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Nonsymmorphic Weyl superconductivity in UPt3 based on E2u representation
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We show that a heavy fermion superconductor UPt3 is a topological Weyl superconductor with tunable Weyl
nodes. Adopting a generic order parameter in the E2u representation allowed by nonsymmorphic crystal symmetry,
we clarify unusual gap structure and associated topological properties. The pair creation, pair annihilation, and
coalescence of Weyl nodes are demonstrated in the time-reversal symmetry broken B-phase. At most 98 point
nodes compatible with Blount’s theorem give rise to line-node-like behaviors in low-energy excitations, consistent
with experimental results. We also show an arc node protected by the nonsymmorphic crystal symmetry on the
Brillouin zone face, which is a counterexample of Blount’s theorem.
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Superconductivity with nontrivial symmetry and topology
is attracting renewed interest stimulated by enormous studies
of topological insulators and superconductors [1–4]. Strongly
correlated electron systems are the platform of such unconven-
tional superconductivity [5]. A heavy fermion superconductor
UPt3 discovered in the 1980s [6] unambiguously exhibits
exotic properties, that is, multiple superconducting phases in
the field-temperature plane [Fig. 1(a)] [7–9]. The presence
of the multiple superconducting phases is a direct evidence
for a multicomponent non-s-wave order parameter [10].
Comparison between experiments and theories points to odd-
parity spin-triplet superconductivity [11–13]. Because odd-
parity superconductivity is often accompanied by topological
order [2,14–16], it may be interesting to clarify the topological
properties of UPt3.

Topological order in superconductors is closely related
to the symmetry and nodal structure of superconductivity.
Despite intensive studies for three decades, the symmetry of
superconductivity in UPt3 is still under debate. However, a chi-
ral f -wave state with orbital angular momentum Lz = ±2 [11]
allowed in hexagonal crystals [see Fig. 1(b)] is supported by
nodal excitations [12] and broken time-reversal symmetry [17]
as well as by a phase sensitive measurement [18]. On the other
hand, a recent thermal conductivity measurement points to
another f -wave state with Lz = ±1 [19].

In spite of these intensive studies, the f -wave pairing states
are incompatible with Blount’s theorem [20,21] which proves
the absence of line node in odd-parity superconductors [22].
Although line node behaviors have been observed in UPt3 [12],
Blount’s theorem implies that line nodes are fragile against
perturbation preserving the symmetry of the system. Indeed,
the line nodes disappear as a result of the mixing of f -wave
Cooper pairs with p-wave ones in the same irreducible
representation. According to the symmetry classification [10],
not only the chiral f -wave state with Lz = ±2 [11] but also a
p-wave state (and the f -wave state with Lz = ±1 [19]) belong
to the E2u representation of D6h point group. Therefore, a
generic E2u state is induced by a mixed (p + f )-wave Cooper
paring. In this paper we clarify the nodal gap structure and
specify the topological properties of a generic E2u state in
UPt3. It is revealed that the B-phase is a Weyl superconducting
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state [23] analogous to Weyl semimetals [24–26] discovered
recently [27–30]. We furthermore demonstrate pair creation,
pair annihilation, and coalescence of Weyl nodes which do not
occur in other chiral Weyl superconductors [31–34].

Our study is based on a Bogoliubov–de Gennes (BdG)
Hamiltonian,

HBdG =
∑
k,m,s

ξ (k)c†kmsckms +
∑
k,s

[a(k)c†k1sck2s + H.c.]

