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Monte Carlo analysis for finite-temperature magnetism of Nd2Fe14B permanent magnet
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We investigate the effects of magnetic inhomogeneities and thermal fluctuations on the magnetic properties of
a rare-earth intermetallic compound, Nd2Fe14B. The constrained Monte Carlo method is applied to a Nd2Fe14B
bulk system to realize the experimentally observed spin reorientation and magnetic anisotropy constants KA

m (m =
1,2,4) at finite temperatures. Subsequently, it is found that the temperature dependence of KA

1 deviates from the
Callen-Callen law, KA

1 (T ) ∝ M(T )3, even above room temperature, TR ∼ 300 K, when the Fe (Nd) anisotropy
terms are removed to leave only the Nd (Fe) anisotropy terms. This is because the exchange couplings between
Nd moments and Fe spins are much smaller than those between Fe spins. It is also found that the exponent
n in the external magnetic field Hext response of barrier height FB = F0

B(1 − Hext/H0)n is less than 2 in the
low-temperature region below TR, whereas n approaches 2 when T > TR, indicating the presence of Stoner-
Wohlfarth-type magnetization rotation. This reflects the fact that the magnetic anisotropy is mainly governed by
the KA

1 term in the T > TR region.

DOI: 10.1103/PhysRevB.94.174433

I. INTRODUCTION

Rare-earth permanent magnets, particularly Nd-Fe-B, that
exhibit strong magnetic performance [1] are attracting con-
siderable attention because of the rapidly growing interest in
electric vehicles. The main focus of research involving these
materials is to increase the coercive field Hc and improve
the temperature dependence [2–6]. Therefore, a number of
studies have conducted micromagnetic simulations [7–10] for
the magnetization processes using inhomogeneous magnetic
parameters to describe the complex structures in sintered
magnets. Many of the results predict that the distinctive feature
of magnetic anisotropy near the grain boundaries of Nd-Fe-B
particles is responsible for the degradation of Hc.

Thus, one of the remaining subjects of theoretical study is to
provide quantitative aspects from a microscopic viewpoint or
in atomic scale to the mth-order magnetic anisotropy constants
KA

m and their temperature dependence near the grain surfaces
or grain boundaries. For KA

1 at the surface of Nd-Fe-B parti-
cles, Moriya et al. [11] and Tanaka et al. [12] calculated the
crystal-field parameter A0

2 using a first-principles technique,
and they pointed out that KA

1 (mainly proportional to A0
2)

is negative at the (001) surface when the (001) Nd layer is
exposed to a vacuum. However, few theoretical studies have
examined the temperature dependence of KA

m , even for the bulk
system, since the qualitative theory was developed by Callen
and Callen [13–15]. Recently, Sasaki et al. [16] and Miura
et al. [17] conducted theoretical studies on a quantitative level
of the temperature dependence of KA

m for a Nd2Fe14B bulk
system based on crystal-field theory, and they successfully
reproduced various experimental results. However, as these
theories relied on the mean-field approach in terms of the
exchange coupling between the Nd 4f moments and Fe 3d

spins, the results cannot be directly applied to KA
m near the

surfaces or interfaces of particles. Moreover, because the

crystal-field analysis employed in these works is based on
a quantum-mechanical approach, which is typical for 4f

electronic systems [18], it is effectively impossible to treat
finite systems of nm or μm scale using a similar method.

Therefore, in the present work, in anticipation of future
work on magnetization reversal in finite-sized particles, we
employed a realistic model with a classical Heisenberg Hamil-
tonian to calculate the magnetic properties of a Nd2Fe14B
bulk system at finite temperatures. The key features of our
model are as follows: (i) an appropriate crystalline electric
field Hamiltonian [18] is included in the classical manner, (ii)
exchange coupling parameters are obtained by first-principles
calculations, (iii) KA

m is directly evaluated from Monte Carlo
(MC) simulations without employing the mean-field analysis,
and (iv) the constrained Monte Carlo (C-MC) method [19] is
adopted to evaluate the temperature dependence of magnetic
anisotropy. Note that we can naturally realize the experi-
mentally observed spin reorientation and KA

m . Reflecting the
(inhomogeneous) variation of magnetic parameters in the unit
cell composed of 68 atoms (see Fig. 1), KA

1 does not obey the
Callen-Callen law [13,14], which states that KA

1 (T ) ∝ M(T )3

when considering only the Nd (Fe) anisotropy terms and
neglecting the Fe (Nd) anisotropy terms. We also analyze
the response of the external magnetic field Hext [20–25] for
a barrier height FB(Hext) = F0

B(1 − Hext/H0)n, and we find
that the Hext response deviates from the Stoner-Wohlfarth-type
(n = 2), especially below room temperature, TR ∼ 300 K.

