table I, will be
discussed later. For now, we notice that the negative virtual
origin time τ1 increases (and becomes closer to zero) with
increasing L0, as expected from Eq. (1a).

As seen in Figs. 2(b) and 2(d), the “quantum” t−1 fit (1a)
agrees with the experimental data over the time interval 0 �
t � t1 about 1–2 s, when L(t) decays from L0 to L(t1) ≡ L1.
Ratios of the initial and final values of the VLD in the
quantum decay L0/L1 and final time t1 are given in Table I.
One sees that for the largest L0 ∼ 106 cm−2 the ratio L0/L1

reaches one order of magnitude. On the other hand, sometimes
(e.g., set #4 with T = 1.45 K and smallest L0 � 6 × 104),
the quantum regime of the coflow decay does not show up.
The consequences of these important observations will be
discussed in Sec. III.

The second step is the analysis of the later stage of the
coflow turbulence decay shown by dashed-dotted lines for
T = 1.35 and 1.45 K in Figs. 2(a) and 2(c) and fitted from
time t2 by t−3/2 law (1b). In Table I, we present the fitting
parameters b2 and τ2, the starting fit time t2 together with the
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ratio of the final value L1 = L(t1) in the quantum fit to the
initial value L2 ≡ L(t2) in the classical fit.

The intermediate regime between the quantum and the
classical ones [lasting from t1 to t2 and during which L(t)
decays from L1 to L2] is the subject of a separate discussion
in Sec. III.

Returning to the classical stage of the decay, notice that
similar to the case of quantum decay, the origin time τ2 for
L0 ∼ 105 is larger (closer to zero) than that for smaller L0 ∼
104, as expected from Eq. (1b). However, for larger L0 ∼
106, the time τ2 becomes positive, which formally contradicts
Eq. (1b). This can be explained assuming that there are some
transient processes between quantum and classical stages of
the decay that become significant for large initial values of
L0. A possible physical reason for this will be suggested in
Sec. III, after discussion of the steady-state energy spectra of
quantum turbulence in the coflow.

Comparing the rates of the decay at early (quantum) and
late (classical) stages in Fig. 2, one sees that classical decay
is slower than the quantum one. The physical reason for that
is simple: in the quantum regime the energy source in the
decaying vortex tangle is relatively small with respect of
its dissipation rate and may be neglected. Later, when the
dissipation rate, proportional to L2(t), becomes smaller, the
Richardson-Kolmogorov energy cascade toward small scales,
serving as an additional energy source for the vortex tangle,
should be taken into account.

From the formal point of view, it looks contradictory that
the t−3/2 decay is slower than t−1. This can be resolved by
accounting for the interplay of the origin times in Eqs. (1). This
means that t−3/2 decay is only an intermediate regime, valid up
to some large time t3, when the increasing in time intervortex
distance �(t) = 1/

√
L(t) ∝ t3/4 becomes of the order of the

largest scale �. We cannot observe this final stage of the decay
with L(t) ∼ 1 cm−2, due to a large noise level.

Nevertheless, and this is important for discussion in Sec. III,
the classical t−3/2 fit (1b) describes the observed decays during
tens of seconds after t2, when L(t) decreases by more than two
orders of magnitude. This is seen, e.g., in Fig. 2(a) for set #3
with T = 1.35 K and L0 ∼ 106 cm−2.

2. Counterflow and pure superflow

Typical examples of decaying VLD in superfluid 4He after
switching off the counterflow are shown in Figs. 3(a) and 3(b)
and after switching off pure superflow in Figs. 3(c) and 3(d).
These data, obtained in 10-mm channel for T = 1.45 K, are
very similar to the data from 7-mm channel (not discussed in
this paper).

The lines are marked as for the coflow, Fig. 2, according
to initial VLD: L0 ∼ 104 (blue lines), L0 ∼ 105 (green lines),
and L0 ∼ 106 (red lines). Similar to the coflow, the decay of
L(t) may be divided into three stages: (i) The initial quantum
stage that agrees with the t−1 fit (1a), in the time interval
0 � t � t1, during which L(t) monotonically falls from about
L0 to L1. The fitting parameters b1 and τ1 together with the
ratios L0/L1 and time t1 are given in Table I. (ii) The final
classical stage that agrees with the monotonic decay, described
by t−3/2 fit (1b). It starts at time t � t2 from the VLD L2 and
lasts for several tens of seconds. Table I presents parameters

b2 and τ2 together with the ratios L1/L2 and time t2. (iii) The
intermediate stage between the quantum and the classical one,
that lasts from t1 to t2 and during which L(t) decays from L1

to L2. The most striking feature that qualitatively differs this
stage in counterflow and pure superflow from that in coflow
is the nonmonotonic character of the decay, clearly seen in
Fig. 3, especially for large L0.

Comparing Fig. 2 for coflow with Fig. 3 for counterflow
and pure superflow, one sees that there are no qualitative
differences between all these flows at the initial quantum and
final classical stages of the monotonic decay of VLD. The
same conclusion follows from Table I, which demonstrates
only a small quantitative difference between these flows at
these stages, perhaps with some scattered values of displayed
parameters for all flows.

As we discussed above, the counterflow and pure superflow
qualitatively differ from the coflow only at the intermediate
stage, demonstrating nonmonotonic decay. As we explain
below, this difference is a consequence of a very different
character of the steady-state energy spectra (energy distribu-
tion between scales) in the counterflow and pure superflow
with nonzero values of the counterflow velocity Uns �= 0 from
the stationary spectrum in the coflow, for which Uns = 0. The
energy spectra of quantum 4He turbulence for all three types
of flows, discussed in our paper, are the subject of Sec. II C.

C. On energy spectra of superfluid turbulence

1. Coflow

In coflow turbulence, the mean velocity profiles of the
normal and superfluid velocity Un(y) and U s(y) practically
coincide almost everywhere in the channel, perhaps except
for narrow regions near the walls, because the pressure drop
is the same for both fluid components. The relatively large
mutual friction tries to lock the mean normal and superfluid
velocities and only kinematic viscosities, important in the
near-wall region (viscous and buffer layers) are different: νn �=
νs = 0. Thus, the energy spectra of the normal and superfluid
components En and Es practically coincide in the entire
energy containing and inertial intervals of scales. Ignoring
unessential for present discussion intermittency effects, we
can use classical K41 energy spectra for both 4He components
[27], shown in the left part in Fig. 4(a):

En = Es � CK41ε
2/3k−5/3 . (3)

Here, εn = εs ≡ ε are the corresponding energy fluxes over
inertial interval of scales and CK41 � 1.4 is the Kolmogorov
constant.