+
∑

k,m,s,s ′
αm g(k) · sss ′c

†
kmsckms ′

+ 1

2

∑
k,m,m′,s,s ′

[�mm′ss ′ (k)c†kmsc
†
−km′s ′ + H.c.], (1)

where k, m = 1,2, and s =↑ , ↓ are momentum, sublattice,
and spin, respectively. Based on the crystal structure of UPt3
illustrated in Fig. 1(b), we adopt an intrasublattice kinetic en-
ergy, ξ (k) = 2t

∑
i=1,2,3 cos k‖ · ei + 2tz cos kz − μ, and in-

tersublattice hopping term, a(k) = 2t ′ cos kz

2

∑
i=1,2,3 eik‖·r i ,

with k‖ = (kx,ky) and e1 = (1,0), e2 = (− 1
2 ,

√
3

2 ), e3 =
(− 1

2 , −
√

3
2 ), r1 = ( 1

2 , 1
2
√

3
), r2 = (− 1

2 , 1
2
√

3
), and r3 = (0, −

1√
3
). Since D3h local symmetry at uranium ions lacks inversion

symmetry, Kane-Mele spin-orbit coupling (SOC) with g(k) =
ẑ
∑

i=1,2,3 sin k‖ · ei [35] appears in a sublattice-dependent
way. The coupling constant is (α1,α2) = (α, − α) so as to pre-
serve the global D6h symmetry [1,36,37]. The intersublattice
SOC is prohibited because the intersublattice bonds respect
the inversion symmetry.

Quantum oscillation measurements combined with band
structure calculations [12,38–41] have shown a pair of FSs
centered at the A-point (A-FSs), three FSs at the � point
(�-FSs), and two FSs at the K point in UPt3. Since small
FSs enclosing the K point give a small density of states
(DOS), they may play a minor role. Therefore, we study the
superconducting properties of A-FSs and �-FSs one by one.
By choosing a parameter set (t,tz,t ′,α,μ) = (1, − 4,1,2,12)
our two band model reproduces a pair of A-FSs, while another
set (t,tz,t ′,α,μ) = (1,4,1,0,16) reproduces the topology of
�-FS. Since the SOC is negligible for the �-FS, we simply
set α = 0 in the latter parameter set.

Order parameter of the E2u state is generally represented
by �̂(k) = η1�̂1 + η2�̂2 with basis functions �̂1 and �̂2
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FIG. 1. (a) Multiple superconducting phases in UPt3. Shaded
region shows the Weyl superconducting phase. (b) Crystal structure
of UPt3. Uranium ions form AB-stacked triangular lattice. Two-
dimensional vectors, ei and r i , are shown by arrows.

composed of several components. Although the purely f -wave
state has been intensively investigated [11], an admixture of
a p-wave component is allowed by symmetry. Besides these
components, a sublattice-singlet spin-triplet d-wave compo-
nent naturally accompanies the f -wave component because
of the nonsymmorphic crystal structure of UPt3 [42]. Taking
into account all the components, we study the E2u state with

�̂1 = [δ{px(k)sx − py(k)sy}σ0

+ f(x2−y2)z(k)szσx − dyz(k)szσy]isy, (2)

�̂2 = [δ{py(k)sx + px(k)sy}σ0

+ fxyz(k)szσx − dxz(k)szσy]isy, (3)

where sα and σα are Pauli matrix in the spin and sublattice
space, respectively. The orbital functions, pi(k), di(k), and
fi(k), are obtained by assuming short-range Cooper pairs on
neighboring r i and ei bonds [42]. This choice is consistent
with empirical rules obtained by microscopic calculations for
many unconventional superconductors [5]. We choose |δ| � 1
to study a dominantly f -wave state. Two-component order
parameters are parametrized as (η1,η2) = �(1,iη)/

√
1 + η2

by a real parameter η. Ratio of η1 and η2 is pure-imaginary
since the condensation energy is maximally gained in the
chiral superconducting state. Thus the B-phase is a chiral state,
where the range of η is 0 < η < ∞ [43]. It is believed that a
weak breakdown of hexagonal symmetry stabilizes the A- and
C-phases [11,12,43–45]. We assume that the A-phase is the
�2 state (η = ∞), while the C-phase is the �1 state (η = 0).

