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Semiclassical ground-state phase diagram and multi-Q phase of a spin-orbit-coupled
model on triangular lattice
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Motivated by recent experiments on the frustrated quantum magnetic compound YbMgGaO4, we study
an effective spin model on triangular lattice taking into account the effects of the spin-orbit coupling. We
determine the classical ground-state phase diagram of this model, which includes a 120◦ Néel and two collinear
antiferromagnetic phases. In the vicinity of the phase boundary between the Néel and collinear phases, we
identify three intermediate noncollinear antiferromagnetic phases. In each of them the magnetic moments are
ordered at multiple incommensurate wave vector Q values. We further study the effects of quantum fluctuations
in this model via a linear spin-wave theory. We find that the spin excitation gap of the noncollinear multi-Q
antiferromagnetic states is vanishingly small. We also find that multi-Q states are most fragile against quantum
fluctuations, and hence most unstable toward spin liquid phases.
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I. INTRODUCTION

Frustrated magnets can hold exotic states of matter, such
as a quantum spin liquid (QSL) in which the spin rotational
and time-reversal symmetries are preserved down to the
temperature of absolute zero [1]. In the search of QSL, the
triangular antiferromagnet is one of the most well studied
frustrated systems. By disturbing the 120◦ long-range antifer-
romagnetic order of the Heisenberg model with certain tuning
parameters, various QSL states on triangular lattice have
been proposed [2–8]. Alternatively, strong spin-orbit coupling
(SOC) may introduce non-Heisenberg exchange couplings and
is found to be an effective way in stabilizing some exotic
quantum states, including a QSL, of frustrated magnets [9–12].
Recently, a new triangular antiferromagnet with strong SOC,
YbMgGaO4, has been proposed to be a candidate compound of
gapless QSL [13,14]. In this material, it is shown that the strong
SOC gives rise to large spin and spatial entangled anisotropic
interactions, which are suggested to be crucial in stabilizing a
QSL ground state [13,14].

An effective model Hamiltonian for YbMgGaO4 has been
proposed in Ref. [14]. It contains strong anisotropic non-
Heisenberg interactions due to SOC. However, little is known
for this model. Even the classical phase diagram of this model
has not been well studied. Additionally, it is still unclear
whether these anisotropic non-Heisenberg terms in the model
would provide sufficiently strong quantum fluctuations to
stabilize a QSL, and how such a state would be relevant to
the likely QSL phase observed in experiments. To address
these questions, we investigate the ground-state phase diagram
and spin excitations of this model. We determine the classical
ground-state phase diagram by numerical optimization and
a modified Luttinger-Tisza (LT) method. The phase diagram
contains a 120◦ Néel antiferromagnetic (AFM) phase, two
collinear AFM phases, and three novel incommensurate
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noncollinear AFM phases. In these incommensurate phases,
the magnetic moments are ordered at multiple Q-wave
vectors. By using the linear spin-wave theory, we find that
all these classical magnetic phases survive in the presence
of weak quantum fluctuations. We further calculate the
spin-wave excitations in the noncollinear multi-Q phase and
find the spin excitation gap of this state is vanishingly
small. When the quantum fluctuations are strong, we find
that a spin liquid phase can be stabilized in the phase
diagram.

The paper is organized as follows. In Sec. II, we present
the general effective spin model and outline the methods we
used to study its ground state and spin excitations. In Sec. III,
we determine the classical ground-state phase diagram of
this model by using a numerical zero-temperature energy
optimization with the aid of a modified LT method, and
show that noncollinear multi-Q phases are stabilized in certain
regimes of the phase diagram. In Sec. IV, we show the spin
excitations within the linear spin-wave calculations and the
correction of the quantum fluctuations to the ground-state
phase diagram. We further discuss the implication of the model
and our results to the YbMgGaO4 in Sec. V. Finally, we draw
conclusions in Sec. VI.