Using K41 energy spectrum (3), we can estimate the
classically generated VLD L∗ originated from its large-k
part. This part turns out to be significantly smaller than the
experimentally observed steady-state VLD L0. To explain
why L∗ � L0, one should find some additional mechanism
of vortex generation aside from the classical flow instabilities
in the channel flow. Such a mechanism may be provided
by the difference between the normal and the superfluid
velocities. The normal and superfluid energy spectra deviate
from each other in the crossover region k� ∼ 1 [28,29]. The
velocity coupling is also violated in the narrow region near the
channel walls and near the surface of the grid at the channel
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entrance, where normal and superfluid components satisfy
different boundary conditions. In these areas, the velocities of
components differ and excite a random vortex tangle leading
to a peak in the energy spectrum near the crossover scale.

Therefore, the resulting turbulent energy spectrum E(k)
may include, in addition to the classical K41 region Eq. (3)
(spanning scales from the integral length scale � down to
the intervortex distance �), also a quantum contribution EQ

s (k),
which has a form of a peak at scales close �, corresponding
to the random tangle of quantized vortex lines. This peak has
large-k asymptote ∝1/k originating from the velocity field
near the quantized vortex lines. In the region of k < π/�,
the quantum peak is adjoined by the classical region with
the thermodynamic equilibrium spectrum ∝k2, describing
equipartition of energy between degrees of freedom [30] [see
Fig. 4(a)].

2. Counterflow and pure superflow

Notice that in the steady-state regimes of the counterflow
and pure superflow, the energy spectrum of the superfluid
component has a qualitatively different form from that in the
coflow, as sketched in Fig. 4(b). The physical reason for that is
the decoupling of the normal and superfluid turbulent velocity
fluctuations, caused by the nonzero value of the counterflow
velocity Uns in the counterflow and superflow, while in the
coflow Uns = 0 [31].

In the analytical theory of counterflowing turbulence
presented in Sec. IV, we show that on a qualitative level
the resulting energy spectra are similar to those in 3He-B
turbulence with the normal fluid component at rest studied in
Refs. [32,33]. We use these spectra as a basis for our numerical
analysis. The analytical form of the energy spectra found by
L’vov, Nazarenko, and Volovik (LNV) [32] in current notations
reads as

E(k) = E0

(
k0

k

)3[(
1 − 



cr

)(
k

k0

)2/3

+ 



cr

]2

, (4a)


cr = 5

4

√
k3

0 E0 , 
 = α(T )κL . (4b)

Here, 
 is the mutual friction frequencies for the superfluid and
α(T ) is the dimensionless mutual friction parameter, tabulated
in Ref. [26].

At 
 = 
cr spectrum (4a) becomes the scale-invariant
“critical” spectrum

Ecr(k) = E0

(
k0

k

)3

, LNV critical. (5)

For 
 < 
cr, solution (4a) can be considered as “subcritical”
and written as follows:

Esb(k) = E0
k3

0

k5/3

[
1

k2/3
+ 1

k
2/3
cr

]2

, LNV subcritical,

kcr = k0

(




cr − 


)3/2

. (6)
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k

10-3

10-2

10-1

100

E(
k
)

k
5/

3

FIG. 5. Five variants of the stationary energy spectra, compen-
sated by k5/3, k5/3Es(k), serving as the initial conditions for the
Sabra decay [Eq. (A2)]: (a) K41 energy E0,a ∝ k−5/3 [Eq. (3)] (solid
blue line); (b) experimental counterflow spectrum E0,b(k) ∝ k−2,
reported in [39] (green line with squares); (c) critical LNV spectrum
[Eq. (5)] E0,d (k) ∝ k−3 (red line with diamonds); (d) supercritical
LNV spectrum E0,d (k) = 0 for k > k∗ [Eq. (7)] (light blue line with
circles); (e) subcritical LNV spectrum [Eq. (6)] (brown line with
triangles).

In the case 
 > 
cr, Eq. (4a) can be considered as
“supercritical” spectrum

Esp(k) = E0
k3

0

k5/3

[
1

k2/3
− 1

k
2/3
∗

]2

, LNV supercritical,

k∗ = k0

(




 − 
cr

)3/2

. (7)

Examples of the three versions of the LNV spectra are
plotted in Fig. 5. Aside from this classical part, the spec-
trum includes a quantum peak, shown in Fig. 4(b), that is
presumably more pronounced than the peak in the coflow,
shown in Fig. 4(a). These peaks have similar structure: large-k
asymptotics ∝1/k and small-k asymptotics ∝k2.

III. BASIC AND IMPROVED MODELS OF DECAYING
QUANTUM TURBULENCE

In this section, we first propose and solve a basic model of
the VLD evolution L(t) in decaying quantum turbulence. The
model can then be further developed to clarify the experimental
facts in more detail.

A. Basic model of decaying coflow turbulence

Assume that the time derivative of L(t) consists of a simple
sum of the quantum decay term −ηqn and the classical source
term ηcl, neglecting possible processes of their interaction:

dL(t)

dt
= −ηQ + ηcl . (8)

The quantum tangle decay (without counterflow velocity) is
usually discussed in the framework of the Vinen equation
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[14,20] with the (quantum) decay term ηQ = χ2κL2/(2π ).
Estimating the phenomenological coefficient χ2 in the local
induction approximation [34,35], we rewrite ηQ in terms
of the dimensionless mutual friction parameter α and,
the vortex line curvature S̃, normalized by the intervortex
distance �, c2 ∼ 1:

ηQ � α κ c2
2�L2/(4π ), c2 ≡ S̃�, � = ln(�/a0). (9a)

Since for our conditions the parameter �/(4π ) � 1 varies from
0.9 to 1.1 and c2 � 1 depends weakly on temperature [36], we
can simplify this relation by introducing a dimensionless fitting
parameter d1, and write

ηQ = α κL2/d1. (9b)

With this ηQ and without classical source term ηcl, Eq. (8) has
well-known t−1 solution (1a) with

b1 = d1/(α κL0τ1). (10)

The positive contribution ηcl in the right-hand side of Eq. (8)
originates from the direct energy flux ε from the classical
energy containing scale k� ∼ 1, to the quantum energy peak
EQ(k), located at k� ∼ 1 (see Fig. 4). To estimate ηcl, recall
that EQ ∼ κ2L (see also Ref. [37]). Therefore, the flux of VLD
from the classical scales to the quantum energy peak may be
estimated as

ηcl � ε/κ2. (11)

Integrating Eq. (3) for the energy spectra, we find the total
classical kinetic energy

Ecl =
∫

Ecl(k) dk � CK41ε
2/3

∫ π/�

π/�

k−5/3dk

= 3 CK41ε
2/3

2π2/3
[�2/3 − �2/3] �

(
ε d2�

2

)2/3

. (12)

Here, we roughly estimated lower and upper limits of the
inertial interval as π/� and π/�. Taking into account that
at our experimental conditions � significantly exceeds �, we
neglected � with respect to �. Finally, we replaced in Eq. (12)
all numerical factors by a new fitting dimensionless constant
d2 � 1. As a result,

ε � 2 (Ecl)3/2/(d2�). (13)

Now, we can write the classical energy balance equation

dEcl

dt
= −ε = −2

(Ecl)3/2

d2�
, (14)

with the solution

Ecl(t) =
(

d2�

t − τ2

)2

, τ2 = d2�√
Ecl

0

, (15)

where Ecl
0 is the initial energy at t = 0. Together with Eqs. (13)

and (11), this finally gives

ηcl(t) = εcl(t)