II. MODEL AND METHOD

A. Model

By treating each atom as having classical spin, we
constructed a three-dimensional Heisenberg model including
realistic atom locations for Nd2Fe14B, as shown in Fig. 1. This
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FIG. 1. Unit cell of Nd2Fe14B including 68 atoms [space group
P 42/mnm (No. 136)] [26]. Only Nd(f,g) and Fe(c) sites are
represented. This figure was plotted using VESTA [27].

model using atomic-scale parameters was defined as follows:

H = −2
∑
i<j

SiJ
ex
ij Sj ei · ej − μ0

∑
i

miei · Hext

−
∑
i∈TM

DA
i

(
ez
i

)2 +
∑
i∈RE

∑
l=2,4,6

θ̃
Ji

l A
ml

l,i 〈rl〉i Ôml

l,i , (1)

where SiJ
ex
ij Sj is the exchange coupling constant including

the spin amplitude between the ith and j th sites, ei is the
normalized spin vector at the ith site, mi is the magnetic
moment, μ0 is the magnetic permeability of a vacuum, and
Hext is the external magnetic field. The third and fourth
terms include single-ion magnetic anisotropy properties. We
consider transition metals (TM) and rare-earth elements (RE)
separately. The anisotropy of TM sites is defined using the
magnetic anisotropy parameter DA

i and the z-component of
ei , i.e., ez

i . The anisotropy of RE sites is based on crystal-field
theory [18,28] and uses the Stevens operator Ô

ml

l,i , the crystal-

field parameter A
ml

l,i , and the Stevens factor θ̃
Ji

l . Here, 〈rl〉i
can be calculated as the spatial average of the 4f electron
distribution. In the present paper, we consider ml = 0 for

simplicity. For reference, note that Ô
ml=0
l,i and θ̃

J= 9
2

l :

Ô0
2,i = 3

(
J z

i

)2 − J 2
i ,

Ô0
4,i = 35

(
J z

i

)4 − [
30J 2

i − 25
](

J z
i

)2 + [
3J 4

i − 6J 2
i

]
,

Ô0
6,i = 231

(
J z

i

)6 − [
315J 2

i − 735
](

J z
i

)4

+ [
105J 4

i − 525J 2
i + 294

](
J z

i

)2

− [
5J 6

i − 40J 4
i + 60J 2

i

]
,

θ̃
9
2

2 = −7

32 × 112
, θ̃

9
2

4 = −23 × 17

33 × 113 × 13
,

θ̃
9
2

6 = −5 × 17 × 19

33 × 7 × 113 × 132
, (2)

where J z
i = Jie

z
i is the z-component of the total angular

momentum Ji , which is 9/2 for Nd atoms, and we use J 2
i

instead of Ji(Ji + 1) in the classical manner.

TABLE I. Site occupancies and model parameters of each
crystallographically inequivalent atom. The spin magnetic mo-
ments, ms , are calculated from the first-principles calculation code,
MACHIKANEYAMA (AKAIKKR) [29]. The anisotropy parameters DA

iTM

and A
ml

l 〈rl〉 are taken from previous results [18,30]. We neglected the
DA values of B and Nd, as they are less than 0.1 meV, and we used
the 〈rl〉 values of Nd, Ref. [31], i.e., 〈r2〉 = 1.001a2

B , 〈r4〉 = 2.401a4
B ,

and 〈r6〉 = 12.396a6
B , where aB is the Bohr radius.

Atom Occ. ms (μB ) DA
iTM

(meV) A
ml

l 〈rl〉 (K)

B(g) 4 −0.169
Fe(c) 4 2.531 −2.14
Fe(e) 4 1.874 −0.03
Fe(j1) 8 2.298 1.07
Fe(j2) 8 2.629 0.58
Fe(k1) 16 2.063 0.55
Fe(k2) 16 2.206 0.38

(l,ml): (2,0) (4,0) (6,0)

Nd(f ) 4 −0.413 295.3 −29.5 −22.8
Nd(g) 4 −0.402

Table I lists the atomic-scale parameters used in the present
study. The 68 atoms in the tetragonal unit cell of Nd2Fe14B (see
Fig. 1) occupy nine crystallographically inequivalent sites, as
seen in Table I. These atom locations and lattice constants
(a = b = 8.8 Å, c = 12.19 Å) were set to experimental
values [26]. ms is the spin magnetic moment of valence
electrons (excluding 4f -electrons). We defined mi = ms

i for
Fe and B atoms, and mi = ms

i + m
4f

i for Nd atoms. Here,
the magnetic moment of 4f -electrons in each Nd atom is
m4f = 8J/11μB ∼ 3.273μB . For the magnetic anisotropy
terms, the DA values were set to previous first-principles
calculation results [30] for Y2Fe14B, which has a similar
crystal structure to that of Nd2Fe14B. In contrast, we adopted
experimental results [18] regarding A

ml

l , even though some
research for the A

ml

l values of Nd2Fe14B was performed
using first-principles calculations [32,33]. This is because
first-principles evaluations of A

ml

l are strongly dependent on
the calculation conditions; in particular, the values of the l = 6
terms are still open to some debate.