The BdG Hamiltonian is represented in the
Nambu space HBdG = 1

2

∑
k ĉ

†
kĤBdG(k)ĉk, with

ĉk = (ck1↑,ck2↑,ck1↓,ck2↓)T. In order to study topological
properties, we perform a unitary transformation
H̃BdG(k) = U (k)ĤBdG(k)U (k)†. By choosing U (k) =(1 0

0 eik·τ
)
σ

⊗ s0 ⊗ τ0 and τ = (0, − 1√
3
, 1

2 ), H̃BdG(k) is
periodic with respect to the translation k → k + K with K
being a reciprocal lattice vector.

Weyl nodes are specified by a topological Weyl charge
defined by a monopole of Berry flux, qi = 1

2π

∮
S
dk �F (k),

where the Berry flux,

Fi(k) = −iεijk
∑

En(k)<0

∂kj
〈un(k)|∂kk

un(k)〉, (4)

ky

kz
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FIG. 2. Illustration of pair creation and annihilation of Weyl
nodes on a �-FS. Projection from the kx axis is shown. In (b), (c),
and (e), blue and red closed circles show single Weyl nodes with
qi = 1 and −1, respectively. Large circles in (d) are spin-degenerate
double Weyl nodes with qi = ±4. Thick solid line in (d) shows a
quadratic line node at kz = 0. Green open circles are trivial point
nodes protected by symmetry. Dashed lines illustrate nodal lines in
the purely f -wave states, although they disappear in a generic E2u

state.

is integrated on a closed surface surrounding an isolated point
node. We identify Weyl nodes by calculating kz-dependent
Chern number,

ν(kz) = 1

2π

∫
dk‖Fz(k), (5)

on a two-dimensional kx-ky plane [46–48]. A wave function
and energy of Bogoliubov quasiparticles are denoted by
|un(k)〉 and En(k), respectively. A jump in the Chern number
is equivalent to the sum of Weyl charges at kz. That is,
ν(kz + 0) − ν(kz − 0) = ∑

i qi . Thus, counting symmetry-
related point nodes and comparing it with a jump in ν(kz),
we are able to identify Weyl charges.

First, we elucidate Weyl nodes on the �-FS. This is a
simple case, because only one of the bands crosses the Fermi
level although the two-band model is adopted. The nodal
structures are qualitatively the same as those in the single-band
model which are analytically expressed in the Supplemental
Material [49]. Then, the d-wave order parameter does not
play any important role. On the other hand, the p-f mixing
in the order parameter eliminates line nodes in the chiral f -
wave state [11] in accordance with Blount’s theorem [20,21],
except for η = 1. Diagonalizing H̃BdG(k), we obtain the
superconducting gap illustrated in Fig. 2. Instead of line nodes,
Weyl nodes (closed circles in Fig. 2) appear in the B-phase,
in addition to the symmetry-protected point nodes at the poles
on the FS. The former is identified as Weyl nodes by Fig. 3(a).
The Chern number jumps by ±4, and we find four point nodes
at a certain kz. Thus the point nodes are identified as single
Weyl nodes with a unit charge qi = ±1. In total, eight pairs
of single Weyl nodes are produced. Since the spin degeneracy
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FIG. 3. Chern number of the two-dimensional BdG Hamiltonian
parametrized by kz for (a) a �-FS reproduced by the parameter
set (t,tz,t ′,α,μ,�,δ) = (1,4,1,0,16.0.4,0.01) and for (b) A-FSs by
(1, − 4,1,0,12,0.1,0.04).

is lifted owing to the nonunitary order parameter, the spinless
single Weyl nodes are realized even at zero magnetic field.

Here we show pair creation, annihilation, and coalescence
of Weyl nodes. Because the particle-hole symmetry is imple-
mented in the BdG Hamiltonian for superconductors, the time-
reversal symmetry ensures the chiral symmetry prohibiting
Weyl nodes [50]. Therefore, the A- and C-phases do not
host Weyl nodes as illustrated in Figs. 2(a) and 2(f). The
triviality is robust against a weak time reversal symmetry
breaking because the gap closing is required for the topological
transition. Therefore, pair creation of Weyl nodes does not
occur at the thermodynamical A-B and B-C phase boundaries,
but occurs in the B-phase. For the parameters in Fig. 3(a), we
see the pair creation at η = 0.3 and 3.5. Accordingly, the Weyl
superconducting phase is illustrated in Fig. 1(a).