κ2
= 2(d2�)2

(t − τ2)3
. (16)

Collecting Eqs. (8), (9b), (15), and (16), we finally suggest a
simple model of the VLD decay in the form

dL
dt

= 2 (d2�)2

κ2(t − τ2)3
− α κ

d1
L2. (17)

Here, d1 and d2 are dimensionless phenomenological parame-

ters. Note that τ2 is of the order of turnover time τ� � �/

√
Ecl

0

of the largest (energy-containing) eddies in the flow.
When the classical energy Ecl

0 is small, the virtual origin
time τ2, according to Eq. (15), is large and the first term in
the right-hand side of Eq. (17) may be neglected. In this case,
Eq. (17) may be easily solved, giving t−1 decay LQ [Eq. (1a)].
Assume now that for large times the time derivative dL/dt in
Eq. (17) may be neglected. Then, Eq. (17) reproduces t−3/2

decay Lcl [Eq. (1b)] with

d2 = b2
(κ τ2)3/2

�
L0

√
α

2d1
(18a)

or by using d1 from Eq. (10):

d2 = b2
κτ

3/2
2

�

√
L0

2b1τ1
. (18b)

Neglecting for simplicity the time dependence of the first term
in the right-hand side of Eq. (17), one can solve it exactly with
the result

L(t) = Lcl(t) coth

[Lcl(t)

LQ(t)

]
. (19)

Remind that limx→0 coth[x] → 1/x, limx→∞ coth[x] → 1.
Therefore, when LQ � Lcl, L(t) → LQ. Otherwise, in the
limit LQ � Lcl, L(t) → Lcl. For LQ ∼ Lcl, the function
L(t) describes a smooth transition between LQ and Lcl,
being always larger than both LQ and Lcl. In this way, the
approximate solution (19) for L(t) interpolates the solution of
the model (17) between the small- and large-time asymptotes.

Even better interpolation between exact asymptotes LQ and
Lcl gives the following modification of Eq. (19):

L̄(t) = Lcl(t) coth

[Lcl(0)

LQ

]
. (20)

Having in mind the approximate character of the evolution
model (17), we consider Eq. (20) for L̄(t) as an analytical form
of the VLD time dependence L(t), practically equivalent to the
suggested basic model of decaying superfluid turbulence.

B. Analysis of the decay fitting parameters

The L0 dependencies of the fitting parameters τ1 and τ2,
b1 and b2, d1 and d2 for three different types of the flow are
given in Table I. For clarity, we additionally display these
dependencies in Fig. 6.

1. Quantum and classical origin times τ1 and τ2

The dependence of the quantum origin times τ1 on the
initial VLD L0 for coflow, counterflow, and pure superflow is
shown in Fig. 6(a). As expected from Eqs. (1a) and (10), the
values of τ1 for coflow are negative and monotonically increase
with L0. There, values of τ1 for coflow are clearly different
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FIG. 6. Virtual origin times τ1 and τ2 for the quantum (1a) (a) and classical (1b) decay (d) vs initial VLD L0 in initial coflow, counterflow,
and pure superflow. Panels (b) and (e) display L0 dependence of the b1 and b2 fit parameters. Panels (c) and (f) display L0 dependence of the
d1 and d2 fit parameters. The numerical values of all these parameters are given in Table I.

from those in the counterflow and pure superflow, especially
for smaller L0. This is related to the fact that in the coflow,
the classical energy flux towards the quantum vortex tangle is
present from the very beginning of the decay (at t = 0), while
in the counterflow and pure superflow it appears only after
some delay, required for developing the Kolmogorov cascade
from the initial spectrum sketched in Fig. 4(b).

As expected, the classical origin time τ2 tends to decrease
for larger L0, as depicted in Fig. 6(d). The most striking fact,
seen in Fig. 6(d), is that τ2 can be positive. This definitely
contradicts the basic model of L(t) decay, formulated in
Sec. III A. Nonmonotonic evolution of L(t), clearly seen in
Fig. 3, also calls for improvements of the basic model of
L(t) decay, in order to account for the time delay of the
energy flux into the quantum vortex tangle. This is done in
Sec. III D, prefaced by Sec. III C, devoted to the study of the
energy-flux delay in the decaying turbulence in counterflow
and pure superflow, caused by the later development of the
Richardson-Kolmogorov cascade from the localized energy
spectra.

2. Quantum and classical parameters b1, d1 and b2, d2

The L0 dependencies of the fit parameters b1, d1 and b2,
d2 are shown in Figs. 6(b), 6(c), 6(e) and 6(f). Quantum pa-
rameters b1, d1 ∼ O(1); their deviation from unity reflects the
nonuniversal character of the transient regime after switching
off the flow: the mean velocity has to relax to zero, anisotropic
statistics of the vortex tangle, affected by the mean flow, has to

become isotropic, etc. We will not discuss these complicated
issues in this paper, as they do not seem to contribute to
better understanding of the basic physical picture of decaying
quantum turbulence in three types of the flow.

The same can be said about the scatter of values of the
classical fitting parameters b2, d2 for different types of the
flow. Notice only that their values, being much smaller than
unity, become even smaller for larger L0. The same tendency
is demonstrated by the ratio L2 (from which the classical
decay begins) to the initial value of VLD L0. This may be
easily interpreted in the following way: the random vortex
tangle decays according to the quantum t−1 law as long
as the energy influx from the classical part of superfluid
turbulence may be neglected. This holds as long as the tail
of classical energy spectrum EK41

s (π/�) is smaller than the
quantum energy spectrum EQ

s (π/�) at this scale. Therefore,
the ratio EQ

s (π/�)/EK41

s (π/�) may be roughly estimated as
1/b2 � 1 or as a value between the ratios L0/L1 and L0/L2

(remind that L1 is the VLD at which the quantum decay
terminates). As shown in Table I, both ratios are much larger
than unity and both tend to increase for larger L0.

Based on this analysis, we conclude that the quantum peak
of energy at the intervortex scale �, as a rule, dominates over
the tail of classical energy spectrum at this scale, as depicted
in Fig. 4. Notice that, generally speaking, this qualitative
conclusion may be guessed just from the observation of the
decay laws, shown in Fig. 2. What is added by our analysis is
a semiquantitative estimate of the ratio EQ

s (π/�)/EK41

s (π/�).
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FIG. 7. (a) Time dependence of the total energy E(t) in decaying superfluid turbulence from different initial conditions, shown in Fig. 5.
The inset shows the short-time evolution of the total energy E(t). (b) Time dependence of the rate of energy dissipation ε(t)/κ2 that plays role
of the VLD flux ηcl(t) in the model (8). The lines are colored as in Fig. 5 without markers. In (a), the lines for critical and subcritical LNV
spectra coincide. The lines for experimental and supercritical LNV spectra almost coincide.