II. MODEL AND METHODS

In YbMgGaO4, because of the strong spin-orbit coupling
(SOC), the electrons of the Yb3+ ion are in a state of total
angular momentum J = 7/2. The crystal field then splits it
into a series of Kramers doublets. At low temperatures, only
the lowest Kramers doublet is relevant and the system can
be described by a model of interacting effective spin-1/2
magnetic moments. Due to the separation between the two
Yb layers by the nonmagnetic Mg/GaO5 layers, the interlayer
superexchange couplings between the effective moments are
very weak. We then neglect this interlayer exchange cou-
plings, and define the model on a two-dimensional triangular
lattice.
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FIG. 1. (a) Definition of the coordinate system and the nearest-
neighbor bonds. (b), (c) Spin patterns of the Néel and the
collinear phases. (d) The classical ground-state phase diagram of the
Heisenberg-120◦-compass model. Here the collinear and the multi-Q
phases correspond to the collinear II and multi-Q II phases in the
generic phase diagram of Fig. 2(a) at Jz± = 0, respectively.

The Hamiltonian of this model reads [14]

H =
∑
〈ij〉

[
JzzS

z
i S

z
j + J±(S+

i S−
j + S−

i S+
j )

+ J±±(γijS
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−
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j )

− iJz±
2

(
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−
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j + 〈i ↔ j 〉)]. (1)

Here Si refers to the effective spin-1/2 magnetic moment, and
Jzz, J±, J±±, and Jz± are exchange couplings between nearest-
neighbor moments. In this paper, we are interested in the case
Jzz > 0, which is relevant to the YbMgGaO4 compound [14].
The coefficients γij are defined on each bond of the triangular
lattice, which take the value 1, ei 2π

3 and e−i 2π
3 for ±a1, ±a2

and ±a3 nearest-neighbor bond directions, respectively [see
Fig. 1(a)]. The SOC couples the rotational symmetry in the
spin space to that in the real-space. This lowers the symmetry
of the model from SU(2) to D3d . Therefore, the model is
non-Heisenberg, with spin and spatial anisotropic exchange
couplings described by J ’s and γij . Due to the effect of SOC,
this Hamiltonian has only discrete time-reversal and D3d point
group symmetries, but in the classical limit the ground state
may still contain some emergent continuous symmetry, as will
be discussed in detail below.

A powerful way to investigate the classical ground-
state configuration of spin models is the Luttinger-Tisza
method [15]. In this approach, one first performs the Fourier
transformation for Sj ,

Sj =
√

1

N

∑
k

Ske
ik·Rj , (2)

where the sum is taken in the first Brillouin zone. The
Hamiltonian in Eq. (1) can then be rewritten to a tensor form

H =
∑

k

S∗
k · Jk · Sk, (3)

where Jk is a real symmetric tensor, taking into account the
symmetry of the model, and S∗

k refers to the complex conjugate

of Sk. It is then diagonalized to be

H =
∑
kμ

ωkμS∗
kμSkμ, (4)

where Skμ = Sk · êkμ, ωkμ and êkμ are corresponding eigenval-
ues and orthogonal eigenvectors of the tensor Jk. Meanwhile,
the local constraint of the constant spin magnitude at an
arbitrary site j ,

Sj · Sj = S2, (5)

yields the equivalent hard constraints on Sk for any wave
vector q:

1

N

∑
k

Sk · Sq−k = S2δqG, (6)

where G is a reciprocal lattice vector. Also, since Sj are real
vectors, each Fourier component must satisfy the relation

S∗
k = S−k. (7)

In the original LT method, one minimizes the energy in Eq. (4)
under a released global constraint

1

N

∑
k

|Sk|2 = S2, (8)

i.e., by taking q = G in Eq. (6). In this way, the produced spin
configuration of the energy minimum in general has a single-Q
structure. If this spin configuration turns out to satisfy Eq. (7)
and all local constraints in Eq. (6) as well, it must be the true
physical ground state.

This method works well for conventional Heisenberg or
XXZ models in some parameter regimes. However, it has
been shown that the LT method failed to produce the physical
ground state of the Hamiltonian in Eq. (1) because those hard
constraints in Eq. (6) cannot be satisfied simultaneously [16].
The deep underlying reason is that the tensor Jk of the
Hamiltonian contains only very low discrete symmetries,
which will be discussed in Appendix A. The failure of the
LT method for this spin-orbit-coupled system suggests that
the ground-state spin configuration may have a multiple-Q
structure.