When the parameter η is increased from zero by decreasing
the magnetic field or increasing the temperature, the Weyl
nodes emerge and move along nodal lines of the f(x2−y2)z-wave
component [Figs. 2(b) and 2(c)]. At η = 1, four pairs of Weyl
nodes cause pair annihilation at kz = 0, and the remaining
eight Weyl nodes coalesce into a pair of spin-degenerate
double Weyl nodes (qi = ±4) at the poles [Fig. 2(d)]. When η

increases from unity, eight pairs of Weyl nodes again appear
on nodal lines of the fxyz-wave component [Fig. 2(e)]. These
pair creation, pair annihilation, and coalescence of Weyl nodes
occur in the generic E2u state as a result of the p-f mixing [49],
although the chiral f -wave state hosts only Weyl nodes at the
poles which are shown in Fig. 2(d) [34].

The pair annihilation and coalescence of Weyl nodes give
rise to unusual gap structure at η = 1. Since the B-phase
is weakly nonunitary due to small δ, two nonequivalent
superconducting gaps �±(k) are obtained [10]. We see an
intriguing nodal structure in the small gap �−(k). The pair
annihilation leads to quadratic line node at kz = 0, that is,
�−(k) ∝ |kz|2, which is distinct from a usual linear line
node with �(k) ∝ |kz| and gives rise to a low-energy DOS,
ρ(ω) ∝ √

ω. On the other hand, the coalescence of Weyl nodes
results in cubic point nodes, �−(k) ∝ |k‖|3, at the poles.

Next, we investigate the A-FSs. This is an intriguing
case, because the nonsymmorphic crystal symmetry causes
gap nodes. The intersublattice hybridyzation a(k) vanishes at
kz = π , and resulting sublattice degeneracy leads to paired
FSs, as shown in Fig. 5(a). Although the degeneracy is partly
lifted by the SOC, the symmetry protects the degeneracy along

ky

kz

(a) η<0.2, η>20 (b) η=0.6 (W=40) (c) η=1 (W=28)

A

FIG. 4. Illustration of Weyl nodes on the A-FSs drawn by
numerically diagonalizing the BdG Hamiltonian for the parameter
set in Fig. 3(b). Thin solid lines show paired FSs. Other marks are
the same as Fig. 2. We show the number of Weyl nodes W .

k‖ ‖ [010] and symmetric lines (A-L lines) [51]. Thus any
single band model breaks down, and our two-band model is a
minimal model.

Figure 3(b) shows an increase in the Chern number ν(kz) =
0 → 4 → 8 with |kz|, indicating eight pairs of single Weyl
nodes. These Weyl nodes arise from the p-f mixing as
we clarified for the �-FS. The Chern number ν(kz) = 8 is
obtained just by the multiplication 2 due to the two bands.
When we furthermore increase |kz| to π , interestingly the
Chern number changes to −4 given by the d-wave component
of the order parameter. Since the sublattice-singlet d-wave
component induces interband pairing, it is negligible in most
regions of the Brillouin zone. However, the interband pairing
may play an important role around kz = π where the two
bands are nearly degenerate. The jump of Chern number,
ν(kz) = 8 → −4, results in twelve pairs of single Weyl nodes.
Twenty pairs of Weyl nodes appear on the A-FSs in total
[Fig. 4(b)]. In contrast to eight pairs due to the p-f mixing, the
twelve pairs of Weyl nodes arising from the d-f mixing in the
order parameter are robust in the sixfold rotation-symmetric
state at η = 1 [Fig. 4(c)], because twelve is a multiple of six.