The higher-order crystal-field parameters A0
4 and A0

6 of the
Nd atoms have a significant effect on the low-temperature
properties of Nd2Fe14B. To illustrate these effects, Fig. 2 shows
the anisotropy potential for J = 9/2 single classical spin:

V
ml

l (θ ) = θ̃
9
2
l A

ml

l 〈rl〉Ôml

l (θ ), (3)

where θ is the spin angle measured from the z-axis (i.e., ez =
cos θ ), and A

ml

l 〈rl〉 take the values in Table I. The potential
V 0

2 increases monotonically as θ increases, whereas V 0
4 and

V 0
6 vary nonmonotonically. Because of this behavior, the

total anisotropy potential V 0
2 + V 0

4 + V 0
6 attains a minimum at

θ = 36.7◦ for (a) Jz = ezJ . In contrast, for (b) Jz = 0.8ezJ ,
the minimum occurs at θ = 0◦. This coefficient (=0.8) of ez

can be regarded as an effect of thermal fluctuations at T > 0.
The above results indicate that the spin direction is tilted
from the z-axis at T = 0, although this tilting disappears at
a certain temperature. This behavior corresponds to the spin
reorientation phenomenon. In the case of Nd2Fe14B, the spin
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FIG. 2. Anisotropy potentials V 0
l (θ ) (meV) for J = 9/2 single

spin. Black lines denote total anisotropy potential V 0
2 + V 0

4 + V 0
6 .

reorientation transition is due to the V 0
4 and V 0

6 values of Nd
atoms, and it includes the effects of exchange couplings and the
magnetic anisotropy of Fe atoms (for details, see Sec. III A).

Figure 3 shows the exchange coupling constants, SiJ
ex
ij Sj ,

which include the spin amplitude as a function of inter-
atomic distance rij . These constants were calculated with
Liechtenstein’s formula [34], which has been implemented on
the first-principles electronic-structure calculation using the
Korringa-Kohn-Rostoker (KKR) Green’s-function method,
MACHIKANEYAMA (AKAIKKR) [29]. In the calculation, stan-
dard muffin-tin-type potentials were assumed, and the local
density approximation parametrized by Morruzi, Janak, and
Williams [35] was used. Up to d-wave scatterings were taken
into account in KKR, and (8 × 8 × 6) k-points in the first
Brillouin zone were used for the calculation of J ex

ij ’s. For
the Nd 4f states, the so called open-core approximation was
employed.

From Fig. 3, we can see that the exchange couplings
between Fe and Nd have much smaller values than those
between Fe atoms. In addition, none of the Nd atoms interacts
directly with other Nd atoms. The amplitude relation of the
exchange couplings is consistent with experimental results [1]
based on a mean-field analysis. Note that all SFeJ

ex
Fe−NdSNd on

rij < 4 Å have positive values in Fig. 3. As J ex
ij is evaluated

as the interaction between valence electrons, SFe(Nd) can be
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i
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Nd-Nd

FIG. 3. Exchange coupling constant between each atom as a
function of interatomic distance.

regarded as being proportional to ms
Fe(Nd), i.e., SNdSFe < 0.

Hence, the bare exchange couplings J ex
Fe−Nd have negative

values. The couplings between Fe and B, J ex
Fe−B, also take

negative values, which can be explained in the same way.

B. Method

To analyze the finite-temperature magnetism of Nd2Fe14B,
we applied MC methods based on the METROPOLIS algo-
rithm [36] to the above classical Heisenberg model. Although
the magnetic anisotropy is evaluated as the magnetization
angle dependence of free energy, this is generally difficult
to simulate explicitly using a typical MC approach. Therefore,
we also adopted the C-MC method [19] to evaluate the
magnetic anisotropy. The C-MC method fixes the direction
of total magnetization M = (Mx,My,Mz) = (1/Ns)

∑
i miei

(Ns is the total number of sites) in any direction for each MC
sampling without Hext, and then calculates the fixed angle θ

dependencies of free energy �F(θ ) and magnetization torque
�T (θ ) as follows [19]:

�T (θ ) = −
〈∑

i

ei × ∂H
∂ei

〉
for M = M(θ ), (4)

�F(θ ) = F(θ ) − F(θ0)

=
∫ θ

θ0

dθ ′ [n(θ ′) × �T (θ ′)] · ∂n(θ )

∂θ

∣∣∣∣
θ=θ ′

, (5)

where n(θ ) = M(θ )/|M(θ )|, and M(θ ) is the total magneti-
zation in the fixed direction θ .

Note that Asselin et al. [19] formulated the C-MC method
for systems with homogeneous magnetic moments, i.e., all
the magnetic moments have the same value. However, it can
easily be extended to systems with inhomogeneous magnetic
moments such as Nd2Fe14B. We now briefly explain only the
procedure of the extended C-MC method with a fixed M in
the direction of the z-axis:

(a) Select a site i and obtain the new state of i-spin randomly
chosen,

ei → e′
i .

