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Electric transport in three-dimensional skyrmion/monopole crystal
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We study theoretically the transport properties of a three-dimensional spin texture made from three orthogonal
helices, which is essentially a lattice of monopole-antimonopole pairs connected by skyrmion strings. This
spin structure is proposed for MnGe based on neutron scattering experiments as well as Lorentz transmission
electron microscopy observations. Equipped with a sophisticated spectral analysis method, we adopt the finite
temperature Green’s function technique to calculate the longitudinal dc electric transport in such a system. We
consider conduction electrons interacting with spin waves of the topologically nontrivial spin texture, wherein
fluctuations of monopolar emergent magnetic fields enter. We study in detail the behavior of electric resistivity
under the influence of temperature, external magnetic field, and a characteristic monopole motion, especially a
novel magnetoresistivity effect describing the latest experimental observations in MnGe, wherein a topological
phase transition signifying strong correlations is identified.
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I. INTRODUCTION

Although a skyrmion, mathematically being a topologically
nontrivial soliton solution of an O(3) nonlinear sigma model
[1,2], is originally proposed as a hadron model decades ago
[3], its revival came with condensed matter systems in the end,
including liquid crystals [4], Bose-Einstein condensates [5,6],
2D electron gas of integer quantum Hall effect [7], etc. For
example, the low-energy theory of the integer quantum Hall
system possesses a similar structure to a quantum ferromagnet
whose elementary excitations are skyrmionlike. This implic-
itly raised the question whether skyrmions are achievable in
real magnetic systems. Pioneering predictions [8,9] studied
the mean-field theory of easy-axis ferromagnets with chiral
spin-orbit interaction. Afterwards, magnetic skyrmions were
finally realized not only in P 213 space group chiral magnets
of metals [10–12], semiconductors [13,14], and multiferroic
insulators [15], but also in a one-atomic-layer Fe thin film
on an Ir substrate as tiny nanoskyrmions [16]. Affluent
new phenomena have been experimentally discovered and
theoretically investigated, including the topological Hall effect
(THE) [17,18], the skyrmion Hall effect [19,20], the non-Fermi
liquid behavior in a wide temperature range [21], the ultralow-
current-driven motion [22,23], the quantized topological Hall
effect [24], and so on, paving the way for “skyrmionics”
and even applications in magnetic information storage and
processing [25–28].

Not only can isolated skyrmions be excited by means such
as local heating [29] and applying electric currents [25,30,31],
but the more common skyrmion crystal (SkX) has also been
observed in k space by neutron scattering [10,14] and in real
space by Lorentz transmission electron microscopy (LTEM)
[11–13] and magnetic force microscopy [32]. Contrary to
the thin film realization, SkX only exists within a narrow
region of temperatures and external magnetic fields in the
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bulk material. However, a metastable SkX state can extend
over a wide temperature region [12], which is procured by
cooling without changing the magnetic field. Typically, in
the bulk, skyrmion tubes with translational symmetry along
the cylindrical axis can form. One is then naturally urged to
contemplate the intriguing possibility of the coalescence of
skyrmion tubes at certain singular points in three dimensions
(3D). These singularities must be hedgehog spin textures that
can stepwise alter the topological number, reminding us of a
more ordinary realization of this type of mapping, the Dirac
monopole. In fact, those singular points can be identified as a
variant of Dirac magnetic monopoles in terms of the so-called
emergent electromagnetic field (EEMF) [19,33–35], which has
been confirmed experimentally [32].

Since then, there have been several theoretical works
in regards to emergent magnetic monopoles driven by the
foregoing energetic instability in the bulk. The evolution of the
skyrmion number under an external magnetic field was studied
[36] in a system similar to the experiment [32]. The effect of
the coalescence on the electric current was calculated in a
postulated two-skyrmion-merging model based on a soliton
solution of the nonlinear sigma model [37]. Making use of
micromagnetic simulations based on the stochastic Landau-
Lifshitz-Gilbert equation, people studied the dynamics and
energetics of monopoles created by thermal fluctuations [38]
and the dynamics of monopoles and Dirac stringlike objects
under an electric current drive [39]. Monopoles acquiring
electric charges via the θ �E · �B term in the Witten effect
can also be driven by an electric field to induce a SkX
phase in an insulating helimagnet [40]. These studies are in
a way concerned with accidental monopole defects in the
skyrmion tube background. Here comes another question—
can we realize an arrangement of emergent monopoles in a
deterministic way? This was partly answered by a theoretical
prediction in a 3D SkX phase, i.e., there resides a simultaneous
monopole crystal [41,42].

In a bulk polycrystal of B20-type MnGe, a much larger and
magnetic-field-dependent distinctive THE signal, in contrast to
the ones for other B20-type skyrmion-hosting chiral magnets
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like MnSi, was detected [43] and then tentatively explained
[44] by the foregoing 3D SkX model composed of tilted
skyrmion strings and a periodic array of points where the
spin moment �S = �0. Small-angle neutron scattering [44]
further confirmed the cubic symmetry of the magnetic texture
therein. On the other hand, the difficulty in the single-crystal
synthesis and sub-nano-meter resolution LTEM obstructed the
real-space analysis of this material until a very recent study
on thin film MnGe (thickness ∼30 nm) clearly revealed the
magnetic moment configuration and the underlying atomic
crystal lattice through high-resolution LTEM [45]. Despite a
minor difference between the intensities of different spirals
possibly due to the thin film setting, both an anomalous
temperature dependence of the SkX period and a magnetic
texture comprising three orthogonal spin spirals (see the model
in Sec. II B) were undoubtedly confirmed.

At those vanishing points of spin moment, the directional
vector

�n = �S/| �S|
becomes singular. There is a crucial difference between these
two viewpoints. The former, �S(�r), mathematically being a
mapping to a 3-ball B3, is trivial in the sense that any
configuration can be smoothly deformed to �S(�r) = �0. And
the latter, which is the orientational field �n(�r), is topologically
characterized by the homotopy group of a 2-sphere S2. This
is the more appropriate way to explain the influence of the
localized spins on conduction electrons in a strongly correlated
system because of the prohibition of a vast variation in
the length of spin moments. We associate the MnGe in the
experiments with this strong correlation picture and indeed,
besides a reduced bandwidth, its saturated magnetization is
several times larger than that of MnSi. Accordingly, we
identify the singular points as pairs of magnetic monopoles
and antimonopoles in terms of EEMF (see Sec. II B, Sec. IV B,
and our paper [46]). And since the electron correlation
and spin-orbit interaction are enhanced, the 3D spin texture
containing the skyrmion strings is formed even without the
external magnetic field.

One of the significant physical aspects in such a system
turns out to be that thermally excited spin waves should couple
with itinerant electrons and hence affect the resistivity mas-
sively. Especially, we expect novel phenomena originated from
the resultant fluctuation of the nontrivial monopolar magnetic
field. To this end, we adopted the finite temperature Green’s
function technique to calculate the correlation functions
for attaining longitudinal dc resistivity, since the transverse
anomalous behavior has been well described by the THE.
The dependence on both temperature T and magnetization
mz along the external magnetic field was considered. To
compare with and support our resistivity calculation, a study
of magnetic susceptibility was conducted as well. Fortunately,
our magnetoresistivity predictions have been confirmed by the
latest experimental advances [46]. Readers are referred to that
publication for a detailed comparison between experiment and
theory.

This paper is organized as follows. In Sec. II, we introduce
the physical models, the effective Hamiltonian for conduction
electrons, the 3D SkX, and spin waves in SkX. Then we present

a derivation of our calculation formalism for resistivity in
Sec. III and describe and discuss the results of asymptotic
analysis and magnetoresistivity in Sec. IV. In Sec. V, we
conclude and comment on this work. Some developments and
calculations of the model and formalism are organized into
several Appendixes.

II. THEORETICAL MODELS

A. Effective model of itinerant electrons in SkX

A powerful and elegant theoretical framework, EEMF, was
invented based on an adiabatic approximation for the real space
description of Berry phases produced by the noncollinear spin
textures [19,33–35]. This is valid when the size of a skyrmion
is much larger than the Fermi wavelength and in between the
no-spin-flip mean free path and the spin-flip mean free path
and the time to traverse a skyrmion is much larger than the
inverse of band splitting. When strong coupling with itinerant
electrons is present, the constraint drawn by the localized spins
produces the EEMF, which elegantly explains the topological
Hall effect (THE) [17,18]. We also mention how exceptionally
large are the emergent magnetic fields (about 1000, 30, and
1 T in MnGe, MnSi, and FeGe, respectively), which makes
the external magnetic field typically of 0.1 T negligible. This
is easily estimated from the magnetic length data of the SkXs
[12,17,43].

We consider a double-exchange model comprising both
itinerant electrons and magnetic textures in 3D, in which
conduction electrons are coupled with localized spins ferro-
magnetically via an sd-type Hund’s rule coupling [47]:

L̃ele-spin = �†(i�∂0 + εF )� + 1

2m
( �̂p�)† · ( �̂p�)

+ JH

2
S�n · �† �σ�, (1)

wherein � = (�1,�2)T and �σ = (σx,σy,σz)T are the spinor
field and the 3-vector of the spin- 1

2 Pauli matrices of
conduction electrons, respectively. When the Hund’s rule
coupling strength JH is strong enough, the antiparallel spinor
component of the minority population has a very large energy,
and a spin-flip transition to this state driven by off-diagonal
matrix elements in the Hamiltonian scarcely occurs. Thus
one is able to make an adiabatic approximation to drop
that component and the corresponding off-diagonal terms,
which defines the U(1) gauge fields. Therefore, as shown
in Appendix A, the constraint drawn by the background
spin texture yields emergent electromagnetic fields (EEMF,
signified by lowercase) seen by itinerant electrons,

bi = (∇ × �a)i = 1

2

�

qe
εijk �n · (∂j �n × ∂k �n), (2)

ei = (−∂0�a − ∇a0)i = �

qe
�n · (∂i �n × ∂0�n), (3)

and the low-energy effective Hamiltonian

Heff = 1

2m
( �̂p − qe�a)2 + V (�r,t), (4)

where the potential field V and the gauge potential �a are given
in Appendix A. Note that the emergent gauge charge qe, which

174428-2



ELECTRIC TRANSPORT IN THREE-DIMENSIONAL . . . PHYSICAL REVIEW B 94, 174428 (2016)

FIG. 1. (Left) Spin texture �n(�r) at the boundary of a 2 × 2 × 2 unit cell of the SkX/monopole crystal. (Middle, right) Spin texture �n(�r)
around an antimonopole (blue point) in the SkX/monopole crystal explores all the possible directions wrapping up a sphere. (Right) We
show for clearness only the in-plane component of the spin texture on three mutually orthogonal planes cutting the antimonopole. Uniform
magnetization mz = 0. Rainbow colors encode nz as red (blue) means more polarized up (down).

should not be confused with the elementary electric charge e,
does not really enter Eq. (4) simply because �a has a 1/qe factor
by definition.