C. Energy-flux delay in the decaying counterflow turbulence

It is commonly accepted that the Richardson-Kolmogorov
cascade develops from any localized in the k-space initial
state over finite time, of the order of a few turnover times
of the energy-containing eddies. Nevertheless, the details
of the transient regime and how they depend on the initial
state are poorly understood. In order to clarify the law of
delay in “switching on” the energy flux εcl(t) [Eq. (16)] that
contributes to the right-hand side of the basic model (17), we
adopt in our paper so-called Sabra-shell model of turbulence,
successfully utilized in studies of quantum turbulence, e.g., in
Refs. [29,33,38].

The required version of the Sabra model and the numerical
procedure are described in Appendix A. Here, we present only
results of the time evolution of the energy spectrum Es(km,t) =
〈|um|2〉/km in the decaying quantum turbulence from five types
of the initial conditions Es(k,0) ≡ E0(k), shown in Fig. 5:

ICa: K41 energy spectrum [Eq. (3)] E0,a(k) ∝ k−5/3;
ICb: experimental counterflow spectrum E0,b(k) ∝ k−2,

reported in Ref. [39];
ICc: critical LNV spectrum [32] E0,c(k) ∝ k−3 [Eq. (5)];
ICd: supercritical LNV spectrum [Eq. (7)] E0,d (k) = 0 for

k > k∗;
ICe: subcritical LNV spectrum [Eq. (6)] E0,e(k).
The time dependence of the total energy for five types

of the initial conditions (a)–(e) are shown in Fig. 7(a). As
expected, in all cases the large-time asymptotics E(t) ∝ t−2

agrees with Eq. (15) (see black dashed line). What is important
for current discussion is the small-time behavior for t below
few τ�, shown in the inset of Fig. 7(a). Clearly, for critical
and supercritical initial conditions ICc and ICd, the energy
E(t) (shown by coinciding solid red and dashed light blue
lines) does not decay up to t ≈ τ�. This is the time required
for development of the Richardson-Kolmogorov cascade,
transferring energy into the dissipative range of scales (large k).

On the contrary, for the K41 initial condition, ICa, the
energy decays from the very beginning [see blue solid line in
the inset of Fig. 7(a)]. This behavior is also expected. For two
intermediate initial conditions, ICb and ICe, the initial energy

is also localized in the region of small k, but not so strongly,
as in ICc and ICd cases. Accordingly, the time dependence of
E(t) for ICb and ICe cases, shown by green and orange lines,
demonstrates intermediate behavior.

All these features are clearly seen in Fig. 7(b), showing
the time dependence of the rate of energy dissipation ε(t). In
our simulation we used a very small value of the kinematic
viscosity, therefore, ε(t) is actually a measure of the energy
flux via crossover wave number ∼1/� that serves as the energy
flux from classical to quantum scale range. Thus, according
to Eq. (11), we can say that the time dependence ε(t) actually
gives the time dependence of the important ingredient of the
model (8), the classical energy source ηcl(t) � ε(t)/κ2.

All plots of ηcl(t) in Fig. 7(b) have t−3 asymptote for large
t , in agreement with Eq. (16). Moreover, for the K41 initial
conditions ICa expected in coflow decay, and shown by the
blue line, Eq. (16) provides reasonable fit of ηcl(t) for all times,
as shown by the solid black line in Fig. 7. Thus, our numerical
simulations support the basic model (17) of the decay in coflow
(see Sec. III A).

The situation is completely different for other initial condi-
tions, expected for the counterflow and pure superflow cases.
There is the most striking difference for the well-localized,
critical, and supercritical ICc and ICd, shown in Fig. 7 by
(practically coinciding) red and light blue lines. One sees that
for small time ηcl(t) ≈ 0, then it is sharply switching on and
after few turnover times τ� reaches the “basic” behavior (16).
This can be accounted for by “improving” the basic model,
introducing into Eq. (16) for the classical source term the time
delay function Fdel(t):

ηcl = 2(d2 �)2

(t + τdel − τ2)3
⇒ Fdel(t)

2(d2 �)2

(t − τ2)3
. (21a)

It is convenient to choose Fdel(t) as a square of new function
fn(t) that has a simple form

Fdel(t) = f 2
n (t), fn(t) = tn

tn + τn
del

. (21b)
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FIG. 8. The details of the short-time dependence of the rate of
energy dissipation ε(t)/κ2, shown in Fig. 7(b). Black solid line: the
basic model dependence (16) for ηcl(t) fits K41 initial conditions
ICa. Black dashed line shows improved model dependence (21) with
n = 2; it approximates numerically found ηcl(t) for weakly localized
initial conditions ICb and ICe. Black dotted-dashed line, given by
(21) with n = 6, fits ηcl(t) computed with strongly localized initial
conditions ICc and ICd.

As required, fn(t) → 1 for t → ∞. Generally speaking,
f (0) = 0 only for the supercritical case ICd. For all other
cases (except for the K41 spectrum, which we are not
discussing here) f (0) �= 0, although small. This difference is
not important for us and for simplicity we adopted in Eq. (21b)
a simple assumption that fn(0) = 0. The delay time τdel in
Eq. (21b) is expected to be about the largest eddies turnover
time τ�. Indeed, as seen in Fig. 8, τdel � 0.4τ�.

Notice that the parameter n in Eq. (21b), responsible for the
sharpness of the delay function, is different for different initial
conditions. Figure 8 demonstrates that for the weakly localized
initial conditions ICb and ICe, a reasonable approximation to
the numerical observation can be reached with n = 1, while
for strongly localized initial conditions a good fit corresponds
to n = 6.

D. Improved model of VLD decay vs experiment

1. Improving the basic model by the energy-flux delay

In the previous Sec. III C we improved the classical source
term accounting for the time delay by the delay function
Fdel(t). Substituting the new form (21) of ηcl in the basic model
(17), we formulate the “improved decay model” of quantum
turbulence:

dL
dt

= 2 (d2�)2Fdel(t)

κ2(t + τdel − τ2)3
− α κ

d1
L2. (22)

For τdel = 0 the improved model (22) coincides with the basic
model (17). For t < τdel, the delay function (21b) Fdel(t) < 1
and the energy-flux term in Eq. (22), that is proportional
to F (t), is suppressed. For t ∼ τdel, this term is gradually
switching on and, finally, for t � τdel the improved and basic
models (22) and (17) again coincide.

By analogy with Eq. (20), we can formulate the analytical
form of the improved decay model:

L̃(t) = fdel(t)Lcl(t + τdel) coth

[
fdel(t)Lcl(0)

LQ

]
. (23)

Now we are fully armed to compare in the two following
sections the suggested analytical models (20) and (23) with
experimental observations.

2. Basic decay model vs coflow experiment

We begin here with the more simple coflow case, choosing
for comparison the less noisy set #3, demonstrating (red line)
in Fig. 2(a) the decay of almost four decades over 50 s. This
line is reproduced (in red) in Fig. 9(a) together with the plot of
analytical L̄(t) (shown by the blue dotted line), predicted by
the basic model. This line is barely seen because it practically
coincides with the red experimental line within the linewidth,
broadened after 25 s by noise. Some discrepancy between
the experiment and the model prediction is better seen on the
closeup Fig. 9(b) showing the first 5 s of the decay.