(b) Select a site j ( �= i) randomly.
(c) Adjust the new state of the j -spin to preserve M

direction (namely, Mx = My = 0):

ej → e′
j ,

ex′
j = ex

j + mi

mj

(
ex
i − ex′

i

)
,

e
y′
j = e

y

j + mi

mj

(
e
y

i − e
y′
i

)
,

ez′
j = sign

(
ez
j

)√
1 − (

ex′
j

)2 − (
e
y′
j

)2
.

If 1 − (ex′
j )2 − (ey′

j )2 < 0, return to (a).
(d) Calculate the new total magnetization:

M ′ = M + 1

Ns

[mi(e′
i − ei) + mj (e′

j − ej )].

If M ′ < 0, return to (a).
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(e) Update from the initial spin states (ei ,ej ) to the new
spin states (e′

i ,e
′
j ) with the probability

P = min

[
1,

(
M ′

z

Mz

)2
∣∣ez

j

∣∣∣∣ez′
j

∣∣ exp (−β�E)

]
,

where β is the inverse temperature and �E = E(e′
i ,e

′
j ) −

E(ei ,ej ) is the energy difference.
(f) Return to (a).
To apply the C-MC method to the Nd2Fe14B bulk system,

we change the procedures (c) and (d) to treat different magnetic
moments from those in the original paper [19].

The MC (C-MC) simulations in the present study repeated
each calculation for 200 000 (100 000) MC steps, where one
MC step is defined as one trial for each spin to be updated. The
first 100 000 (30 000) MC steps were used for equilibration,
and the following 100 000 (70 000) MC steps were used to
measure the physical quantities. We performed simulations
for 12 different runs with different initial conditions and
random sequences. We then calculated the average results and
statistical errors. To check the system-size dependence, we
used systems of Ns = L3 × 68 (unit cell) sites with L = 3–6,
imposing the periodic boundary conditions.

III. RESULTS AND DISCUSSION

A. Thermodynamic properties

First, we focus on the magnetic transition points to verify
the model and parameter values. The results in this subsection
are based on typical MC, rather than C-MC.

Figure 4 shows the magnetization curves for each cutoff
range rcut. We consider all exchange couplings J ex

ij under rij �
rcut. Here, 〈A〉 is defined as the statistical average of A. It can
be seen that there are two transition points in Fig. 4.

In the higher-temperature region, 〈|Mz|〉 approaches 0 at
the Curie temperature TC. The magnetization curves show
that TC is strongly dependent on rcut, even in long-range
(rij > 3.52 Å). Thus, TC was evaluated more accurately
using the Binder parameter [36–38] defined as gL = 1 −
〈|M|〉4/3〈|M|2〉2 for system sizes L = 3–6. The results are
plotted in Fig. 5(a). It is apparent that TC has quite different val-
ues depending on rcut, and the condition of (8 × 8 × 6) k-points
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FIG. 4. Magnetizations as a function of temperature for each
effective exchange coupling radius rcut. The system size is L = 6.
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FIG. 5. Curie temperatures with (a) MC and (b) mean field as a
function of the effective exchange coupling radius rcut for the number
of k-points.

(mean accuracy of SiJ
ex
ij Sj in the first-principles calculations)

is sufficient for convergence. Similar behavior can be seen in
Fig. 5(b), where TC has been calculated by a 9-sublattice (i.e.,
9-inequivalent sites in Table I) mean-field analysis [39,40].
Compared with the MC results, the mean-field results are less
sensitive to rcut and tend to overestimate TC.

To analyze the long-range (rij > 3.52 Å) exchange cou-
pling effect for TC, Fig. 6 shows the average exchange coupling
at the Fe atoms, J̃ ex

Fe (r1,r2), which is defined as follows:

J̃ ex
Fe (r1,r2) = 1

NFe

∑
i∈Fe,j

SiJ
ex
ij Sj for r1 < rij � r2, (6)

where NFe is the total number of Fe sites. Each bar height in
Fig. 6 denotes the sum of SiJ

ex
ij Sj per atom in the range of

each bar width (here r2 − r1 = 0.2 Å). Because J̃ ex
Fe has many

exchange bonds that correspond to a spherical surface area
(∝ r2

ij ), it keeps a small but significant value even in the long
range. Indeed, the sum of short-range exchange couplings is
J̃ ex

Fe (0,3.52 Å) = 154.6 meV and that over a longer range
is J̃ ex

Fe (3.52 Å,17.6 Å) = −10.2 meV. This negative value
explains the decreasing trend for TC shown in Fig. 5. The
necessity of long-range exchange coupling has been identified
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FIG. 6. Average Fe atom exchange coupling J̃ ex
Fe as a function of

rij . The inset shows a large-area view of J̃ ex
Fe in rij < 3.7 Å.