B. Three-dimensional skyrmion crystal/monopole crystal

A magnetic skyrmion is defined as a unit-norm mapping
�n(�r) ≡ �S/| �S| from a 2D compact base manifold (real space) to
the target manifold (directional space), which wraps around the
latter certain times, rigorously characterized by the homotopy
group π2(S2) = Z. Explicitly, this winding number, or the
topological skyrmion number for a 2D compact manifold
parametrized by (u,v) reads [1,2,48]

NSk = 1

4π

∫∫
dudv�n ·

(
∂ �n
∂u

× ∂ �n
∂v

)
. (5)

In a 3D chiral magnet, the skyrmion number (5) for a
(compactified) region in xβ,xγ -plane consequently becomes
a function of xα coordinate:

Nα
Sk(xα) = 1

4π
εαβγ

∫∫
dxβdxγ �n · (∂β �n × ∂γ �n). (6)

This corresponds to the observed 2D SkX and aforementioned
columnar skyrmion tubes in 3D. The latter can be viewed as
piling up 2D SkXs.

In general, a periodic noncollinear or noncoplanar spin
configuration can be viewed as a hybridized state of multiple,
say, N independent spiral spin textures [41] of wave vectors
�kα ,

�S(�r) = �m +
N∑

α=1

( �Mαei�kα ·�r + �M∗
αe−i�kα ·�r), (7)

where �m is the uniform magnetization in proportion to the
applied external magnetic field. Trivially, when N = 1, i.e.,
there is no hybridization at all, one obtains the ordinary
helical or conical state. On the other hand, topologically
protected magnetic skyrmions in chiral magnets can be well
characterized by the N > 1 scenario. To this end, one can retain
solely the lowest order Fourier components and assume that all

�kα’s ( �Mα’s) are equal in norm and without loss of generality,
complex phases in �Mα = | �Mα|eiφα ’s are locked to be the
same. This description, for instance, can give us a hexagonal
SkX in 2D or a simple cubic one in 3D when N = 3. The
former for MnSi reads �k1 = k(1,0,0), �k2 = k(− 1

2 ,
√

3
2 ,0), �k3 =

k(− 1
2 ,−

√
3

2 ,0) and �M1 = (ẑ + iŷ)/2, �M2 = (ẑ − i
√

3
2 x̂ −

i 1
2 ŷ)/2, �M3 = (ẑ + i

√
3

2 x̂ − i 1
2 ŷ)/2. The latter for MnGe

reads �k1 = (k,0,0), �k2 = (0,k,0), �k3 = (0,0,k) and �M1 = (ŷ −
iẑ)/2, �M2 = (ẑ − ix̂)/2, �M3 = (x̂ − iŷ)/2. Henceforward, we
study the latter and set |�kα| = 1, α = 1,2,3 and �m = mz for
simplicity, which amounts to

�S(�r) = (sin y + cos z, cos x + sin z,mz + sin x + cos y). (8)

We show the corresponding spin texture �n(�r) in Fig. 1.
The conventional exchange interaction (EXI) originated

from the Coulomb interaction and the fermion statistics,
usually yields ferromagnetic or antiferromagnetic order. Those
helical, conical or multispiral states can be generated by var-
ious mechanisms [47], e.g., frustrated exchange interactions,
spin-orbit interactions, long-range magnetic dipolar interac-
tions, magnetic anisotropy, and so on. An important example
of the relativistic spin-orbit case is the Dzyaloshinskii-Moriya
interaction (DMI) [49–51]. This work deals with B20-type
materials without inversion symmetry that can host DMI
(including both MnSi and MnGe). The minimal Hamiltonian
in d spatial dimensions,

HSkX =
∫

dd�r
[

J�
2

ad−2
0

(∇ �S)2 + D�
2

ad−1
0

�S · (∇ × �S) − �

ad
0

μ�S · �B
]
,

(9)

includes the EXI, the Bloch-type DMI, and the Zeeman
energy, wherein and henceforth a dimensionless �S of the
spatial configuration of spin moments is defined without the
� factor. The ratio of the magnitude of the DMI to the EXI,
D
J

, is supposed to be small enough to justify the use of the
continuum approximation, since a0 = D

J
aSkX, where a0 (aSkX)

is the microscopic lattice constant of the material (the size of
the magnetic unit cell or the period of the incommensurate
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SkX). From the scalar triple product form of DMI, one can see
that it energetically favors circularly polarized spiral modes,
i.e., the spin plane remains perpendicular to the spin density
wave vector. Such a configuration, a remaining spiral texture
inside (DM energy gain) and ferromagnetism outside (EX
and Zeeman energy gain), is a compromise between different
magnetic energies.

From Hamiltonian (9), one can estimate the characteristic
length and energy scales in the system by plugging in �S ∝ ei�k·�r
and minimizing the energy in k space, which results in
k ∼ D/(Ja0) hence the magnetic energy density ∼D2/(Ja2

0).
This is why the (critical) magnetic fields of different phases
(and their differences) are of the order D2/J . Notwithstanding,
the area of a skyrmion of the order (J/D)2a2

0 compensates and
makes the melting temperature of a SkX modestly as high as
J , which is the energy scale to destroy a skyrmion (SkX) by
various means. As mentioned above, skyrmion coalescence or
bisection is ascribed to singular points in the spin texture,
around which a hedgehog/antihedgehog spin configuration
(Fig. 1) with an energy of the order J is indeed formed [38]
and can naturally create or annihilate a skyrmion.

Further, the most prominent feature of the SkX in MnGe is
that it contains not only skyrmion strings but also a periodic
array of singularities, identified as pairs of magnetic monopole
and antimonopole in terms of EEMF, whose magnetic flux
quantization can be shown by applying the generic NSk formula
(5) and Eq. (2) to an S2 base manifold:∫
©
∫

d �S · �b = �

2qe
εαβγ

∫∫
dSα �n · (∂β �n × ∂γ �n) = Zφ0, (10)

wherein Z ∈ Z and φ0 is the magnetic flux quantum. We also
analytically confirmed this flux quantization in this simple
cubic monopole crystal, where each emergent monopole
has magnetic flux ±h/qe. A detailed inspection of the
(anti)monopoles’ motion under the magnetization process is
presented in Fig. 2 and in Sec. IV B 2. The readers are also
referred to our paper [46] for an alternative discussion.

C. Low-energy spin-wave theory of SkX

We study a low-energy spin-wave theory for the localized
spins. This will affect electrons’ motion via the vector potential
�a and potential field V in Eq. (4) since spin waves in SkX
render the Berry phase and the EEMF produced by the spin
texture fluctuating all along.

For quantum spins �S in a spin helix along, say, the z axis,
one can use the spherical angle to construct the action (setting
� = 1 henceforth)

S =
∫ β

0
dτ

∫
dd�r(−i)Sz∂τφz +

∫ β

0
dτH (�S(τ )), (11)

where (φz,Sz) are a canonical conjugate pair of fields. Note that
φz is the azimuth with respect to the generic z direction, which
simply denotes the direction of the rotation axis of a certain
spin spiral, being arbitrary actually. These are constructed from
scratch in Appendix B. Phenomenologically, we include two
quadratic terms

∫
d3�r[χS2

z + ρ(∇φz)2] into H (�S), penalizing
fluctuations due to the rigidity gained after spontaneous
symmetry breaking (formation of helical texture). There are
still other possible terms like (∇Sz)2. Nonetheless, the two we

include are the energetically most relevant ones allowed by
symmetry and are sufficient to characterize the physics in the
interested low-energy regime. We can then march on to the
scenario of plural independent spirals (N > 1). When N = 3
that accounts for either MnSi or MnGe, one has three conjugate
pairs of fields (φi(�r,τ ), Si(�r,τ )), i = 1, 2, 3, and consequently
three similar parts in the action.

Interestingly, because of the nontrivial real-space spin Berry
phase, as shown in Appendix B, the modes of these three
spirals will mingle with each other as a result of finite skyrmion
density in space. Together with the EEMF, Eq. (2), this implies
new canonical conjugate pairs and their commutation relations
[φ̂i ,φ̂j ] ∝ εijkbk , whereupon a very similar new crucial term
must be added to the Lagrangian. Here we define bk as the
component of the emergent magnetic field �b that is parallel
to �ki × �kj . One thing to point out is that our action describes
the Gaussian fluctuation of the fields (φi,Si), that is actually
(φi,mi) in terms of Eq. (7), away from their mean-field values.
And φi corresponds to the displacement field of the SkX along
ith direction. Without loss of generality, we set the static mean-
field value of any φi to 0 and denote fluctuation in mi by δmi .
Combining Eq. (11) and our discussion above, we are ready to
write down the low-energy spin-wave Lagrangian density for
SkX

LSW =
∑

i

[iεijkAbiφj φ̇k + B(−i)δmiφ̇i + χδm2
i + ρ(∇φi)

2],

(12)

wherein A = −2qeS
1

kj kk

1
ad

0
, B = 1/ad

0 , χ = D2/(Jad
0 ), ρ =

J/ad−2
0 and S and bi are substituted for by their spatial

averages since the spin-wave fields are presumably slowly
varying. According to the helical configurations introduced
in Sec. II B, we have only two pairs of effective degrees of
freedom φα, δmα, α = x,y in the Lagrangian density for MnSi
due to the phase locking among the three helices. And for
MnGe, it takes the form

LSW =
∑

α=x,y,z

[iεαβγ Abαφβφ̇γ + B(−i)δmαφ̇α

+χδm2
α + ρ(∇φα)2]. (13)

In terms of the properties of skyrmion, especially Eqs. (6)
and (31), discussed in Sec. II B and to be discussed in
Sec. IV B, we notice the spatial average 〈bi〉 ∝ N̄ i

Sk, which,
within SkX phases, is always nonzero for MnSi and is nonzero
for MnGe when uniform magnetization appears. This first term
is characteristic of skyrmion’s nontrivial topology. Note also
that we inject concrete values to the phenomenological rigidity
constants, anisotropy energy χ , and stiffness ρ, according to
the underlying Hamiltonian (9).