To obtain the classical ground state of this model, we
perform numerical zero-temperature energy minimization of
spin configurations in large clusters. We find that besides
the ordinary 120◦ Néel and collinear phases discovered in
the previous work, in the vicinity of the Néel-collinear phase
boundary, there exists three new phases in which spins are
ordered at multiple incommensurate Q points. We denote these
phases as multi-Q phases. These multi-Q phase properties
and the subtle phase transition to collinear phase can be well
produced in a modified LT approach, by taking into account
all the constraints in Eq. (6). More details of this method are
given in Appendix A.

To study the spin excitations and the effects of quantum
fluctuations to the classical ground states, we apply a linear
spin-wave theory [17–19] in real space by performing a local
rotation on each spin Si . The dynamical structure factor are
calculated using the SPINW codecs [17]. Details of the spin-
wave approach is given in Appendix B.
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III. CLASSICAL GROUND-STATE PHASE DIAGRAM
AND THE MULTI-Q STATE

A. Phase diagram

The model in Eq. (1) has a rich phase diagram even for
classical spins. Let us first take a look at a special case where
Jzz = 2J± − 2J±± ≡ JH and Jz± = 0. In this case, Eq. (1)
reduces to a Heisenberg-120◦-compass model [10]

H =
∑
〈ij〉

(
JH Si · Sj + JcS

a
i Sa

j

)
, (9)

where Jc = 4J±± and a refers to the direction of the bond 〈ij 〉.
To simplify the discussion, let us define α = Jc/(JH + Jc).

It is known that in the Heisenberg limit (α = 0), the ground
state of this model is the 120◦ Néel AFM state [20,21], in
which all spins lie in the plane of the lattice. While in the
compass limit (α = 1), the ground state is a collinear AFM
state [22], in which all spins order ferromagnetically along
one bond direction but antiferromagnetically along the other
two, see Figs. 1(b) and 1(c).

Knowing the phases in the two limiting cases, we explore
the ground state of a general coupling α by performing
numerical optimizations on the total energy in large clusters
(up to about 103 spins). We find that the Néel state remains
to be the classical ground state for α < 0.40. Although the
Hamiltonian has only discrete symmetry when the system is
away from the Heisenberg point at α = 0, in the Néel state
the spin configurations still have degenerate energies under
a global rotation in the spin space with an arbitrary angle φ

about the z axis. This is an example of an emergent U (1)
symmetry of the ground state. As α further increases, we
find an incommensurate noncollinear AFM ground state for
0.40 < α < 0.44, as shown in Fig. 1(d). This state is denoted
as the multi-Q state as the magnetic moments are ordered
at multiple wave vectors in this state. Here we describe the
phase diagram, and defer the discussion on the nature of the
multi-Q state to Sec. III B. At α ≈ 0.40, we find a first-order
transition between the Néel AFM and the multi-Q state, while
at α ≈ 0.44, the system undergoes a second-order transition
from the multi-Q phase to the collinear AFM states.

Compared to the Heisenberg-120◦-compass model, the full
model in Eq. (1) contains additional anisotropic terms. In our
paper, the ratio J±/Jzz is fixed to be 0.9, an input from the
experimental results of the YbMgGaO4 single crystals [14].
However, the phase diagram is similar for other J±/Jzz > 0.5
values. Our numerical energy optimization result reveals that
the ground-state phase diagram still contains Néel, collinear,
and multi-Q phases. The emergent U (1) symmetry of the Néel
phase also exists for this model. The multi-Q phase lies in
between the collinear and the Néel AFM phases, as shown
in Fig. 2(a). When Jz± = 0, the ground states (so do the
Hamiltonians) with opposite signs of J±± are connected by
90◦ rotation in spin space about the z axis [16].