174433-4



MONTE CARLO ANALYSIS FOR FINITE-TEMPERATURE . . . PHYSICAL REVIEW B 94, 174433 (2016)

0

1

2

3

M

(a)

Fe
Nd

0 200 400 600 800

Temp. (K)

0

1

2

3

M
a
g
n
et

iz
a
ti
o
n

(μ
B

/
a
to

m
)

Mz

Mxy

(b)

Fe
Nd

0 100 200

Temp. (K)

0

10

20

30

40

θ
(d

eg
)

(c)

Fe
Nd
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Mxy , of Fe and Nd atoms for rcut = 10.6 Å and L = 6. (c) Each
magnetization angle measured from the z-axis at the low-temperature
region.

for bcc-Fe [41–43] and MnBi [44], and so the dependence of
rcut appears to reflect the features of itinerant ferromagnetism.
Under the condition that rcut = 3.52, 10.6, and 17.6 Å, each
atom has approximately 13, 350, and 1660 exchange coupling
bonds, respectively. To reduce the computational load, we
mainly consider rcut = 10.6 Å.

At the lower temperature point Tsr (∼145 K) in Fig. 4,

〈|Mz|〉 reaches a maximum and Mxy =
√

〈M2
x 〉 + 〈M2

y 〉 ap-

proaches 0, which is known to be the spin-reorientation
transition of the Nd2Fe14B magnet. The magnetization direc-
tion is tilted 34.4◦ from the z-axis at T = 0 for every rcut.
Above Tsr, this direction exhibits uniaxial anisotropy along
the z-axis. In contrast to TC, Tsr has only a weak dependence
on rcut. The spin-reorientation transition is mainly driven by
the higher-order terms (l = 4,6) of A

ml=0
l on the Nd atoms

in Eq. (1). Indeed, in comparison to the tilting angle of the
single Nd atom at T = 0 [θ = 36.7◦ in Fig. 2(a)], we can
see that the Fe magnetic anisotropy has little effect on the
spin reorientation. The reorientation property of Nd atoms
is shared with the whole Nd2Fe14B through the exchange
coupling J ex

Fe−Nd. As shown in Fig. 6, most contributions of
J ex

Fe−Nd are in the range rcut � 3.4 Å. Therefore, Tsr has only a
weak dependence on the long-range parts of J ex

ij .
To look into the role for each atom in the above two

transitions at TC and Tsr, we plot in Fig. 7 the temperature
dependence of the magnetizations and the magnetization angle
of Nd and Fe atoms. In Fig. 7(a), the reduction of the
magnetization amplitude 〈|M|〉 with the temperature of each
atom shows a clear difference. This difference is reflected
by the amplitude of exchange couplings: J̃ ex

Fe (J̃ ex
Nd) for
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FIG. 8. Angular dependence of y-direction torque Ty (left side)
and free-energy �F (right side) at each temperature for rcut = 10.6 Å
and L = 4. The gray lines on the left side show the fit of the torque
data to −∂�F/∂θ in Eq. (8).

r1 = 0 and r2 = 10.6 Å is 142.9 meV (33.5 meV). Hence,
the ferromagnetic order of Fe is responsible for the magnetic
order of the magnets. At high temperature, we may have a
picture that the magnetization of the Nd atom is maintained
by the interaction with the ordered Fe. The rapid decrease
of Nd magnetization with temperature corresponds to the
poor thermal properties of magnetic anisotropy (see the next
section). On the other hand, from each magnetization angle
θ in Fig. 7(c), we can verify that Tsr is mainly dependent on
the magnetic anisotropy of Nd atoms, as was mentioned in the
previous paragraph. The magnetization angle θ is calculated
by using 〈|Mz|〉 and Mxy in Fig. 7(b) as follows:

θ = arctan

( 〈|Mz|〉
Mxy

)
. (7)

In Fig. 7(c), the angle of Nd magnetization always has a larger
value than the angle of Fe magnetization below Tsr. This
behavior implies that the spin reorientation occurs because
the tilted Nd magnetization attracts Fe magnetization.

It is necessary to keep in mind that the model parameters do
not include the thermal variations of the lattice parameters and
the electronic states. However, despite using many parameters
from first-principles calculations, the above thermodynamic
results (TC ∼ 754 K, Tsr ∼ 145 K for rcut = 10.6 Å) are
basically consistent with experimental values (TC ∼ 585 K,
Tsr ∼ 135 K) [1]. Therefore, the model and the parameter
sets are sufficiently reliable for studying the temperature
dependence of magnetic anisotropy in Nd2Fe14B.

B. Temperature dependence of magnetic anisotropy

We now discuss the temperature dependence of magnetic
anisotropy. Figure 8 shows the y-direction torque Ty and free
energy �F as a function of magnetization angle θ for L = 4
as calculated by the C-MC method. In the present paper,
the directions of magnetization constrained by the C-MC
method are rotated by θ around the y-axis. Therefore, the
torque is perpendicular to the x-z plane, i.e., both the x and z

components of torque are zero.
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FIG. 9. Left: Magnetization curve 〈|Mz(x)|〉 under the z(x)-
direction of the external magnetic field Hext; the gray area corresponds
to magnetic anisotropy energy FH

A in the blue solid lines on the
right-hand panel. Right: F (H )

A for the four calculation conditions.