III. CALCULATION METHODS

A. Memory function method

From Sec. II B, we understand that itinerant electrons
described by the Hamiltonian (4) are actually moving in a
background of magnetic monopoles. For a spin spiral, the φ

field introduced in Sec. II C is the phase of the constituent
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FIG. 2. Spin textures �n(�r) on three successive planes of z = 0, π, 2π and the evolution of four pairs of monopoles (red point/trajectory)
and antimonopoles (blue point/trajectory) in a unit cell of the SkX/monopole crystal. Monopoles and antimonopoles collide at green points
while annihilate at black points. From left to right and up to down: uniform magnetization mz = 0, 0.3, 0.5, 0.75, 1.0, 1.2, 1.37, and

√
2.

Coordinates and vector colors are the same as Fig. 1.

spin density wave, signifying the shift of the SkX or more
specifically, the deviation of monopoles away from their
equilibrium points. The aftermath is that one has to introduce
Dirac strings or patches of gauge choices for the vector
potential, i.e., failure in constructing a global description of
the gauge field in R3 space because of the nontrivial U(1)
bundle with a monopole present [52]. In order to overcome
this and to retain gauge invariance in a succinct manner, rather
than involving a cumbersome recovery of Ward-Takahashi
identity [53], we adopt the memory function approach [54–56],
calculating the j̇ -j̇ correlator, which is in a sense similar to a
force-force correlator [57].

According to the Kubo formula, the optical conductivity
tensor can be expressed as σ (z,T ) = ie2

z
( ne

m
+ �(z,T )

V
), wherein

ne is the electron concentration, z is the (complex) frequency,
lying in the complex upper half-plane, and � is the j -j
correlation function,

�αμ(z,T ) = −i
∫ ∞

−∞
dt eizt�(t − 0) 〈[jα(t),jμ(0)]〉. (14)

Note that σ,� and M,φ,A below are 3D rank-2 tensors
and the matrix inverse is understood accordingly. Hence-
forth, 〈 〉 abbreviates the thermodynamic average at a certain
temperature T and we omit the argument T for simplicity,
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i.e., 〈∗〉 ≡ Tr[e−β(K−�)∗] with a macroscopic thermodynamic
potential � given by e−β� = Tr e−βK and K = H − μN
in a grand canonical ensemble. Here, H and N are a
generic Hamiltonian operator and a particle number operator,
respectively, and the inverse temperature β = 1

kBT
. To facilitate

resistivity calculations, one can express the conductivity as

σ (z,T ) = ie2ne/m

z + M(z,T )
, (15)

using the memory function M . Within the lowest order
of coupling, this memory function with built-in resonance
structure is approximated as [54] M(z) = m

neV

φ(z)−φ(0)
z

, using

the finite temperature j̇ -j̇ correlator defined in imaginary time
by

φαμ(τ ) = −〈Tτ [jα,H](τ )[jμ,H](0)〉 , (16)

where τ ∈ [0,β]. This corresponds to a partial sum of infinite
diagrams including self-energy and vertex corrections. Then
we relate them to the retarded Green’s function φR(ω), given
by limη→0+ φ(z → ω + iη), in which physical responses are
embedded in. We henceforth consider solely longitudinal con-
ductivity (α = μ, but for completeness and notational consis-
tency we will keep using α and μ), then [jα,H]† = −[jμ,H].

The Lehmann representation φαμ(iωn) = ∫ ∞
−∞

dω
2π

−2�φR
αμ(ω)

iωn−ω
can

be attained, whereupon φαμ(τ ) can be further expressed by an

integration of a spectral function Aαμ(ω) = � (φR(ω)−φR(0))αμ

ω
=

−�ω�R
αμ(ω) weighted by a positive kernel K(τ,ω) = 1

π
ωe−ωτ

1−e−βω ,

φαμ(τ ) =
∫ ∞

−∞
dωK(τ,ω)Aαμ(ω), (17)

from which φαμ(τ ) ∈ R becomes obvious. This kernel is con-
ventional for optical conductivity calculations [58]. We restrict
ourselves to dc resistivity. Then ραμ(ω = 0) = σ−1

αμ(ω =
0) = m

e2ne
�(ω + Mαμ(ω))|ω→0 ∝ Aαμ(0). Further, based on

the cyclic property of the trace, we can also obtain a useful
symmetry (see Appendix C)

φαμ(τ ) = φμα(β − τ ). (18)

In this study, focusing on the lowest-order contribution,
we evaluate this φ function over a noninteracting system of
electrons and bosonic fluctuations of the EEMF (spin waves),
i.e., Hnonint = Hele + HSW . Notwithstanding, the coupling
between electrons and spin waves is de facto accounted for by
plugging the Heff Eq. (4) to Eq. (16). After a long derivation
presented in Appendix D, we are able to obtain a simple form
of the j̇ -j̇ correlator (16):

φαμ(τ ) =
∑
�k�q

De(�k,�q,τ ) ×
{

1

m2
qαqμDV V (�q,τ ) −

(
qe

2m2

)2

× εαβγ εμνσ (2k + q)β(2k + q)σDbγ bν
(�q,τ )

+ iqe

2m2
εαβγ qα(2k+q)β

[
Dbγ V (�q,τ )−DV bγ

(�q,τ )
]}

,

(19)

wherein we introduce several Matsubara Green’s functions.
For instance, Dbγ V (�q,τ ) = −〈Tτ bγ (�q,τ )V (−�q,0)〉 is for the

fluctuations of EEMF bγ and potential V , and De(�k,�q,τ ) =
−〈TτD1(τ )D2(0)〉 is for the electrons, in which D1(τ ) =
c
†
�k1+�q1

(τ )c�k1
(τ ) and D2(0) = c

†
�k2+�q2

(0)c�k2
(0). And similarly,

we also have Dbαbβ
,DV bα

,DV V . The reason why we prefer
Matsubara Green’s functions to directly calculating retarded
Green’s functions in real time lies in the fact that, in the
latter, a Green’s function not among the six conventional
Green’s functions [57] appears and requires clumsy Fourier
transformations back and forth.

Now the task turns out to be extracting Aαμ, i.e., solving
Eq. (17), a Fredholm integral equation of the first kind, once
φ(τ ) is known (calculated) at imaginary times. This numerical
analytic continuation problem belongs to the category of ill-
posed problems and is ubiquitous when dealing with quantum
Monte Carlo data [58]. Among various techniques aiming at
this, we adopted a hybrid of stochastic optimization [59–61]
and consistent constraints [62] methods, that does not depend
on any a priori expectation of the result, avoids artificial
smoothening, and solves the discretized version of Eq. (17).

B. Electron Green’s function

The original material should have produced an electronic
band structure of characteristic wave number π/a0 if it was
not for the formation of the SkX. Now it is reconstructed
such that the first Brillouin zone is folded to have length
2π/(aSkX) (see Sec. II C). Considering the smoothness of the
skyrmion structure, we did not take into account other possible
modifications due to the new band structure. Therefore, to
describe the itinerant electrons, we used an oversimplified
free-electron model for Hele, which is a parabolic dispersion

relation ξ (�k) = |�k|2
2m

− μ. This should be regarded as a low-
energy approximation around the new Fermi surface.

For free electrons, field operators are given by
c�k(τ ) = eτ (Hele−μN )c�ke−τ (Hele−μN ) = e−ξ�kτ c�k, c

†
�k(τ ) = eξ�kτ c

†
�k ,

and c�k(t) = e−iξ�k t c�k, c
†
�k(t) = eiξ�k t c

†
�k in imaginary and real

time, respectively. Applying Wick’s theorem, we can calculate
the previously defined electron’s four-point Green’s function

De(τ ) = −〈TτD1(τ )D2(0)〉
= −e(ξ�k1+�q1

−ξ�k1
)τ × [δ�q1,0δ�q2,0nF (ξ�k1

)nF (ξ�k2
)

+ δ�k1+�q1,�k2
δ�k2+�q2,�k1

nF (ξ�k1+�q1
)(1 − nF (ξ�k1

))], (20)

in which the second term is physically relevant and can be
directly obtained by analytically continuing De(τ )’s retarded
counterpart DR

e (t) = ei(ξ�k1+�q1
−ξ�k1

)t 〈[c†�k1+�q1
c�k1

,c
†
�k2+�q2

c�k2
]〉 =

ei(ξ�k1+�q1
−ξ�k1

)t (nF (ξ�k1+�q1
) − nF (ξ�k1

)) and thereafter summing up
Matsubara frequencies using a bosonic weight nB(z) + 1. nF

(nB) is an ordinary fermionic (bosonic) function. Thus we
will use

De(�k,�q,τ ) = −e(β−τ )(ξ�k−ξ�k+�q )nB(ξ�k − ξ�k+�q)

× (nF (ξ�k+�q) − nF (ξ�k)), (21)

who has the symmetry

De(�k,�q,β − τ ) = De(�k + �q, − �q,τ ). (22)
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C. Spin-wave Green’s function

We introduced in Eq. (19) the Green’s functions of bosonic
fluctuations of EEMF bα or V . In conjunction with the
Gaussian fluctuation spin-wave model in Sec. II C, they are
treated up to the first-order deviation away from the ground
state. For instance, the bα field is expanded as bα(kiri +
φi(�r,τ ), �m(�r,τ )) = b(0)

α (kiri, �m0) + (∂ϕμ
bα)(0)ϕμ(�r,τ ), wherein

superscript (0) signifies the ground-state value, ϕ field
is defined as ϕμ = ( �φ,δ �m)T, and only in this sense μ =
1, . . . ,6. In momentum space, we have bα(�q,τ ) = b(0)

α (�q) +∑
�l (∂ϕμ

bα)(0)(�l)ϕμ(�q − �l,τ ), where �l is an integer-valued 3-
vector. This is a variant of the conventional convolution
theorem since (∂ϕμ

bα)(0) is 2π -periodic in real space in our
study (see Sec. II B). Therefore, representatively, we have

DbαV (�q,iωn) =
∫ β

0
dτeiωnτDbαV (�q,τ − 0)

=
∑
�l�l′

∫ β

0
dτeiωnτ (−1)

〈
Tτ

(
∂ϕμ

bα

)
(�l)ϕμ(�q−�l,τ )

× (
∂ϕν

V
)
(�l′)ϕν(−�q − �l′,0)

〉
=

∑
�l

(
∂ϕμ

bα

)
(−�l)(∂ϕν

V
)
(�l) Gμν(�q + �l,iωn).