For Jz± 	= 0, the two collinear phases with opposite J±±
values are no longer equivalent. In the collinear I phase spins
are still aligned along one bond direction while in the collinear
II phase spins are acquired to have finite z components so as to
further minimize the energy. Two multi-Q states at either side
of the Néel phase (which we denote as multi-Q I and multi-Q II
phases, respectively) are not equivalent either. Nor do they lie

FIG. 2. (a) Classical ground-state phase diagram of the generic
spin-orbit model defined in Eq. (1). Thicker and thinner curves refer
to first- and second-order transitions, respectively. Colored regimes
labeled as I, II, III correspond to the three multi-Q phases discussed
in the text. (b), (c) Sketches of real-space spin patterns of the collinear
states I and II. The Néel phase is as same as the one shown in Fig. 1(b).

in the xy plane. However, both of them are coplanar. Also, we
find that the multi-Q I to collinear I and multi-Q II to collinear
II transitions are second order, while all other transitions are
first order. Néel AFM state can be stabilized at a vast range of
J±± and Jz± values.

When |Jz±| is large, another multi-Q phase (denoted as
multi-Q III phase) is stabilized on the upper side of the Néel
regime, where the spins are noncoplanar, and have relatively
large deviations from the spin directions in the collinear II
order. The phase transitions between the multi-Q III phase to
others are first order.

B. Nature of the multi-Q phase

One can easily check that the collinear state satisfy local
constraints in Eq. (6), and for sufficiently large |J±±|, the
minimum of the eigenvalue of the tensor Jk is located at the
wave vector Q0 = M(0,2π/

√
3), the ordering wave vector of

the collinear state. According to the LT method, the collinear
state must be the exact ground state of the model in this regime.
However, when |J±±| is decreased towards the boundary
between the collinear and the Néel states, the minimum of
the eigenvalues of the tensor Jk is away from the wave vector
Q0, while the energy minimum produced by the LT method
no longer satisfy all local constraints. Therefore, in this |J±±|
regime, the LT method fails to give the correct ground-state
configuration of the system.

By taking the numerical energy minimization analysis,
we find that as |J±±| decreases so that the minimum of
the eigenvalues of Jk deviates from Q0, the ground state of
the system does not immediately change. The collinear state
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FIG. 3. Color maps of the static structure factor and the sketches of the real-space spin pattern (projected to the xoy plane) of the coplanar
multi-Q I state [in (a), (b)] and the noncoplanar multi-Q III state [in (c), (d)]. Here the model parameters we take for the multi-Q I state are
J±± = −0.2165, Jz± = 0, and for the multi-Q III state are J±± = −0.19, Jz± = 0.85.

remains to be the ground state at this stage. However, as |J±±|
further decreases, depending on the ratio of |Jz±/Jzz|, the
system may enter the intermediate multi-Q state via either a
first- or a second-order transition, as shown in Fig. 2(a). We
find that these multi-Q phases can be well reconstructed by
introducing finite Fourier components SQ’s on multiple Q’s
based on the original collinear states so as to minimize the
energy on the premise of satisfying local constraints (8). The
detail of the process is given in the Appendix A.

Here we summarize the key results. We find that in multi-Q
states the magnetic moments are ordered at multiple wave
vectors, as shown in Figs. 3(a) and 3(c). The spin structure
factor shows a primary peak at wave vector Q0, the ordering
wave vector of the collinear state. Two secondary peaks are
present at incommensurate wave vectors ±Q1 along some high
symmetry line. For multi-Q I/II states, their spectral weights
of ±Q1 are in general about one order of magnitude smaller
than the primary one. Other finite peaks of the structure factor,
for example, the peaks Q2 = [2Q1 − Q0], are also present, as
shown in Figs. 3(a) and 3(c). Here the symbol [k] represents
the equivalent k point in the first Brillouin zone. In fact,
we reveal that in order to satisfy all local constraints, in
principle one needs to introduce finite Fourier components
for an infinite series of wave vectors Qn. But their spectral
weights decay exponentially with increasing n. For example,
here the spectral weight of the peak at Q2 is already about
several orders of magnitudes smaller than that of the primary
peak. In practice, for multi-Q I and II phases, the peaks at
Qn for n > 2 can hardly be detected and have no physical
significance. Therefore, as a good approximation of the ground

state, the series can be truncated at n = 2. For multi-Q III phase
where the weight of Q2 and Q1 have been comparable to Q0,
since the spectra weight of Qn for n > 2 is still small, our
perturbative construction are still qualitatively valid to produce
the spin configurations.