To verify the C-MC method, we compare the magnetic
anisotropy energies FA with those given by the typical MC
method, FH

A . Here, FA is defined as �Fmax − �Fmin in
Fig. 8, and FH

A is derived from the magnetization curves
as the gray area on the left of Fig. 9 (see the example
at T = 300 K), where 〈|Mx(z)|〉 is the magnetization curve
under Hext in the x(z)-direction. From the right of Fig. 9,
we can confirm that FA is in good agreement with FH

A ,
particularly in the low-temperature region, although FH

A tends
to give an overestimate. This overestimate occurs because,
at finite temperatures, the effective magnetic anisotropy of
each spin decreases as a result of thermal fluctuations. When
evaluating FH

A , the thermal fluctuations are suppressed by the
external field to saturate the magnetization. This suppression
becomes stronger as the temperature increases, causing the
overestimation to be significant in the high-temperature region.

We also plot FA for other calculation conditions: (L,rcut) =
(4,3.52) and (5,3.52) on the right of Fig. 9. These results
show that a system size of L = 4 is sufficient to obtain
convergence in the magnetic anisotropy. Additionally, the
length of rcut affects FA at high temperatures. As mentioned
in terms of spin reorientation, the magnetic anisotropy of
Nd is essentially unaffected by differences in rcut. Hence, it
is thought that the difference between red and green lines
in Fig. 9(b) occurs due to rcut dependence of Fe anisotropy.
Therefore, in the high-temperature region where Fe anisotropy
becomes larger than the Nd anisotropy (see Fig. 11, A

ml

l = 0
and DA = 0), the effects onFA of differences in rcut are clearly
evident.

Returning to Fig. 8, we can see that for 100 and 125 K,
the torque (free-energy) curve attains a local maximum
(minimum) at θ �= 0, which reflect the spin reorientation
(shown in Fig. 4). In contrast, above T � 200 K, the local
maximum (minimum) disappears and the torque (free-energy)
curve approaches ∝ sin 2θ (sin2 θ ). This behavior implies that
the magnetic anisotropy constant KA

1 becomes dominant as
the temperature increases.

FIG. 10. Anisotropy constants KA
m as a function of temperature

for rcut = 10.6 Å and L = 4. White circles and squares indicate
experimental results [45] for KA

1 and KA
2 , respectively.

To clarify the temperature dependence, Fig. 10 shows the
magnetic anisotropy constants KA

m (m = 1,2,4) that were
calculated by fitting Ty in Fig. 8 to the torque equation:

Ty(θ,T ) = − ∂

∂θ
�F(θ,T ),

�F(θ,T ) = KA
1 (T ) sin2 θ + KA

2 (T ) sin4 θ + KA
4 (T ) sin6 θ.

(8)

These constants can only be calculated correctly using the
C-MC method. We can confirm that KA

2 and KA
4 tend to

zero and KA
1 becomes dominant in the region of T > 300 K.

Additionally, KA
1 becomes negative in the low-temperature

region. This is reflected by the local minimum of �F in Fig. 8,
indicating the spin reorientation transition. The temperature
dependence of KA

m agrees reasonably well with previous
experimental results [45–47] and mean-field theory [16,17].
Note that, at T < 100 K, all of the |KA

m | are significantly larger
than the experimental values. For classical spin systems, this
deviation in KA

m (and also M) is finite at zero temperature on
account of the infinite degrees of freedom of classical spin (for
quantum spin systems, the deviations of KA

m and M at T = 0
are zero) [17]. This explains the difference between our results
and the experimental results at T < 100 K.

To examine the relationship between the exchange cou-
pling and magnetic anisotropy, we considered various input
parameter sets. Figure 11 shows the anisotropy energy FA

for five cases: the same result as shown by the red lines in
Fig. 9 (default), a model including only Fe magnetic anisotropy
(Aml

l = 0), a model including only Nd magnetic anisotropy
(DA = 0), a model with all J ex

Fe−Nd reduced by half (0.5J ex
Fe−Nd),

and a model with all J ex
Fe−Nd increased by half (1.5J ex

Fe−Nd). In
the case of A

ml

l = 0, the anisotropy energy decreases almost
linearly with temperature. This behavior is a typical property
of the classical Heisenberg models that include only sin2 θ for
the anisotropy energy. In contrast, the case of DA = 0 exhibits
a rapid decrease, which can be explained by the difference in
the exchange coupling J̃ ex

atom(r1,r2) of Nd and Fe atoms [see
Eq. (6)]. We have that J̃ ex

Fe and J̃ ex
Nd for r1 = 0 and r2 = 10.6 Å

are 142.9 and 33.5 meV, respectively. Here, J̃ ex
Fe(Nd) is almost

given by the Fe-Fe (Nd-Fe) exchange couplings (see Fig. 3).
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FIG. 11. Comparison of the temperature dependence of magnetic
anisotropy energy FA in five cases (details in the text) for rcut =
10.6 Å and L = 4.