Notice that the basic model is very simple: it completely
ignores any interaction between the quantum peak and the
classical large-scale turbulence. In formulating the model we
also ignored the energy stored in the equilibrium part of the

FIG. 9. Comparison of the experimental observation of coflow decay with the basic model predictions. Red solid lines, reproduced from
red lines in Figs. 2(a) and 2(b), show the coflow data for set #3 (T = 1.35 K, L0 ≈ 106 cm−2). Blue dotted lines show basic model prediction
L̄(t) [Eq. (20)] with τ1 = 0.5 s, τ2 = 1 s, and b2 = 0.075.
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FIG. 10. Comparison of the experimental observation for the superflow with the improved model predictions. Red solid lines, reproduced
from red lines in Figs. 3(c) and 3(d) for superflow #12 (T = 1.45 K, L0 ≈ 106 cm−2). Blue dotted lines show improved model prediction
L̃(t) [Eq. (23)] with n = 2, τ1 = 0.015 s , τ2 = 0.1 s, τdec = 0.6 s, and b2 = 0.22.

classical energy ETD

s . Last but not least, the model does not
account for the spatial inhomogeneity of the turbulent channel
flow, in which turbulent kinetic energy significantly depends
on the distance to the walls. Bearing all these in mind, we
consider the agreement between the experiment and the model
quite satisfactory.

3. Improved decay model vs counterflow experiment

Our next step is a discussion of the decay in the counterflow
and pure superflow cases. For our rather simplified manner of
modeling, there is no physical difference between the counter-
flow and pure superflow decaying turbulence. Therefore, from
the data presented in Fig. 3, we chose the set #12 (superflow at
T = 1.45 K, L0 � 106 cm−2) shown in Figs. 3(c) and 3(d) by
red lines. In this case, the noise is relatively low and the bump
on the L(t) dependence is clearly pronounced. Red lines in
Figs. 10(a) and 10(b) reproduce the experimental results shown
in Figs. 3(c) and 3(d) in red. Blue dotted lines result from the
analytical form L̃(t) of the improved model of decay, given by
Eq. (23) with n = 2, τ1 = 0.015 s, τ2 = 0.1 s, b2 = 0.22.

Semiquantitative agreement between experimental obser-
vation and the improved decay model allows us to conclude
that this model reflects the basic physical mechanisms respon-
sible for the time dependence of the VLD. In particular, it
accounts for the time delay in the delivery of the energy flux
from classical to quantum parts of superfluid turbulence.

IV. TOWARDS THEORY OF QUANTUM TURBULENCE
WITH COUNTERFLOW

In mechanically driven quantum turbulence, the mean
velocities of the normal and superfluid components are known
to coincide: Un = U s. Numerous laboratory, numerical and
analytical studies showed that under these conditions the
mutual friction between the normal and superfluid velocity
components couple also their fluctuations: un(r,t) ≈ us(r,t)
almost at all scales. This is not the case in thermally driven
quantum turbulence, where the counterflow velocity Uns �=
0 partially decouples the normal and superfluid velocity
fluctuations and enhances the turbulent energy dissipation due
to the mutual friction. In this section, we suggest a simple

analytical model of the resulting energy balance in counterflow
turbulence that predicts dramatic suppression of the energy
spectrum at intermediate and small scales.

A. Differential model for the energy spectra

The evolution equations for one-dimensional (1D) energy
spectra Es(k,t) and En(k,t), defined by Eqs. (B5), were derived
in Ref. [31]:

∂Es(k,t)

2 ∂t
+ NLs = 
[Ens(k,t) − Es(k,t)], (24a)

∂En(k,t)

2 ∂t
+ NLn = 
n[Ens(k,t) − En(k,t)]. (24b)

Nonlinear terms NLs,n conserve kinetic energy and therefore
may be presented in the divergent form

NLs = dεs

dk
, NLs = dεs

dk
. (25a)

In these expressions, εs(k) and εn(k) are the energy fluxes
over scales in corresponding subsystems that can be expressed
in the terms of the third-order correlation function of us(k)
exactly as in classical turbulence. In order to proceed further,
one can borrow a closure procedure from classical turbulence
that expresses εs(k) in terms of the energy spectrum Es(k).
Even though this step is widely used, it is worth remembering
that it is uncontrolled. The simplest algebraic closure relation
suggested by Kovasznay [40],

εs(k) � 5
8k5/2E3/2

s (k), (25b)

just follows from the K41 dimensional reasoning

Es(ε|k) = CKε
2/3k−5/3, CK = (8/3)2/3 ≈ 1.4. (25c)

Equations (24) involve the cross correlation Ens(k), defined by
Eqs. (B5). The analytical theory of the coupling-decoupling
processes [31], using Langevin inspired approach to model the
nonlinear term, results in the analytical expression for Ens(k)
in terms of Es(k) and En(k). Using Eqs. (13) and (16) from
Ref. [31], the result in our experiments range of parameters
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can be written as

Ens(k) = D(k)

En(k) + 
nEs(k)


ns
,


n = 
ρs/ρn, 
ns = 
 + 
n. (26)

Here, D(k) = arctan[ζ (k)]/ζ (k) is the dimensionless “decou-
pling function,” defined via the dimensionless “decoupling
parameter” ζ (k) = kUns/
ns. It describes the decoupling of
the normal and superfluid velocity fluctuations, caused by
counterflow [31].

In the steady-state case, Eqs. (24)–(26) take the form

5

8

d

dk
k5/2E3/2

s,n (k) = 
s,n

{

 Es(k) + 
n En(k)


ns
D(k) − Es,n

}
,

(27)

that will be referred to as “differential model for the superfluid
energy spectra.”

B. Energy spectra in “symmetric” counterflow turbulence
with ρn = ρs

The system of ordinary differential equations (26) can be
solved numerically for any temperature. This task will be
done elsewhere. Here, we consider a particular temperature
T � 1.95 K, for which ρn � ρs. In this case, we expect Es(k) =
En(k) ≡ E and Eqs. (26) become an ordinary differential
equation for E(k):

5

8

d

dk
k5/2E3/2(k) = 
 E(k) [D(k) − 1], (28)

which can be solved analytically.
To this end, we nondimensionalize them by introducing a

dimensionless wave number q = k/k0 with k0 � π/� and the
outer scale of turbulence � is defined such that Eqs. (26) are
valid for q > 1. We introduce also a dimensionless parameter

ζq = q/q×, q× = 2 
/(k0Vns), (29a)

and a new dimensionless function

�(q) ≡ 15 k
3/2
0

8 


√
q5/3E(q k0), (29b)

E(k) =
[

8�(k/k0)

15

]2

2

k
4/3
0 k5/3

. (29c)