(23)

wherein we neglect the superscript (0) and the newly defined
spin-wave correlator

Gμν(�q,iωn) =
∫ β

0
dτeiωnτ (−1) 〈Tτ ϕμ(�q,τ )ϕν(−�q,0)〉 (24)

will be discussed below. Note that the ground-state static
configuration does not contribute. We henceforth neglect
all the �l �= �0 terms, i.e., umklapp scattering involving large
momentum transfer, in the summation except the �l = �0 one
since we are mainly concerned about the long wavelength
limit, which results in

DbαV (�q,iωn) = (
∂ϕμ

bα

)
(−�l = �0)

(
∂ϕν

V
)
(�l = �0) Gμν(�q,iωn),

(25)

in which the zeroth harmonics (∂ϕμ
bα)(−�l = �0) and (∂ϕν

V )
(�l = �0) are real.

The spin-wave model (13) can be exactly solved in
momentum space. We introduce the Fourier transformation
ϕμ(�r,τ ) = (βV )−

1
2
∑

�q,iω e−iωτ+i�q·�rϕμ(�q,iω), wherein ω is the
bosonic Matsubara frequency ωn = 2πn/β when the periodic
boundary condition ϕμ(�r,0) = ϕμ(�r,β) is imposed. Then the
action of Eq. (13) is transformed to

SSW =
∫ β

0
dτ

∫
dd�rLSW

=
∑
�q,iω

ϕT(�q,iω)M(q,iω)ϕ(−�q,−iω), (26)

in which 6 × 6 matrix M takes the block form
M = [ M1 M2

−M2 M3
], wherein (M1)jk = ρq2δi

j δik − ωAbiε
i
jk,

(M2)jk = − 1
2Bωδjk, (M3)jk = χδjk and we use q = |�q|.

This diagonalization in �q,iω space explains the δ function

implicitly used in Eq. (23). Following the functional
derivative approach [48,63], the correlator Gμν(q,iωn) is
given by −(M−1)μν(q,iωn). Certainly, all the 36 spin-wave
correlators contain a common denominator

Det(M) = 1

64
(−B2z2 + 4q2ρχ )(16χ2(−A2z2b2 + q4ρ2)

+B4z4 − 8B2q2ρχz2)

= −B6

64
(z−z1)(z+z1)(z − z2)(z+z2)(z−z3)(z + z3),

wherein

z1 = √
ρχ

2q

B
, z2 = 2Abχ + 2

√
A2b2χ2 + B2q2ρχ

B2
,

z3 = −2Abχ + 2
√

A2b2χ2 + B2q2ρχ

B2
(27)

and we denote b =
√

b2
x + b2

y + b2
z henceforth. Note that

we did substitution ω → −iz for the sake of analytic con-
tinuation iωn → ω + iδ to retarded Green’s functions. The
correlator matrix G(�q,z) defined in Eq. (24), which actually
depends solely on (|�q|,z), has a property that �G (�G) is
(anti-)symmetric when z ∈ R. Combining this with Eq. (25),
one can readily prove that Eq. (19) is reduced to

φαα(τ ) =
∑
�k�q

De(�k,�q,τ ) ×
{

1

m2
qαqα�DV V (q,τ )

−
(

qe

2m2

)2

εαβγ εανσ (2k + q)β(2k + q)σ�Dbγ bν
(q,τ )

− qe

2m2
εαβγ qα(2k+q)β�[

Dbγ V (q,τ )−DV bγ
(q,τ )

]}
,

(28)

which is consistent with φαα(τ ) ∈ R stated alongside Eq. (17)
in Sec. III A. Finally, we still need to carry out a Matsubara
frequency summation to get Gμν(q,τ ). This and a reconfirma-
tion of the symmetry (18), φαα(τ ) = φαα(β − τ ) are sketched
in Appendix C.

D. Numerical aspects

In our calculation, we set the physical constants of electron
mass m, elementary electric charge e, reduced Planck constant
�, and Boltzmann constant kB to unity, the strength of DMI
D to unity, the strength of EXI J to 10D, the SkX lattice
constant aSkX to 2π since we set the magnetic wave vector
k to unity, and the electron chemical potential μ to one
third of the energy at the boundary of the first Brillouin
zone of the parabolic electronic band. The noninteracting
spin-wave theory, Eq. (13), is in principle more suitable for
the long wavelength limit, i.e., when the magnon momentum
is small. A natural momentum cutoff for this continuum theory
comes from the SkX lattice structure, which is taken to be
q0 = π/(aSkX) in our calculation. Therefore we multiply an
exponential decay factor e− q

q0 to any spin-wave correlators.
In addition, due to this lattice nature, we also introduce
an auxiliary small enough constant to the spin magnitude,
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i.e., S =
√

S2
x + S2

y + S2
z + 0.052, in all calculations, unless

otherwise stated, so as to cut off the monopolar singularities.
The calculation of the Matsubara Green’s function φ(τ )

is reduced to a 6D integral of two 3-vectors �k,�q [see
Eq. (28)], for which one has to set the integration region.
Due to the complex magnetic structure and the subtly high
dimensionality, this integral appears to be tractable by neither
conventional numerical integration methods suitable for lower
dimensions nor well established Monte Carlo integration
methods like MISER or VEGAS [64,65]. We found and
employed a deterministic recursive algorithm [66–68], which
can also handle the integrable singularity at �q = �0 in spin-wave
correlators, to carry out the numerical integration in a 6D
hypercube [−pmax,pmax]6, wherein pmax, the numerically
determined momentum boundary up to which the integral
converges, monotonously increases with temperature as it
should do. As for the �b-�b correlation calculation in Sec. IV B
that reduces to a 1D integration of the magnitude of spin-wave
momentum �q, we used the CQUAD routine [65] to handle the
integrable singularity.

Practically, for each temperature, we calculated φ at N =
320 nonuniformly distributed τ ’s in [0,β/2] [c.f. symmetry
(18)], wherein more is located among small τ region since φ(τ )
decreases rapidly therein, however, becomes flatter and flatter
near τ = β/2. This is realized by the τ -generating formula
τi = c1i+c2i

2

c1(N−1)+c2(N−1)2
β

2 , i = 0,1,2, . . . ,N − 1, wherein we set
c1 = 40, c2 = 1.0. Resistivity error bars were determined in
the numerical analytic continuation algorithm. All integrations
were performed with relative error no larger than 10−4

(inconstant due to the implementation of the algorithm).

IV. MAIN RESULTS

A. Asymptotic behavior at low energy

The three positive roots in Eq. (27) of Det(M) = 0 actually
give us the magnon spectrum. When mz �= 0, z1, z2 give rise
to two gapless modes ω ∝ Dq, ω ∝ Jq2 when q is small
while z3 corresponds to an excitation with an energy gap
proportional to D2/J . We should owe the noteworthy Jq2

mode to the nonzero skyrmion number that brings about the
anomalous coupling, i.e., the φ-quadratic term in Eq. (13).
This coupling of different φ fields as canonical conjugate pairs
mixes the transverse and longitudinal phononlike lattice waves
of a SkX, partially corresponding to the rotational motion
of skyrmions. These three modes degenerate into the first
gapless mode ω ∝ Dq when mz = 0. Certainly, the gapless
ones correspond to Nambu-Goldstone bosons that in a way
restore the spontaneously broken symmetries.

1. Temperature dependence of resistivity ρ(T )

In the following, we estimate the relaxation time τ of con-
duction electron to attain the low-energy asymptotic behavior
of resistivity ρ(T ) by a Fermi-golden-rule-type analysis. When
the temperature is low, an energy shell of the scale kBT around
the Fermi surface is active for quasiparticle scattering and
only magnons of �ω(�q) � kBT can be absorbed or emitted.
One readily gains an order of magnitude estimation �ω(�q) ∼
kBT . The predominant magnon dispersion relation at small �q

takes the form ω(�q) = cqn: n = 1 (mz = 0), n = 2 (mz �= 0).
For the coupling with Nambu-Goldstone boson fields in a
SkX, the derivative form of the emergent Berry connection
renders the vertex |g�k,�k+�q |2 ∼ q2 for small momentum transfer
[69,70]. The relevant q-subsurface that massively contributes
to magnon exchange is of a linear dimension proportional to
T 1/n. Because of energy-momentum conservation �ω(�q) =
±(ξ�k+�q − ξ�q), the permissible q space is restrained from 3D
to 2D, giving rise to a relevant area proportional to T 2/n in a
2D q subsurface. In addition, the scattering rate responsible
for transport property should be τ−1

tr ∼ (1 − cos θ )τ−1 in the
Boltzmann equation, wherein θ is the angle between �k and �k +
�q, and 1 − cos θ = (q/kF )2/2 ∝ T 2/n for small-q scattering
near the Fermi surface. Therefore 1/τ ∼ T 2/n|g�k,�k+�q |2 ∼ T 4/n

and, hence, ρ ∼ 1/τtr ∼ T 2/n/τ ∼ T 6/n. Then we attain T 6

and T 3 dependencies of ρ(T ) for zero and nonzero mz, respec-
tively, controlled by applying an external magnetic field. Both
of the two cases satisfy the Landau criterion ωτ → ∞ when
ω → 0, which means the concept of electronic quasiparticle
remains valid although we have such anomalous exponents.
At very low temperature, in this metallic material, along
with possible residue resistivity due to quenched disorder, the
normal Fermi liquid contribution in proportion to T 2 arising
from particle-hole excitations presumably dominates, to which
our result had better be taken as a correction.