The Nd atoms, which give the whole Nd2Fe14B system
magnetic anisotropy through J̃ ex

Nd, are highly susceptible to
thermal fluctuations, unlike the Fe atoms, which play a key role
in magnetism (such as |M| and TC). This difference in thermal
susceptibility explains the rapid decrease in FA for DA = 0.
For the same reason, in the case of 0.5J ex

Fe−Nd, which includes
both A

ml

l and DA, FA decreases rapidly with temperature and
approaches A

ml

l = 0 at approximately 400 K. This means that
the effects of Nd magnetic anisotropy are almost wiped out
by thermal fluctuations above 400 K. However, for 1.5J ex

Fe−Nd,
FA is almost linear. The above discussion for Fig. 11 allows
us to understand that J̃ ex

Nd (rather than J̃ ex
Fe ) makes a strong

contribution to the magnetic anisotropy of Nd atoms, which
supports the results of previous studies [16,48].

To analyze the results shown in Fig. 11 in the context of the
Callen-Callen law [13,14], i.e., KA

1 (T ) ∝ M(T )3 for KA
2 =

KA
4 = 0, Fig. 12 illustrates the relationship between KA

1 and
M above 300 K. It is clear that 1.5J ex

Fe−Nd deviates from this
law, because KA

2 is comparable to KA
1 at 300 K. Varying the

anisotropy terms A
ml

l and DA affects these relations more

0.5 0.6 0.7 0.8 0.9 1.0

M(T )/M(300 K)

0.2

0.4

0.6

0.8

1.0

K
A 1
(T

)/
K

A 1
(3

0
0

K
)

∝ M2

∝ M3

∝ M4

default
Aml

l = 0

DA = 0
1.5JNd-Fe
0.5JNd-Fe

FIG. 12. Relation between KA
1 (T ) and M(T ) at each temperature

for the same parameter sets and calculation conditions in Fig. 11.
The natural logarithm is taken for both axes. The Callen-Callen law
corresponds to M(T )3, illustrated by a dashed line.

0 1 2 3 4 5 6 7

μ0H ext (T)
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1
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4

F B
(M

J
/
m

3
)

150 K
200 K
300 K
400 K
500 K
600 K

FIG. 13. Height of the energy barrier, FB, as a function of the
external magnetic field, Hext, at each temperature for rcut = 10.6 Å
and L = 4. The gray lines illustrate the fit to Eq. (9).

than J̃ ex
Nd. For A

ml

l = 0, Nd magnetization decreases rapidly
with temperature, whereas Fe anisotropy decreases gradually.
Hence, KA

1 /M tends to increase. Conversely, for DA = 0, Fe
magnetization slowly decreases with temperature, whereas Nd
anisotropy decreases rapidly, hence KA

1 /M tends to decrease.
As the above two effects happen to cancel out, the default case
and 0.5J ex

Fe−Nd agree with the Callen-Callen law.
The Callen-Callen law was derived under the assumption

of homogeneous ferromagnetic and single-ion anisotropy
systems at temperatures far from TC. Therefore, it is natural
that a multi-sublattice model such as Nd2Fe14B does not
follow the Callen-Callen law, which was also pointed out
by using a mean-field approach [49]. Additionally, in actual
ferromagnetic metals that have two-ion magnetic anisotropy,
the temperature dependence of magnetic anisotropy devi-
ates from Callen-Callen law [19,50–53], such as L10-FePt,
KA

1 (T ) ∝ M2.1(T ) [51]. Therefore, more detailed discus-
sion of the temperature dependence is needed to formu-
late the theory for itinerant electrons and inhomogeneous
systems.

C. Energy barrier

Finally, we discuss the external magnetic field Hext response
of the energy barrier (activation energy) [20–24], which
governs the probability of magnetization reversal via the
thermal fluctuation of spins. If this response can be measured
experimentally [25], it would allow the magnetic coercivity
mechanism to be predicted at finite temperatures.

Figure 13 shows the height of the energy barrier, FB,
when Hext is applied opposite to the z-direction of M. By
uniformly rotating the direction of M using the C-MC method,
we evaluated FB; therefore, FB = FA for Hext = 0. The Hext

response of FB is generally expressed by [20]

FB(Hext) = F0
B(1 − Hext/H0)n, (9)

where F0
B = FB(Hext = 0) = FA, and H0 is equal to the value

of Hext at FB = 0, which corresponds to the upper limit
of the coercive field, Hc, under uniform rotation. For finite
temperatures, the thermal fluctuation helps the magnetization
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TABLE II. Fitting parameters (F0
B,H0,n) at each temperature.

The exponent ns
K was estimated with the single-spin model [Eq. (10)]

using the anisotropy constant KA
m in Fig. 10 instead of κm.