Then, Eq. (28) takes a simple form

q5/3 d �(q)

dq
= D(q/q×) − 1, (30)

which can be solved analytically with the boundary condition
at q = 1 (i.e., k = k0):

�(1) = �0 = 8


15
√

k3
0E0

, (31a)

�(q) = �0 + 1

q
2/3
×

[
I

(
1

q×

)
− I

(
q

q×

)]
, (31b)

I (z) =
∫ z

0

1 − D(y)

y5/3
dy. (31c)

Using now Eqs. (29c) and (31) one gets

E(k) = E0

{
1 + A

[
I

(
k

k×

)
− I

(
k0

k×

)]}2(
k0

k

)5/3

, (32a)

A = 8 
k
2/3
0

15 k
2/3
×

√
k3

0E0

, k× = 2
ns

Uns
. (32b)

Integral (31c) can be found analytically:

I (z) =
√

3π

5
+ 3

20

{
− 4

z2/3
− 2

√
3 arctan[

√
3 − 2z1/3]

− 2
√

3 arctan[
√

3 + 2z1/3] + 4 arctan[z]

z5/3

+ ln

[
1 − 3z2/3

(1 + z2/3)2

]}
. (32c)

It has the following asymptotics:

I (z) = z4/3

4

(
1 − 6z2

25

)
for z � 1, (33a)

I (z) =
√

3 π

5
− 3

2z2/3
for z � 1. (33b)

A simple analytical expression

I (z) � z4/3

4 + 0.7z2
(33c)

approximates the exact Eq. (32c), with the relative accuracy
within 3% in the z < 2 region, while the expression

I (z) =
√

3 π

5
− 3

2z2/3
+ π

4z5/3
(33d)

works well for z > 2.
Notice that for k0 < k � k×, the energy spectrum (32)

deviates down from the K41 5
3 spectrum:

E(k) � E0

{
1 + A

4 k
4/3
×

[
k

4/3
0 − k4/3

]}2(
k0

k

)5/3

. (34)

The spectrum for k � k× crucially depends on the value of A.
There exists a critical value

Acr = 1/I (∞) = 5/(π
√

3) ≈ 0.92. (35)

For A < Acr the system asymptotically tends to K41 spectrum

E(k) � E0

{
1 − A

Acr

}2(
k0

k

)5/3

, (36)

but with the energy flux ε∞ = ε0(1 − A/Acr)3, smaller than the
energy input rate ε0. The difference (ε0 − ε∞) is dissipated by
mutual friction. This is similar to the subcritical LNV spectrum
(6) of 3He turbulence with resting normal-fluid component.

For A > Acr, E(k) = 0 for large k. In the differential
approximation used here, the spectrum E(k) sharply terminates
at some finite k∗, in the same manner as the supercritical LNV
3He spectrum (7). The cutoff wave number k∗ may be found
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FIG. 11. (a) Log-log plots of compensated normalized energy spectra k5/3E(k)/Emax for k0 = 0 and with different values of A, starting with
A = 0 (upper green line), through A = 0.2, 0.4, 0.6 (red thick line), 0.8, 0.92 (thick cyan line, critical value), 1, 1.5, 2.0 3.0 and last line,
A = 6. (b) Log-log plots of compensated normalized energy spectrum k5/3E(k)/Emax for k0 = 0.3k× with A = 0.6 (solid red line), 1/k2 (after
compensation by k5/3) (blue dashed line), and LNV subcritical spectrum k−3[1 + (k/k∗)2/3]2 with k∗ = 1.15k× (green dashed-dotted line). (c)
Log-log plots of the second-order structure functions S2(r) (normalized by their large-r limit), computed with Eq. (39a) and with the same
values of A (and the same color code) as in (a). The thick dashed straight lines indicate scaling laws: upper green line ∝r2/3, middle red line
∝r , and lower blue line ∝r2. (d) The normalized compensated by 1/r structure functions S2(r), calculated using the spectra shown in (b) (with
the same color code).

from the equation

1 = A[I (ζk∗) − I (ζ0)] ≈ AI (ζk∗ ). (37)

When A → Acr, k∗ → ∞ and E(k) ∝ k−3 at large k, exactly
like in the critical LNV 3He spectrum (5).

The energy spectra (32) for different values of A in the range
0 � A � 6, that includes the critical value Acr � 0.92, are
shown in Fig. 11(a). We see that increase in the mutual friction
force, characterized in Eq. (32) by the dimensionless parameter
A, suppresses the energy spectra from the Kolmogorov-
41 behavior E(k) ∝ k−5/3 (for A = 0) towards the critical
spectrum E(k) ∝ k−3 at A = Acr � 1. Further increase in A

localizes energy spectra in the k space, as shown in Fig. 4(b).
There is clear qualitative similarity of the energy spectra in
counterflow turbulence with the LNV spectra. This allowed
us to use the LNV spectra in Sec. III C for the analysis of

the delay function Fdel(t) in our improved model of the VLD
decay.

C. Velocity structure functions in “symmetric” counterflow
turbulence

Recent visualization experiment in counterflow [39] re-
ported that transversal velocity structure function S2,⊥(r) ∝ r

in an interval about one decade, adjacent to the outer scale of
turbulence. To see how these observations may be rationalized
using our model, we consider the second-order velocity
functions, defined as follows:

S2(r) = 〈|u(r) − u(0)|2〉, (38a)

S2,⊥(r) = 〈[u⊥(r) − u⊥(0)]2〉, (38b)

S2,‖(r) = 〈[u‖(r) − u‖(0)|2〉. (38c)
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Here, u⊥ and u‖ are projections of the turbulent velocity u
on directions orthogonal and parallel to the separation r . In
isotropic turbulence, assumed above in the analytical model of
the spectra, all structure functions depend only on r = |r| and
all are proportional to each other. Up to a numerical factor of
the order unity, they may be expressed via 1D energy spectrum
E(k) as follows:

S2(r) �
∫ ∞

0
E(k)[1 − sin(kr)/(kr)] dk. (39a)

With the K41 spectrum EK41(k) = E0(k0/k)5/3 [Eq. (32) with
A = 0], it gives the classical result

S2(r) � 1.2V 2
T (k0r)2/3, VT ≡

√
k0 E0, (39b)

shown by the upper green dashed straight line in Fig. 11(c).
Next, we account for the fact that in reality the available range
of k is limited: kmin < k < kmax. The value of kmin ∼ π/�

is determined by the outer scale of turbulence. For quantum
turbulence in the superfluid component, kmax � π/�. In the
Florida experiments [39], our estimates show that kmin �
0.3k× and kmax � 200k×. Replacing limits in the integral (39a)
by these values, we compute again S2(r) with the K41 spectrum
[see upper green solid line in Fig. 11(c)]. We observe the
same scaling behavior S2(r) ∝ r2/3 in the interval of about
two decades (from r � 0.05 to 5). For nonzero values of
A, the log-log plots of S2(r) versus r can be considered as
approximately straight lines with the slope that increases with
A. In particular, for A = 0.6 S2(r), shown in Fig. 11(c) by solid
red line, it is practically indistinguishable from the straight line
with the slope +1 (shown by dashed red line) in the interval
0.02 < r < 2. This means that, for A = 0.6, S2(r) ∝ r with
high accuracy in the interval of two decades. To see this better,
in Fig. 11(d) we present the plot of S2(r) compensated by 1/r .
The solid red line in Fig. 11(d) lays indeed very close to the
black thin horizontal line.