Now we show a gap node induced by the SOC. The
nonsymmorphic space group allows a line node at the Brillouin
zone face as pointed out by Norman [52] as a counterexample
of Blount’s theorem. Contrary to Norman’s argument, we
obtain a nodal arc on the FSs. That is, a part of FS is
gapped as shown in Fig. 5. Seemingly contradictory results
are obtained because we plot the excitation gap near the FSs,
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FIG. 5. (a) A-FSs at the Brillouin zone face, kz = ±π . Gapless
and gapped regions at α = 1 are shown by red and green lines,
respectively. (b) Angle dependence of the gap �(θ,π ) for various
SOCs. The other parameters are the same as Fig. 3(b).
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FIG. 6. DOS of (a) a �-FS and (b) A-FSs. Parameters are the
same as Fig. 3. We also show a result for α = 2 in (b) by the thin
green solid line in order to clarify the contribution of the SOC-induced
arc node.

�(θ,π ) = mink,n|En(k cos θ,k sin θ,π )|, although Norman’s
argument revealed the disappearance of intraband Cooper
pairs. The excitation spectrum is actually gapped around
k‖ ‖ [010] owing to the interband Cooper pairing.

Finally, we show the DOS in Fig. 6. Even though the line
node is absent in accordance with Blount’s theorem, the DOS
shows a linear energy dependence in the B-phase in agreement
with experimental observations [11,12]. Although the SOC-
induced arc node on the A-FSs [52] increases the DOS around
ω = 0, its contribution is not dominant, as shown in Fig. 6(b).
Thus it is indicated that at most 44 point nodes on paired A-FSs
and 54 point nodes on three �-FSs give rise to line-node-like
behaviors. The thermal conductivity measurement has been a
powerful tool in identifying the superconducting symmetry of
UPt3 [12,19]. The saturating ratio κc/κb supporting the chiral
f -wave state [12,53,54] also supports the generic E2u state
which has point nodes on general points of Brillouin zone. A
residual thermal conductivity much smaller than the universal
value of line nodal superconductors [55] may be consistent
with point nodal E2u state. Nearly isotropic ab-plane field-
angle dependence [19,56] may be explained by the cancellation
of anisotropy from nearly 100 point nodes.

A square-root dependence ρ(ω) ∝ √
ω is obtained in the

low-energy region at η = 1 [Fig. 6(a)] as a result of the

quadratic line node. However, unusual
√

ω dependence may
be obscured by the vortex scattering since η = 1 is not realized
at zero magnetic field as illustrated in Fig. 1(a) [43].

Conclusion. To conclude, the E2u-pairing state in nonsym-
morphic UPt3 is a Weyl superconducting state which shows
the pair creation, pair annihilation, and coalescence of Weyl
nodes. The p + d + f mixing in the order parameter partly
due to the nonsymmorphic crystal symmetry causes these
unusual behaviors which have not been observed in a chiral
f -wave state [34]. The topologically distinct properties give
rise to Majorana arcs in surface states analogous to the recently
observed Fermi arc [27–29], resulting in a zero-field thermal
Hall conductivity [33,34] and quasiparticle interference [57].
Tunable positions of Weyl nodes by temperature and magnetic
field may enable experimental observations and also may
induce the chiral anomaly through a topological defect in the
combined real and momentum space [58].

Our results are compatible with Blount’s theorem [20,21],
but at most 98 point nodes and the SOC-induced arc node
lead to line node behaviors in the DOS, consistent with
experimental observations in UPt3 [12]. A generic E2u-pairing
state studied here may also be consistent with experiments
incompatible with the chiral f -wave state [13,19,55,56],
although further theoretical developments taking account of
multigap structure are desired.

Nonsymmorphic symmetry may be weakly broken either
by a crystal distortion [59] or by an antiferromagnetic order
in UPt3 [44,45]. Even in this case, the topologically protected
Weyl nodes are robust, although the symmetry-protected SOC-
induced arc node is gapped.
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