Temp. (K) F0
B (MJ/m3) μ0H0 (T) n

KA
2

KA
1

KA
4

KA
1

ns
K

150 6.53 7.54 1.53 9.35 −2.55 1.56
200 5.37 6.23 1.42 1.08 −0.25 1.44
300 3.61 5.41 1.72 0.2 −0.04 1.72
400 2.46 4.44 1.90 0.05 −0.01 1.91
500 1.65 3.46 1.97 0 0 2.00
600 1.03 2.55 2.00 −0.02 0 2.05

reversal to overcome the energy barrier, and so Hc is much
lower than H0. The exponent n can take various values, such
as n = 2 for the Stoner-Wohlfarth model and n = 1 for the
weak domain-wall pinning mechanism [20].

The parameters F0
B, H0, and n were obtained by fitting

FB(Hext) in Fig. 13, and they are listed in Table II. We can see
that n takes values of less than 2 in the low-temperature region
(below the room temperature, TR ∼ 300 K) and approaches
2 as the temperature increases. This reflects the fact that the
magnetic anisotropy is mainly governed by the KA

1 term in
the high-temperature region (see Fig. 10). To clarify this, we
estimated the exponent ns by fitting from the anisotropy energy
of the single-spin model, which is defined as

Es
A(θ ) = κ1 sin2 θ + κ2 sin4 θ + κ4 sin6 θ + mHext cos θ.

(10)

With κ2 = κ4 = 0, this corresponds to the Stoner-Wohlfarth
model. The dependence of the anisotropy constant on ns

is plotted in Fig. 14. This figure confirms that κ2 and κ4

have a significant effect on ns for (a) κ1 > 0, whereas ns

is less sensitive for (b) κ1 < 0, which corresponds to the
low-temperature region below Tsr of Nd2Fe14B (see Fig. 10).

0 1 2 3
1.0

1.5

2.0

2.5

n
s

κ4/|κ1|

(a) κ1 > 0

0.5
0.2
0.0
−0.2
−0.5

0 1 2 3
κ2/|κ1|

(b) κ1 < 0

FIG. 14. The exponent ns in the magnetic-field response for the
single-spin model, Eq. (10), as a function of κ2/|κ1| (� 0) with fitting
error bars (95% confidence) on each κ4/|κ1| for (a) κ1 > 0 and (b)
κ1 < 0. The energy barrier FB disappears when κ2/|κ1| is below each
white point in (b).

Here, the deviation of ns given by fitting Eq. (9) becomes large
when either |κ2| or |κ4| increases. Therefore, near the points
where fitting error bars are large (see Fig. 14), we should
pay attention to the ns values, which are dependent on fitting
procedures.

Additionally, we input KA
m (from Fig. 10) into κm in

Eq. (10), and we estimated the exponent ns
K listed in Table II.

Despite using the single-spin model, ns
K is in good agreement

with n, where n has been evaluated on an inhomogeneous spin
system such as Nd2Fe14B. This indicates that, in terms of the
magnetic-field response of uniform rotation, the anisotropy
constants KA

m are renormalized by the magnetic inhomo-
geneities and thermal fluctuations. For the Nd2Fe14B system,
in particular, we should bear in mind that the response occurs
for n < 2 when below room temperature, TR.

IV. SUMMARY

We have constructed a realistic classical three-dimensional
Heisenberg model using parameters from first-principles
calculations, and we investigated the magnetic properties of
the Nd2Fe14B bulk system at finite temperatures. Applying
the constrained Monte Carlo method to this model, from
atomic-scale parameters, we evaluated macroscopic mag-
netic anisotropies, which include correctly magnetic inho-
mogeneities and thermal fluctuations. Despite using many
parameters from first-principles calculations (except for A

ml

l ),
the model reproduced the experimentally observed spin reori-
entation and magnetic anisotropy constants KA

m .
Using this calculation system, we found that, because the

exchange couplings between Nd moments and Fe spins are
much smaller than those between Fe spins, the magnetic
anisotropy of Nd atoms decreases more rapidly than that of
Fe atoms. Additionally, due to this magnetic inhomogeneity,
the temperature dependence of KA

1 deviates from the Callen-
Callen law, even above room temperature (TR ∼ 300 K), when
the Fe (Nd) anisotropy terms are removed to leave only the Nd
(Fe) anisotropy. Furthermore, we also found that the exponent
n in the magnetic-field response of barrier height is less
than 2 in the low-temperature region below TR, whereas n

approaches 2 when T > TR, indicating Stoner-Wohlfarth-type
magnetization rotation. This behavior reflects the fact that the
magnetic anisotropy is mainly governed by the KA

1 term in
T > TR, which is explained by the single-spin model with a
renormalized KA

m .
We have a plan to extend the constructed framework in the

present paper to nonuniform magnetization reversal in finite-
size particles, including the effects of the grain surfaces or
grain boundaries.
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