Notice that the energy spectrum for A = 0.6, used to find
S2(r) [red solid line in Fig. 11(b)], is essentially different from
the scale-invariant spectrum E(k) ∝ k−2, shown in Fig. 11(b)
by the dashed blue line. Using spectrum E(k) ∝ k−2, we
computed S2(r) again, with the result shown in Fig. 11(d) by
the dashed blue line. Unexpectedly, this result demonstrates
scale-invariant behavior S2(r) ∝ r on a shorter range. We also
computed S2(r) using subcritical LNV spectrum (6), with the
critical wave number kcr = 1.15k0. This spectrum, shown in
Fig. 11(b) by the green dashed-dotted line, is very different
from the 1/k2 behavior (blue dashed line). Nevertheless, the
resulting structure function S2(r) [green dashed-dotted line in
Fig. 11(d)] again demonstrates the scale-invariant behavior of
S2(r) ∝ r over more than two decades.

We conclude that very different energy spectra, including
the spectrum (32) with A � 0.6, found here, can result in the
reported in Ref. [39] S2(r) ∝ r with somewhat smaller extent
of the scaling behavior, of about one decade. This means that
our analytical model does not contradict the observation [39].
Nevertheless, at this stage we are not in the position to claim
that the model explains the observed simple behavior S2(r) ∝
r . We will return to this point in conclusive Sec. V.

Here, we notice only that, as the parameter A increases,
the energy spectra become more and more localized at small

k, as seen in Fig. 11(a), while the apparent slope of the
corresponding structure functions increases, tending to 2. This
is clearly seen in Fig. 11(c). The S2(r) for the largest A = 6
is shown by solid blue line in comparison with the scaling
function r2, shown by the blue dashed line. The reason for
such a behavior is simple: for large A, the energy spectrum
terminates at small k and for scales smaller than 1/k, the
velocity field becomes smooth and differentiable. Thus, the
velocity field can be expanded in the Taylor series, the velocity
difference across the separation r is proportional to r , and the
structure function is proportional to r2.

D. Approximations of the simple analytical model

It should be stressed that in our approach we adopted some
uncontrolled approximations and simplifications, widely used
in the studies of classical hydrodynamic turbulence. Among
them are celebrated hypotheses, suggested by Kolmogorov in
1941, concerning the small-scale turbulent statistics:

(1) universality (independence of the energy pumping);
(2) isotropy;
(3) locality of energy transfer over scales.

These hypotheses have been justified in numerous experi-
ments, numerical and analytical studies of developed turbu-
lence of classical fluids, mechanically driven at large scales.
However, very little is known about turbulent statistics in the
case of thermally driven quantum counterflow turbulence.

We can quite easily justify the first hypothesis of the
universality, for instance, in the wide and long enough
channels with reasonably well-controlled surface of the wall.
The second assumption is the isotropy hypothesis. It is
known from numerical simulations of (mainly space homo-
geneous) counterflow turbulence that the anisotropy of the
quantized vortex tangle is rather small (about 10%) (see, e.g.,
[34,36,41,42]. However, very little is known about anisotropy
of the velocity fluctuations on scales R above the intervortex
distance �. Without this knowledge and having clear under-
standing that the assumption of isotropy on scales R > �

may be questionable, we nevertheless assume isotropy of
turbulence statistics from the very beginning. This simplifying
assumption allows us to formulate a simple analytical model
in terms of one-dimensional energy spectrum E(k), which
is an angular average of the full (and possibly anisotropic)
three-dimensional energy spectrum.

The third assumption is the locality of the energy transfer,
which is built-in in the algebraic closure (25b), used in our
approach. This assumption may also be justified, taking into
account that the nonlinear terms in the two-fluid equations of
motion for the normal and superfluid velocity components are
the same as in the Navier-Stokes equation, if the resulting en-
ergy spectrum is not very different from the classical 5

3 scaling
for the classical fluid. The detailed analysis of the problem of
locality in classical turbulence with the scale-invariant scaling
E(k) ∝ k−x shows [43,44] that in the “window of locality”
1 < x < 3 the energy transfer is really local. For our case, this
means that for the subcritical spectra {with A < 1, when the
the local slope x(k) = d ln[E(k)]/d ln k is within the window
of locality}, this assumption is reasonable. We also hope that
the strong version of the locality assumption, the algebraic
closure (25b), leads to qualitatively correct energy spectra.

174504-15



BABUIN, L’VOV, POMYALOV, SKRBEK, AND VARGA PHYSICAL REVIEW B 94, 174504 (2016)

The situation with the supercritical spectra is less simple.
Definitely, the consequence of Eqs. (32) and (7) that E(k) = 0
for k > k∗ is an artifact of the algebraic closure. We think that
for large k, the supercritical energy spectra will instead decay
very fast with k, presumably ∝k−y with y > 3, as a result of
the direct (nonlocal) energy transfer to the k region from the
intermediate region of scales about kint, where the local slope
x(kint) � 5.

Last but not least, an additional restriction of our approach
is full ignorance of possible long-living coherent structures
at scales �� that may contribute to the statistics of quantum
turbulence with counterflow. There is a great deal of
speculation in the studies of classical space-homogeneous
hydrodynamic turbulence, but, nevertheless, the question
of their statistical relevance is still open. Moreover, the
well-justified multifractal models of classical turbulence
(see, e.g., [27]) describe in many details the statistics of
classical turbulence without any direct reference to coherent
structures. Coherent structures in quantum turbulence can be
characterized simply as “terra incognita.”

In such a situation, much more experimental, numerical,
and analytical work is required to formulate a theory of
quantum turbulence which will account for the interplay of
coexisting classical and quantum forms of superfluid turbulent
energy in all relevant details. Nevertheless, we consider
our experimental findings and simple analytical models of
steady-state and decaying quantum turbulence as a natural
and perhaps even required step in a long way toward desired
level of understanding and description of the basic physical
mechanisms that govern quantum turbulence.

V. SUMMARY

Being motivated by the challenge to understand the
quantum turbulence occurring in superfluid 4He, at finite
T � 1 K where it displays the two-fluid behavior, we report
this complementary experimental, numerical, and theoretical
treatise of turbulent coflow, counterflow, and pure superflow of
superfluid 4He in a channel. The level of agreement between
the experimental observations and the analytical predictions
for the time evolution of the vortex-line density in decaying
turbulence, demonstrated in this paper, allows us to conclude
that the developed basic and improved models adequately
reflect the underlying physical processes responsible for the
decay of quantum turbulence, originating from various types
of steady superfluid 4He flows (coflow, counterflow, pure
superflow), including (i) the interplay of classical and quantum
processes, resulting in two decay laws of VLD; (ii) the partial
decoupling of the normal and superfluid velocity fields in pure
superflow and counterflow turbulence, predicted in Ref. [31];
(iii) the resulting suppression of energy spectra in these flows
leading to the time delay in the energy flux from classical to
quantum length scales of turbulence in superfluid 4He.