2. Frequency-dependent spin relaxation �χ (ω)

Because of the different low-energy magnon excitation
spectra, the imaginary part of the magnetic susceptibility
�χ (ω) at low-energy scale, corresponding to the 1/T1T

signal [71] in nuclear magnetic resonance (NMR) or muon
spin resonance (μSR) experiments, as well ought to behave
distinctly for mz �= 0 and mz = 0 cases. We can check by
calculating the temporal Matsubara correlators of spin moment
�S(�r,z),

χii(z) =
∫ β

0
dτeizτ (−1) 〈Tτ Si(�r,τ )Si(�r,0)〉, i = x,y,z,

(29)

and analytically continuate it to the retarded one. Since we
already have the analytic expressions of the Green’s functions
for spin waves (Sec. III C) responsible for the quantum and
thermal fluctuations in spin moments, we substitute ω + iδ in
the first place and in the same manner as Eq. (23), we have

�χii(ω + iδ)

=
∫

d �q
∑

�l

(
∂ϕμ

Si

)
(−�l)(∂ϕν

Si

)
(�l)�Gμν(�q + �n,ω + iδ). (30)

Here we do not involve any approximation since the �l sum-
mation contains finite terms for the static spin configuration.
We used the same multidimensional integration method in
Sec. III D to evaluate such a 3D integral with δ = 1 × 10−4

and |ω| < 0.0025 � D2/J for various magnetization mz’s.
We show several typical cases in Fig. 3, in which �χ (ω) is
always an odd function as expected. By extracting the power
law dependence on ω, one obtains a drastic change from
linear power (mz = 0) to some power quite near 0.5 (mz > 0)
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mz
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FIG. 3. Imaginary part of the magnetic susceptibility �χ (ω) for
various uniform magnetization mz values.

and a recovery to linearity when mz >
√

2. This is just what
one should expect from the distinct magnon spectra and the
destruction of SkX where the total skyrmion number vanishes
and equals the zero magnetization case.

We alternatively give a power law estimation valid for low-
energy scale. In the spin-wave correlators, we take 〈φαφα〉 for
it is in general larger than other. Neglecting high-order terms
of momentum �q and Matsubara frequency z, we obtain

〈φαφα〉(q,ω + iδ) ∼
{

q2

q4−(ω+iδ)2 ≈ q2

q4−ω2−2iδω mz �= 0
1

q2−(ω+iδ)2 ≈ 1
q2−ω2−2iδω mz = 0

after analytic continuation. We picturesquely approximate
the EEMF as being purely produced by the periodic array
of vibrating magnetic monopoles (mp), whereupon the
total spin configuration might crudely be regarded as
comprising many fluctuating spin textures �Smp around
singular points | �S| = 0 responsible for monopoles
(c.f. Sec. II B), �S(�r) = ∑

n
�Smp(�r − �Rn(t)), in which

temporal dependence of the position of nth singularity
�Rn(t) = �R(0)

n + �un(t) is reflected in its deviation �un(t)
away from the static position �R(0)

n . Neglecting directional
dependence, we use the ansatz �Smp(�r) ∼ �r , which is
analytically confirmed and whose Fourier transformation
is �Smp(�q) ∝ i∇�qδ(�q). On the other hand, �S(�q) =∑

n

∫
d�r �Smp(�r − �Rn(t))e−i�q·�r = ∑

n
�Smp(�q)e−i�q·( �R(0)

n +�un(t)) ≈∑
n e−i�q· �R(0)

n (1 − i�q · �un(t))�Smp(�q). The part relevant to

quantum fluctuation reads −i�Smp(�q)
∑

n e−i�q· �R(0)
n �q · �un(t) =

−i�q · �u�q(t)�Smp(�q). And we can conclude that the
asymtotic behavior in terms of q of the fluctuating
part in �S(�q) takes the form ∼q0 �φ�q(t), wherein we
replaced deviation �u by �φ. Therefore, assuming
isotropy for simplicity, the quantity is roughly given by
�χii(ω) ∼ ∫

dqq2 limδ→0 �〈φiφi〉(q,ω + iδ). We readily
obtain the asymptotic power-law dependencies at an energy
scale �D2/J as summarized in Table I, which confirms
our Green’s function calculation nicely. In summary, via
asymptotic analysis and Green’s function calculation, mutual
corroboration of our resistivity and magnetic susceptibility
studies is obtained.

TABLE I. Magnon spectra’s influence on resistivity and
susceptibility.

ρ(T ) �χ (ω)

mz = 0 T 6 ω

mz �= 0 T 3 √
ω

B. Magnetoresistivity ρ(mz) profile at low temperature

1. Comparison between theory and experiment

Following the method stated in Sec. III A, we carefully
studied resistivity’s variation with magnetization mz under
different temperatures of typical energy scales from D2/J

to J . They exhibited the same characteristic profile without
exception and resistivity increases with temperature since at
higher temperatures thermal fluctuations hence the excitation
of spin waves becomes larger, rendering the inelastic scattering
of electrons severer. However, for the high temperatures, the
calculation suffers from numerical instability for too small
βs while rather low temperatures call for much more time
consumption because the relevant momentum region has to
be swept more intricately. Therefore we henceforth focus
on the more interesting magnetoresistivity at some fixed
and reasonably small temperatures of the order of D2/J .
In Fig. 4, we show, for instance, the resistivities at low
temperatures of β = 10.0/D and β = 7.0/D as a function of
uniform magnetization mz, wherein ρii signifies longitudinal
dc resistivity along i axis. Firstly, numerically we confirmed
our expectation of anisotropy that ρxx = ρyy �= ρzz always
holds because the cubic symmetry is broken solely by the
application of magnetic field along z axis as reflected by
mz. Therefore we only show ρxx and ρzz. The characteristic
features comprise a conspicuous hump-dip-peak structure in
both of them and that ρzz is in gross larger than ρxx. A small
hump occurs near mz = 0.8, followed by a shallow dip slightly
deviated leftwards from mz = 1.0 and a drastic peak in the
vicinity of mz = 1.37. We compared a part of our theoretical
results with experimental data and discussed the consistency
in a separate paper [46]. The hump-dip-peak structure can
be clearly seen in the ρzz plots of low enough temperatures
(around 20 K), while the hump and dip are relatively obscured
in the ρxx plots. At these low temperatures, corresponding to
the evident hump-dip-peak structure, also one can notice that
ρxx is obviously lower than or about half the height of ρzz

around the hump-and-dip region, while the global largeness of
ρzz than ρxx holds as well.

2. Fluctuation of the emergent magnetic field and topological
phase transition of the monopole crystal

The key to the interpretation of the anisotropy lies in the fact
that the spin waves obstructing electrons’ free motion entail
fluctuations of the emergent �b field felt by the conduction
electrons. Indeed, the other contribution in an equal-time
calculation of correlation function (28) is at most 5% of
the �b-only part. Intuitively, this lies in the fact that the �b
field reflects the most singular monopolar field in contrast
to the V part that turns out to be a nonsingular potential
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mz mz

mz mz

FIG. 4. ρxx(mz) and ρzz(mz) plots with orange vertical error bars show similar but anisotropic hump-dip-peak profile. Red lines indicate
the dip around mz = 0.95 and the peak around mz = 1.37. Note the different scales of the vertical axis between the top panel (β = 10/D) and
the bottom panel (β = 7/D).

energy. Thus the correlation functions of fluctuating �b field
should considerably reflect the intensity of scattering. To
this end, we calculated the relevant real part of equal-time
�b-field correlators 〈bαbα〉 = ∫

dq�Dbαbα
(q,τ = 0) as shown

in Fig. 5(a). 〈bxbx〉 and 〈byby〉 coincide with each other and
exhibit a profile very similar to the magnetoresistivity while
〈bzbz〉 shows a more pronounced dip near mz = 1.0 and is
much smaller than 〈bxbx〉 in a wide region. Also the hump,
dip and peak positions coincide with ρ(mz) plots up to 5%
precision in mz. Thinking of Lorentz force, electrons traversing
in (emergent) magnetic fields are mainly deflected by the
fields perpendicular to their motion. Consequently, it is the
fluctuations of by,bz and bx,by that massively contribute to ρxx

and ρzz, respectively. Thus, by taking into account of different
contributions in Fig. 5(a), one can understand why in general
ρxx is smaller than ρzz and especially around the hump-and-dip

region we observe ρxx ≈ 1
2ρzz, which is grabbed pretty well

by the contrasting behaviors in 〈bαbα〉’s.
In order to understand the nature of the hump-dip-peak

structure occurring in both ρ and 〈bαbα〉, it is necessary to
inspect the ground-state spin configuration carefully, on which
the fluctuations in �b are largely dependent. We then scrutinize
the monopole crystal structure. In the light of skyrmion number
formula (6), one can calculate its spatial average along the ẑ

direction within a cubic magnetic unit cell [42],

N̄z
Sk ≡ 1

2π

∫ 2π

0
dzNz

Sk(z) =
{

− 4
π
η (0 � mz � 1),

4
π

(
η − π

2

)
(1 < mz �

√
2),

(31)

where η ≡ arcsin mz√
2
. This, along with Eq. (2), implies its

relation to the spatial average of EEMF N̄z
Sk = 2π 〈bz〉. In

bx bx

by by

bz bz

mz

b b

xxxxxxxxxxx xxxxxxxxxxxxxx

bbbbbbbbbbbbbbbbyyyyyyyyyyyyyyybbbb bbbbbbbbbbbbbbbbbyyyyyyyyyyyyyybbbb

bbbbbbbbbbbbbzzzzzbbb bbbbbbbbbbbzzzzzzbbb

(a) (b)

FIG. 5. (a) Equal time correlation functions of emergent �b field vary with respect to uniform magnetization mz. (b) N̄z
Sk (∝〈bz〉) vs mz.

Yellow: natural cutoff of monopolar singularity incorporated. Blue: analytic value without cutoff. Inset: monopole-antimonopole pair collision
process.
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Fig. 5(b), we show the N̄z
Sk(mz) plot of Eq. (31), which is

an analytic result for the ideal SkX with genuine monopoles
[see Eq. (8)], and another one with a cutoff of the singular
monopolar field (see Sec. III D), which is natural and necessary
for a lattice system. Also note that 〈bx〉 , 〈by〉 are always equal
to zero. The blue line’s profile recurs in the yellow one with two
cusps at mz = 1.0 and mz = √

2, presumably corresponding to
the extremum and the inflection point on the right in the yellow
line, smoothed and slightly shifted leftwards. Notably, the
average skyrmion number undergoes two inverse monotonous
variations with respect to increasing mz, reaching its extremum
around mz = 1 and tending to zero at zero or large enough
mz. We owe the decline near mz = √

2 to the destruction of
the SkX, above which Eq. (31) fails and residual monopoles
gradually become connected to form some helicoid state and
end in induced ferromagnetism at large enough mz.

The following analysis is for the ideal simple cubic
SkX/monopole crystal depicted in Figs. 1 and 2, i.e., the
blue line in Fig. 5(b), which ought to reflect the essential
features of a realistic one. There are four pairs of monopole and
antimonopole in a magnetic unit cell when 0 � mz <

√
2, i.e.,

four monopoles when mz < 1 (antimonopoles when mz > 1)
at (π

4 − η, 5π
4 − η, 7π

4 − η), ( 3π
4 + η, 3π

4 + η, 3π
4 − η), ( 7π

4 −
η,π

4 + η, 5π
4 − η),( 5π

4 + η, 7π
4 − η,π

4 − η) together with four
antimonopoles when mz < 1 (monopoles when mz > 1)
at (π

4 − η, 3π
4 + η, 5π

4 + η), ( 3π
4 + η, 5π

4 − η,π
4 + η), ( 5π

4 +
η,π

4 + η, 3π
4 + η),( 7π

4 − η, 7π
4 − η, 7π

4 + η). Dissimilar to or-
dinary Dirac monopole, in spite of the aforementioned charge
quantization, calculation shows that these (anti)monopoles
are neither isotropic nor homogeneous, i.e., exact r−2 di-
vergence of EEMF �b(�r) only holds in the vicinity of one
such (anti)monopole and the strength varies with direction.
As one can observe in Fig. 2, in a cubic unit cell, there
exist four monopoles and four antimonopoles. The salient
point is that as uniform magnetization traverses the mz = 1
point, any (anti)monopole can be viewed as belonging to
a monopole-antimonopole pair, which undergoes a collision
whose trajectory [Fig. 2 and inset of Fig. 5(b)] resembles
an elastic collision of two point masses. The monopole and
antimonopole coincide exactly when mz = 1. Moreover, the
r−2 divergence transforms to r−1 at this crucial point. How-
ever, as mz increases to

√
2, each monopole (antimonopole)

approaches another antimonopole (monopole) that is different
from the one once “collided” with and finally annihilates
altogether.

It is plausible to owe the minute shift of the dip (peak)
from mz = 1 (mz = √

2) in either ρ(mz) or 〈bα,bα〉 plots to
the two smoothed and leftwards shifted cusps in Fig. 5(a),
which actually originates from the monopole cutoff. And now
we can relate the dip to the monopole-antimonopole collision
motion at mz = 1. The fluctuation effect around this point is
expected to be relatively suppressed to a low level since the spin
texture just before and after the collision is quite similar to each
other, which can be notably altered by neither a slight increase
nor decrease in the magnetic field. Thus it is a mild, albeit
intriguing change rather than any phase transition. This can
also be roughly traced to the maximum in the skyrmion number
and its flatness in the proximity shown in Fig. 5(b). On the
other hand, the drastic peaks around mz = 1.37 are naturally

attributed to a phase transition of massive change in topology,
i.e., the destruction of the SkX or the monopole-antimonopole
pair annihilation in the monopole crystal occurring a bit below
mz = √

2, during which, the dramatic structural change in spin
configuration, especially the disappearance of singularities,
entails large fluctuations in �b.

We further comment on the topological aspect of this phase
transition. It is exactly the length-fixed (unit-norm) spin texture
�n, rather than the bare spin moment �S itself, that yields
the topological feature of the emergent �b field characterized
by the second homotopy group. Besides the strong Hund’s
rule coupling that makes the original length insignificant
in some sense, this length constraint should also be under-
stood as coming from the strong electron correlation herein,
which renders the variation in length hard since the double
occupation of relevant orbits is suppressed. Thus the topology
here manifests strong correlations. Furthermore, the ordi-
nary 2D triangular SkX [10], composed of three spirals
whose wave vectors �k1 = k(1,0,0), �k2 = k(− 1

2 ,
√

3
2 ,0), �k3 =

k(− 1
2 ,−

√
3

2 ,0) subtend π/3 angles with each other and no
singularity in �n at all, gives nonzero skyrmion number even
when one uses �S to calculate (6). This is because the spatial
integral extracts the zeroth Fourier component, which does
not vanish since �k1 + �k2 + �k3 = �0 is fulfilled. As for our 3D
SkX/monopole crystal, although �0 + �kα + (−�kα) = �0, the two
spatial derivatives make it zero in the end. Thus, in stark
contrast, the spatially averaged skyrmion number (31) vanishes
unless �n is used, singling out the singularity contribution from
the monopoles. Being not special at all from the point of view
of superposition of spin density waves, these singular points
indeed gain significance from the strong correlation generated
nontrivial topology. In this spirit, the peak is finally attributed
to such a nontrivial topological phase transition.

V. CONCLUDING REMARK

We have studied theoretically the novel magnetoresistance
in the three-dimensional topological spin texture composed
of magnetic monopoles and antimonopoles connected by the
skyrmion strings. This topological nature is the manifestation
of the strong correlation which leads to the saturated magnetic
moment with fixed length whose direction is defined as �n while
the superposition of the three helices �S with variable magnitude
exhibits trivial topology only. This nontrivial topology results
in the topological phase transition characterized by the onset
of finite skyrmion number associated with the creation of
monopole-antimonopole pairs as the uniform magnetization is
reduced. This phase transition is accompanied by the critical
fluctuation of the emergent magnetic field, which scatters the
conduction electrons and enhances the resistivity.

While it is always the most fundamental issue whether the
system of interest belongs to the weak correlation regime or
the strong one, it often remains an ambiguous and quantitative
problem and no sharp criterion can be found. The clear
difference in the topological nature between the weak and
the strong correlation limits discussed in this paper will
offer a qualitative criterion for this issue and the comparison
with the experiment on MnGe indicates that this material
corresponds to the strong correlation regime. This is consistent
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with the appearance of the three-dimensional spin texture in
the ground state, which requires enhanced magnetic moments
and associated spin-orbit interaction and spin anisotropy. It
is an intriguing issue to explore other consequences of this
topological phase transition. The ultrasonic absorption is
one possibility already reported [46] and will be discussed
elsewhere. For example, the spin wave dynamics near the
transition is an interesting issue but left for future studies.
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APPENDIX A: DERIVATION OF THE EFFECTIVE
HAMILTONIAN FOR ITINERANT ELECTRONS

To derive the effective model where electrons are cou-
pled to the U(1) gauge field, we firstly choose the spin

quantization axis oriented along the direction �n = �S/| �S| =
(sin θ cos φ, sin θ sin φ, cos θ ) of a local spin �S(�r,t). This is
done by a gauge transformation � = G� ′ satisfying

G†�n · �σG = σz,

wherein � ′ = (ψ1,ψ2)T is the transformed spinor field,
G(�r,t) = �d · �σ and

�d =
(

sin
θ

2
cos φ, sin

θ

2
sin φ, cos

θ

2

)
.

A redundant U(1) gauge factor eiχ(�r,t)σz (e−iχ(�r,t)σz ) can be
attached to G (� ′). The pure SU(2) gauge fields can be readily
read off from the covariant derivative

∂μ� = G(∂μ + G†∂μG)� ′,

which results in

Aa
μσa ≡ −i

�

qe
G†∂μG = �

qe
( �d × ∂μ

�d) · �σ , a = x,y,z.

Here we shortly use a 4D index μ = 0,1,2,3 for this SU(2)
gauge field. At this stage, we feed � ′ to Eq. (1):

Lele-spin = � ′†
(

i�∂0 + εF + i�G†∂0G + JH

2
Sσz

)
� ′ − �

2

2m
[∇� ′† · ∇� ′ + � ′†∇G† · ∇G� ′ + (∇� ′†G† · ∇G� ′ + H.c.)]

= ψ†
[

i�∂0 + εF + i�(G†∂0G)11 + JH

2
S(σz)11

]
ψ − �

2

2m
[∇ψ† · ∇ψ + ψ†(∇G† · ∇G)11ψ + (∇ψ†(G† · ∇G)11ψ + H.c.)]

= ψ†
[

i�∂0 + εF − qeA
z
0 + JH

2
S

]
ψ − �

2

2m

[
∇ψ† · ∇ψ + q2

e

�2
ψ†(| �Az|2 + | �Ax + i �Ay |2)ψ +

(
∇ψ† ·

(
−i

qe

�

�Az

)
ψ + H.c.

)]

= ψ†
[

i�∂0 − V (�r,t) + εF − qeA
z
0 + JH

2
S

]
ψ + 1

2m
( �̂p + qe �Az)ψ† · ( �̂p − qe �Az)ψ, (A1)

wherein we drop the ψ2 component in � ′ and rename ψ1 by
ψ to obtain the second equality and we also define

V ≡ �
2

8m
((∇θ )2 + sin2 θ (∇φ)2) = �

2

8m
(∇�n)2.