Being inspired by these findings, we made the first
step towards the theory of steady-state, space homogeneous
turbulence of counterflowing superfluid 4He. The suggested by
us simple analytical theory results in the energy spectra E(k,A)
given by Eq. (32) and shown in Fig. 11(a). These spectra
depend on the dimensionless parameter A, that describes
the intensity of the mutual friction, responsible for the

coupling of the normal and superfluid velocity, relative to
the counterflow velocity, responsible for their decoupling. For
the particular value A � 0.6, the energy spectrum E(k,0.6),
shown in Fig. 11(b) is close to 1/k2 scaling and results in the
second-order structure function S2(r) ∝ r over the interval
of about two decades, in agreement with the observations
reported in Ref. [39].
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APPENDIX A: SABRA-SHELL MODEL OF QUANTUM
TURBULENCE

A detailed study of the decay of large-scale turbulence has
been done in the framework of the so-called Sabra-shell model
of quantum turbulence [29,33,38]:[

d

dt
+ νnk

2
m

]
un

m = NL
[
un

m

] + F n
m, (A1a)[

d

dt
+ νsk

2
m

]
us

m = NL
[
us

m

] − F s
m, (A1b)

NL[um] = i(akm+1um+2u
∗
m+1 + bkmum+1u

∗
m−1

− ckm−1um−1um−2), (A1c)

F s
m = 


(
us

m − un
m

)
,

F n
m = 
n

(
us

m − un
m

)
. (A1d)

These equations represent a simplified version of the coarse-
grained, two-fluid, gradually damped Hall-Vinen-Bekarevich-
Khalatnikov (HVBK) equations in the k representation. They
mimic the statistical behavior of k-Fourier components of
the turbulent superfluid and normal velocity fields in the
entire shell of wave vectors km < k < km+1 by complex shell
velocity un,s

m . The shell wave numbers are chosen as a geometric
progression km = k0λ

m, where m = 1,2, . . . M are the shell
indexes, and we have used the shell-spacing parameter λ = 2,
k0 = 1

16 , and M = 28 shells.
Similarly to the HVBK (and the Navier-Stokes or Euler

equation), the NL[um] term in Eq. (A1c) is quadratic in
velocities, proportional to k, and conserves (in the forceless,
inviscid limit) the kinetic energy E = 1

2

∑
m |um|2, provided

that a + b + c = 0. We used here the Sabra version [45]
of NL[um] with the traditional (and physically motivated)
choice b = c = −a/2, which describes important features of
superfluid turbulence including intermittency corrections [29].

In Eq. (A1a), νn = μ/ρn is the kinematic viscosity of the
normal component, i.e., its dynamical viscosity μ, normalized
by the normal fluid density. The effective superfluid viscosity
νs describes the energy sink in superfluids, e.g., due to the
vortex reconnections. For more details of the origin and role
of νs, see Refs. [2,29]. The mutual friction term F n,s

m is given
by Eq. (A1d).
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As a first step in our study of the large-scale turbulence
decay we can simplify the procedure further, using the fact that
the turnover time in our situations is longer than the coupling
time 1/
ns given by Eq. (26). Therefore, the first stage of
the decay, during which the normal and superfluid velocities
become coupled, is short with respect to the time required
for the developing of the Richardson-Kolmogorov cascade.
Skipping this stage, we can assume that the velocities are fully
coupled. In this case, Eqs. (A1) turn into one Sabra equation
for um = us

m = un
m:[
d

dt
+ νk2

m

]
um = NL[um] , (A2)

with ν = (μ + νsρs)/ρ.
The equations (A2) were solved using the adaptive time step

fourth-order Runge-Kutta with exponential time differencing
[46]. For more details, see Refs. [33,38]. The evolution of
the system was followed for about 103τ�. In all cases, we
perform 104 simulations with the same initial total energy, but
different, randomly distributed phases of initial shell velocities
and perform ensemble averaging over initial conditions.

APPENDIX B: SOME DEFINITIONS AND KNOWN
RELATIONSHIPS

To define the one-dimensional energy spectra En(k), Es(k)
and cross correlation Ens(k) we need to recall some definitions
and relationships, that are well known in statistical physics.
The first is the set of Fourier transforms in the following
normalization:

u′
n,s(r,t) ≡

∫
dk

(2π )3
vn,s(k,t) exp(ik · r), (B1a)

vn,s(k,t) ≡
∫

dω

2π
ṽn,s(k,ω) exp(−iωt), (B1b)

ṽn,s(k,ω) =
∫

d r dt u′
n,s(r,t) exp[i(ωt − k · r)]. (B1c)

The same normalization is used for other objects of interest.

Next, we define the simultaneous correlations and cross
correlations in k representation [proportional to δ(k − k′) due
to homogeneity]:

〈vn(k,t) · v∗
n(k′,t)〉 = (2π )3Enn(k) δ(k − k′), (B2a)

〈vs(k,t) · v∗
s (k′,t)〉 = (2π )3Ess(k) δ(k − k′), (B2b)

〈vn(k,t) · v∗
s (k′,t)〉 = (2π )3Ens(k) δ(k − k′). (B2c)

We also need to define cross correlations 〈̃vn · ṽ∗
s 〉 in (k,ω)

representation:

〈̃vn(k,ω) · ṽ∗
s (k′,ω′)〉 = (2π )4Ẽns(k,ω) δ(k − k′) δ(ω − ω′).

(B3a)

This object is related to the simultaneous 〈vn · v∗
s 〉 cross

correlation (B2c) via the frequency integral

〈vn(k,t) · v∗
s (k′,t)〉 =

∫
dω Ẽns(k,ω). (B3b)

Here and below, “tilde” marks the objects defined in (k,ω)
representation.

It is known also that the k integration of the correla-
tions (B2) produces their one-point second moment:∫

dk
(2π )3

Enn(k,t) = 〈|un(r,t)|2〉, (B4a)∫
dk

(2π )3
Ess(k,t) = 〈|us(r,t)|2〉, (B4b)∫

dk
(2π )3

Ens(k,t) = 〈un(r,t) · us(r,t)〉. (B4c)

In the isotropic case, each of the three correlations E...(k)
is independent of the direction of k: E...(k) = E...(k) and∫

. . . dk = 4π
∫

. . . k2 dk. This allows the introduction of the
one-dimensional energy spectra Es, En and the cross correlation
Ens as follows:

En(k,t) = k2

2π2
Enn(k,t), Es(k,t) = k2

2π2
Ess(k,t),

Ens(k) ≡ k2

2π2
Ens(k,t). (B5)
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