Now the emergent U(1) gauge field and concomitant elec-
tromagnetic minimal coupling manifest while the two off-
diagonal SU(2) fields �Ax, �Ay enter the potential term V

only. Henceforth, in the main text, we rename �Az by �a. We
then retain the significant �a and V terms in Eq. (A1) who
have nonzero static mean field values, and after Legendre
transformation, we finally attain the low-energy effective
Hamiltonian (4).

APPENDIX B: ACTION FOR SPIN HELICES

For a quantum spin �̂S = (Ŝx,Ŝy,Ŝz) defined without the �

factor, we have the commutation relation

[Ŝz,Ŝx ± iŜy] = ±(Ŝx ± iŜy).

Noticing the natural spherical coordinate representation of a

3-vector, we have �̂S = S �̂n = S(sin θ̂ cos φ̂, sin θ̂ sin φ̂, cos θ̂ )
where we promoted θ, φ to quantum operators. Then the
commutation relation can be cast in the form

[Ŝz,e
±iφ̂] = ±e±iφ̂ .

Adopting the ansatz [φ̂,Ŝz] = c-number, we readily get

[φ̂,Ŝz] = i.
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This means, there exits a canonical conjugate pair (φ̂, Ŝz) that
fully characterizes the algebra of a quantum spin, in the same
manner as (x̂,p̂) does for a particle’s orbital degree of freedom.
In the imaginary-time path integral formalism, the action of a
quantum spin is given by

S = −
∫ β

0
dτ 〈τ̇ |τ 〉 +

∫ β

0
dτ 〈τ |Ĥ |τ 〉

= iS� +
∫ β

0
dτH (�S(τ )), (B1)

wherein the first term is the spin Berry phase and

� =
∫ β

0
dτ (1 − cos θ )φ̇

is the solid angle subtended by the closed locus of �n. In order to
facilitate the description of helical spin textures, we promote

spin �̂S to a field for the sake of continuum limit and hence
two independent fields φz(�r,τ ) and Sz(�r,τ ). Then the partition
function and action in (d + 1) dimensions are given by

Z =
∫

DSz(�r,τ )Dφz(�r,τ )e−S

S =
∫ β

0
dτ

∫
dd�r(−i)Sz∂τφz +

∫ β

0
dτH (τ ), (B2)

wherein we licitly dropped the total τ differential in �.
For the multispiral case, we first variate the solid angle in

action Eq. (B1)

δ� =
∫ β

0
dτδ�n · (∂τ �n × �n). (B3)

If we write the spin orientation texture of Eq. (7) in an abstract
form �n = �n(�ki · �r + φi(�r,τ )), Eq. (B3) becomes

δ� =
∫ β

0
dτ

∫
dd�r δ�n · (∂τ �n × �n)

=
∫ β

0
dτ

∫
dd�r ∂ �n

∂φi

δφi ·
(

∂ �n
∂φj

∂τφj × �n
)

=
∫ β

0
dτ

∫
dd�r 1

kikj

�n ·
(

∂ �n
∂ri

× ∂ �n
∂rj

)
δφiφ̇j , (B4)

wherein ki = |�ki | and ri = �r · �ki/ki (Latin-letter indices)
should not be confused with their spatial components like
kα, rα (Greek-letter indices). Comparing this with the
skyrmion number (5), we realize the mixing between the φ

fields as a result of the nontrivial real-space spin Berry phase.

APPENDIX C: SOME PROOFS FOR THE SYMMETRY
OF THE j̇ - j̇ CORRELATION FUNCTION

The symmetry property (18) in Sec. III A can be proved as
follows:

e−β� 〈A(τ )B(0)〉 = TrAe−τKBe−(β−τ )K

= TrBe−(β−τ )KAe−τK

= TrBe−(β−τ )KAe−βKe(β−τ )K

= Tre−βKe(β−τ )KBe−(β−τ )KA

= e−β� 〈B(β − τ )A(0)〉 .

In Sec. III C, we obtained the final expression Eq. (28) of the
j̇ -j̇ correlator. Next, we have to carry out Matsubara frequency
summation with bosonic weight nB(z) + 1 to get Gμν(q,τ ),
which, via residue theorem, is transformed to a summation of

−Res[Gμν(q,z)]F(τ,z)

over the six simple poles ±z1,±z2,±z3 of Gμν(q,z), wherein

F(τ,z) = e−zτ (nB(z) + 1).

We can further define F±(τ,z) = F(τ,z) ± F(τ,−z),
whose parity under the substitution τ → β − τ of the
imaginary time is ∓1. Careful inspection of Gμν(q,z)
shows that �ResGμν(q,z)|zi (q) = −�ResGμν(q,z)|−zi (q) and
�ResGμν(q,z)|zi (q) = �ResGμν(q,z)|−zi (q) for i = 1,2,3,
whereupon �D(q,τ ) = ∑3

i=1 �ResD(q,z)|zi
F−(τ,zi) for any

Dbαbβ
,DV V and �D(q,τ ) = ∑3

i=1 �ResD(q,z)|zi
F+(τ,zi)

for any DbαV ,DV bα
follow. These properties, together with

the symmetry Eq. (22) of electron Green’s function De in
Sec. III B and the fact that summations on �k,�k + �q are on
the same footing, reassures us of the symmetry Eq. (18)
φαα(τ ) = φαα(β − τ ).

APPENDIX D: DERIVATION OF THE j̇ - j̇ CORRELATOR

We absorb the gauge charge qe into �a in Hamiltonian (4) and
define a gauge covariant velocity operator �v ≡ vi î = 1

m
( �p −

�a) together with its variant ←
v≡ vi î, which differs only in that it

acts to the left side. For simplicity, we omit hats on operators
henceforth except otherwise stated. Needless to make any
gauge choice, by deriving the continuity equation from the
time-dependent Schrödinger equation for Hamiltonian (4), we
can get the gauge covariant current density

�j = 1

2m
(ψ∗ �pψ−ψ �pψ∗)− 1

m
�aψ∗ψ = 1

2
(ψ∗�vψ + ψ �v∗ψ∗)

= 1

2
ψ∗(�v+ ←

v
∗
)ψ = Re(ψ∗�vψ).

Straightforward calculation gives

[vα,vβ] = [v̄∗
α,vβ] = 1

m2
[−(pαaβ) + (pβaα)].

Then we have

[vα,v2] = [v̄∗
α,v2] = −iqe

m3
εαβγ (−pβbγ + 2bβpγ ).

Similarly, we have

[vα,∂βni] = [v̄∗
α,∂βni] = 1

m
(pα∂βni),

and

[vα,V ] = [v̄∗
α,V ] = 1

8m

[
vα,

∑
i

(∇ni)
2

]
= 1

m
(pαV ).
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Therefore we can obtain the following concise expression:

[ �j,Heff] =
[

1

2
(�v+ ←

v
∗
),

1

2
m�v2 + V

]
= m

4
([v,v2]+ ←

v
∗

,v2]) + 1

m
( �pV )

= iqe

2m
(�v × �b − �b × �v) + 1

m
( �pV ) = iqe

2m2
(( �p × �b) − 2�b × �p + 2�b × �a) + 1

m
( �pV ). (D1)

Here we neglect the �b × �a term because we only concern about first order effect due to �b or �a. Consequently, only gauge invariant
quantities are present.

Now let us calculate the j̇ -j̇ correlator (16). Plugging Eq. (D1) into Eq. (16), we get

φαμ(τ ) =
(

iqe

2m2

)2

(−1) 〈 Tτ [( �p × �b) − 2�b × �p]α(τ )[( �p × �b) − 2�b × �p]μ(0)〉

+ iqe

2m2
(−1)

( 〈
Tτ [( �p × �b) − 2�b × �p]α(τ )

1

m
( �pV )μ(0)

〉
+

〈
Tτ

1

m
( �pV )α(τ )[( �p × �b) − 2�b × �p]μ(0)

〉 )

+ 1

2m2
(−1) 〈Tτ ( �pV )α(τ )( �pV )μ(0)〉 . (D2)

Now we promote all above to field operator representation by replacing the wave function ψ (∗)(�r) by ψ (†)(�r) = ∫
d�kψ

(∗)
�k (�r)c(†)

�k
wherein ψ

(∗)
�k (�r) is the eigenfunction of momentum �k and c

(†)
�k is the corresponding electron annihilation (creation) operator. Note

that here we neglect the spin degree of freedom of electrons since it is already incorporated via the construction of the EEMF
model (4). Then, using partial integration, for instance, we have∫

d�rψ†(�r)∂αV ψ(�r) =
∫

d�kd �q iqαV (�q,τ )c†�k+�q(τ )c�k(τ ),∫
d�rψ†(�r)∂βbγ ψ(�r) =

∫
d�kd �q iqβbγ (�q,τ )c†�k+�q(τ )c�k(τ ),∫

d�rψ†(�r)bβpγ (t)ψ(�r) =
∫

d�kd �q kγ bβ (�q,τ )c†�k+�q(τ )c�k(τ ).

We then calculate one correlation function as an example of various terms appearing in Eq. (D2):

−〈Tτ ( �p × �b)α(τ )( �pV )μ(0)〉 = −(−i)2 〈εαβγ ∂βbγ (τ )∂μV (0)〉
= εαβγ

∑
�k1 �q1 �k2 �q2

iq1β iq2μ 〈bγ (�q1,τ )D1(τ )V (�q2,0)D2(0)〉

= εαβγ

∑
�k1 �q1 �k2 �q2

iq1β iq2μ 〈bγ (�q1,τ )V (�q2,0)〉 〈D1(τ )D2(0)〉

= Yεαβγ

∑
�k�q

qβqμDbγ V (�q,τ )De(�k,�q,τ ), (D3)

wherein we define two Matsubara Green’s functions,

Dbγ V (�q,τ ) = −〈Tτ bγ (�q,τ )V (−�q,0)〉
for the fluctuations of EEMF bγ and potential V and

De(�k,�q,τ ) = −〈TτD1(τ )D2(0)〉
for electrons with D1(τ ) = c

†
�k1+�q1

(τ )c�k1
(τ ),D2(0) = c

†
�k2+�q2

(0)c�k2
(0). Four bosonic operators commute with each other in

the second equality. The aforesaid noninteracting approximation herein justifies the decoupling from the second to third
equality. The fourth equality follows from momentum conservation, i.e., the electron correlator yields �q1 = −�q2,�k2 = �k1 + �q1

(see Sec. III B). And similarly, we also define Dbαbβ
,DV bα

,DV V . Thus Eq. (D2) can be expressed as

φαμ(τ ) = 1

m2
(−1) 〈Tτ ( �pV )α(τ )( �pV )μ(0)〉 +

(
iqe

2m2

)2

(−1) 〈Tτ [( �p × �b) − 2�b × �p]α(τ )[( �p × �b) − 2�b × �p]μ(0)〉

+ iqe

2m2
(−1)

( 〈
Tτ [( �p × �b) − 2�b × �p]α(τ )

1

m
( �pV )μ(0)

〉
+

〈
Tτ

1

m
( �pV )α(τ )[( �p × �b) − 2�b × �p]μ(0)

〉 )

=
∑
�k�q

De(�k,�q,τ ) ×
{

1

m2
qαqμDV V (�q,τ ) +

(
qe

2m2

)2

εαβγ εμνσ [−qβqνDbγ bσ
(�q,τ ) + 4kγ (k + q)σDbβbν

(�q,τ )
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− 2qβ (k + q)σDbγ bν
(�q,τ ) + 2qνkγDbβbσ

(�q,τ )] + iqe

2m2
[εαβγ (qβqμDbγ V (�q,τ ) − 2kγ qμDbβV (�q,τ ))

+ εμνσ (qαqνDV bσ
(�q,τ ) + 2qα(k + q)σDV bν

(�q,τ ))]

}

=
∑
�k�q

De(�k,�q,τ ) ×
{

1

m2
qαqμDV V (�q,τ ) −

(
qe

2m2

)2

εαβγ εμνσ (2k + q)β(2k + q)σDbγ bν
(�q,τ )

+ iqe

2m2
εαβγ qα(2k + q)β[Dbγ V (�q,τ ) − DV bγ

(�q,τ )]m2

}
, (D4)

wherein the last equality, i.e., Eq. (19) in the main text, follows from some algebraic manipulations when α = μ.

[1] R. Rajaraman, Solitons and Instantons, Volume 15: An Intro-
duction to Solitons and Instantons in Quantum Field Theory
(North-Holland Personal Library), 1st ed. (North Holland,
Amsterdam, 1987).

[2] T.-K. Ng, Introduction to Classical and Quantum Field Theory,
1st ed. (Wiley-VCH, Weinheim, 2009).

[3] T. Skyrme, Nucl. Phys. 31, 556 (1962).
[4] D. C. Wright and N. D. Mermin, Rev. Mod. Phys. 61, 385 (1989).
[5] T.-L. Ho, Phys. Rev. Lett. 81, 742 (1998).
[6] T. Ohmi and K. Machida, J. Phys. Soc. Jpn. 67, 1822 (1998).
[7] S. L. Sondhi, A. Karlhede, S. A. Kivelson, and E. H. Rezayi,

Phys. Rev. B 47, 16419 (1993).
[8] A. N. Bogdanov and D. A. Yablonskii, JETP 95, 182 (1989).
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[22] F. Jonietz, S. Mühlbauer, C. Pfleiderer, A. Neubauer, W. Münzer,
A. Bauer, T. Adams, R. Georgii, P. Böni, R. A. Duine, K.
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[54] W. Götze and P. Wölfle, Phys. Rev. B 6, 1226 (1972).
[55] H. Mori, Prog. Theor. Phys. 33, 423 (1965).
[56] H. Mori, Prog. Theor. Phys. 34, 399 (1965).
[57] G. D. Mahan, Many-Particle Physics (Physics of Solids and

Liquids), 3rd ed. (Springer, New York, 2000).
[58] M. Jarrell and J. Gubernatis, Phys. Rep. 269, 133 (1996).
[59] A. S. Mishchenko, N. V. Prokof’ev, A. Sakamoto, and B. V.

Svistunov, Phys. Rev. B 62, 6317 (2000).
[60] A. S. Mishchenko, N. Nagaosa, G. De Filippis, A. de

Candia, and V. Cataudella, Phys. Rev. Lett. 114, 146401
(2015).

[61] A. S. Mishchenko, in Correlated Electrons: From Models to
Materials, edited by E. Pavarini, E. Koch, F. Anders, and M.
Jarrell (Forschungszentrum Julich, Julich, 2012).

[62] N. V. Prokof’ev and B. V. Svistunov, JETP Lett. 97, 649 (2013).
[63] N. Nagaosa, Quantum Field Theory in Condensed Matter

Physics (Theoretical and Mathematical Physics) (Springer,
Heidelberg, 1999).

[64] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
Numerical Recipes in C: The Art of Scientific Computing, Second
Edition, 2nd ed. (Cambridge University Press, Cambridge,
1992).

[65] GNU Scientific Library Reference Manual, edited by B. Gough,
3rd ed. (Network Theory Ltd., Bristol, 2009).

[66] A. Genz and A. Malik, J. Comput. Appl. Math. 6, 295 (1980).
[67] J. Berntsen, T. O. Espelid, and A. Genz, ACM Trans. Math.

Softw. 17, 437 (1991).
[68] S. G. Johnson, CUBATURE package (accessed Apr., 2015).
[69] H. Watanabe, S. A. Parameswaran, S. Raghu, and

A. Vishwanath, Phys. Rev. B 90, 045145 (2014).
[70] H. Watanabe and A. Vishwanath, Proc. Natl. Acad. Sci. USA

111, 16314 (2014).
[71] C. P. Slichter, Principles of Magnetic Resonance, Springer

Series in Solid-State Sciences, 3rd ed. (Springer, New York,
1996), Vol. 1.

174428-16

https://doi.org/10.1038/ncomms11622
https://doi.org/10.1038/ncomms11622
https://doi.org/10.1038/ncomms11622
https://doi.org/10.1038/ncomms11622
https://doi.org/10.1038/nnano.2013.243
https://doi.org/10.1038/nnano.2013.243
https://doi.org/10.1038/nnano.2013.243
https://doi.org/10.1038/nnano.2013.243
https://doi.org/10.1016/0022-3697(58)90076-3
https://doi.org/10.1016/0022-3697(58)90076-3
https://doi.org/10.1016/0022-3697(58)90076-3
https://doi.org/10.1016/0022-3697(58)90076-3
https://doi.org/10.1103/PhysRev.120.91
https://doi.org/10.1103/PhysRev.120.91
https://doi.org/10.1103/PhysRev.120.91
https://doi.org/10.1103/PhysRev.120.91
https://doi.org/10.1103/PhysRevLett.44.1538
https://doi.org/10.1103/PhysRevLett.44.1538
https://doi.org/10.1103/PhysRevLett.44.1538
https://doi.org/10.1103/PhysRevLett.44.1538
https://doi.org/10.1103/PhysRevD.12.3845
https://doi.org/10.1103/PhysRevD.12.3845
https://doi.org/10.1103/PhysRevD.12.3845
https://doi.org/10.1103/PhysRevD.12.3845
https://doi.org/10.1103/PhysRevB.50.17917
https://doi.org/10.1103/PhysRevB.50.17917
https://doi.org/10.1103/PhysRevB.50.17917
https://doi.org/10.1103/PhysRevB.50.17917
https://doi.org/10.1103/PhysRevB.6.1226
https://doi.org/10.1103/PhysRevB.6.1226
https://doi.org/10.1103/PhysRevB.6.1226
https://doi.org/10.1103/PhysRevB.6.1226
https://doi.org/10.1143/PTP.33.423
https://doi.org/10.1143/PTP.33.423
https://doi.org/10.1143/PTP.33.423
https://doi.org/10.1143/PTP.33.423
https://doi.org/10.1143/PTP.34.399
https://doi.org/10.1143/PTP.34.399
https://doi.org/10.1143/PTP.34.399
https://doi.org/10.1143/PTP.34.399
https://doi.org/10.1016/0370-1573(95)00074-7
https://doi.org/10.1016/0370-1573(95)00074-7
https://doi.org/10.1016/0370-1573(95)00074-7
https://doi.org/10.1016/0370-1573(95)00074-7
https://doi.org/10.1103/PhysRevB.62.6317
https://doi.org/10.1103/PhysRevB.62.6317
https://doi.org/10.1103/PhysRevB.62.6317
https://doi.org/10.1103/PhysRevB.62.6317
https://doi.org/10.1103/PhysRevLett.114.146401
https://doi.org/10.1103/PhysRevLett.114.146401
https://doi.org/10.1103/PhysRevLett.114.146401
https://doi.org/10.1103/PhysRevLett.114.146401
https://doi.org/10.1134/S002136401311009X
https://doi.org/10.1134/S002136401311009X
https://doi.org/10.1134/S002136401311009X
https://doi.org/10.1134/S002136401311009X
https://doi.org/10.1016/0771-050X(80)90039-X
https://doi.org/10.1016/0771-050X(80)90039-X
https://doi.org/10.1016/0771-050X(80)90039-X
https://doi.org/10.1016/0771-050X(80)90039-X
https://doi.org/10.1145/210232.210233
https://doi.org/10.1145/210232.210233
https://doi.org/10.1145/210232.210233
https://doi.org/10.1145/210232.210233
https://doi.org/10.1103/PhysRevB.90.045145
https://doi.org/10.1103/PhysRevB.90.045145
https://doi.org/10.1103/PhysRevB.90.045145
https://doi.org/10.1103/PhysRevB.90.045145
https://doi.org/10.1073/pnas.1415592111
https://doi.org/10.1073/pnas.1415592111
https://doi.org/10.1073/pnas.1415592111
https://doi.org/10.1073/pnas.1415592111