Sketches of the real-space spin pattern of the multi-Q state
are shown in Figs. 3(b) and 3(d). Take the multi-Q I state
for example: In a simple case Jz± = 0, the spins all lie in
the plane of the lattice. The spin pattern exhibits additional
modulation on top of the collinear order, but does not form any
spiral order. By taking the above truncation, the angle φi that
a spin at site Ri deviates from the horizontal direction can be
expressed as φi = sin−1[A sin(Q1 · Ri + φ0)] and φi = π −
sin−1[A sin(Q1 · Ri + φ0)] for alternating rows, respectively,
where A = 2|SQ1 |

N
√

S
, defined as the modulation amplitude, and

φ0 is an arbitrary angle related to the phase of the Fourier
component SQ1 . Here A scales the deviation to the collinear
order. If we take A as a variational parameter and calculate
the energy of the spin pattern defined by φi[A], we see (from
Fig. 4) that the energy of the collinear state (corresponding to
A = 0) is a local maximum while the energy of the multi-Q
state (at A ≈ 0.35) is the minimum. This verifies that the multi-
Q state, instead of the collinear one, is the ground state of the
model in the vicinity of the Néel-collinear phase boundary of
the phase diagram.

For multi-Q I and II states, despite the relatively large devia-
tion of multi-Q states from the collinear ones, we can see from
Fig. 4 that their energy differences are generally negligibly
small. While in the large |Jz±| regime, the noncoplanar spin
pattern of the multi-Q III state can save much more energy
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FIG. 4. Energy versus modulation amplitude A for the variational
configuration {φi[A]}. Here we take the J±± = −0.226 and Jz± = 0.
Dashed line shows the energy of the Néel state.

than the nearby collinear state. Also, we can see that around
the multi-Q energy minimum, there exists large numbers
of competing states with different modulation amplitude A,
wave vector q and phase φ0 close in similar energy scale.
These competing states are essential in destabilizing magnetic
moments when thermal or quantum fluctuations are switched
on.

IV. EFFECTS OF QUANTUM FLUCTUATIONS AND SPIN
EXCITATIONS IN THE MULTI-Q PHASE

To investigate the spin excitations of the above antifer-
romagnetic phases, we perform a linear spin-wave (LSW)
analysis. The detail of the LSW method is given in Appendix B.

For the Néel, multi-Q, and collinear states, the correspond-
ing dynamical structure factors, defined as,

Sμν(k,ω) = 1

2πN

∑
ij

∫ +∞

−∞
dt eik·(ri−rj )−iωt

〈
S

μ

i Sν
j (t)

〉
, (10)

are shown in Fig. 5 for comparison. In the Néel state,
the spin excitation is gapless at M point of the Brillouin
zone, as a consequence of the emergent U (1) symmetry
mentioned in Sec. III. As for the collinear state, the spin
excitations are gapped, reflecting the discrete symmetry of
the model. The minimum of the spin-wave dispersion is
located at an incommensurate wave vector Q1 along some
high symmetry line. For moderate Jz±, when approaching to
the collinear-to-multi-Q phase boundary by decreasing |J±±|,
the spin gap at Q1 drops to zero. Further decreasing |J±±|, the
spin-wave dispersion of the collinear state near Q1 becomes
imaginary, indicating that the incommensurate magnon is
condensed and the multi-Q phase develops. This is consistent
with the collinear-to-multi-Q transition in the classical phase
diagram. We also claim that along the collinear-II-to-multi-Q-
II boundary in Fig. 2(a), collinear II phase is destabilized at
different Q1 points for different parameters, which makes the
boundary zigzag.

Spin-wave excitation spectra of the multi-Q I/II states look
similar to those of the collinear phase in a large portion of
the Brillouin zone. However, due to its complicated real-space
spin structure, the spectra of the multi-Q state contain multiple

Γ Γ

Γ

FIG. 5. Dynamical structure factors of Néel, multi-Q, and
collinear phases, respectively. The parameters for the Néel and
multi-Q I phase are J±± = −0.2165, Jz± = 0, for the multi-Q III
phase are J±± = −0.19, Jz± = 0.85, and for the collinear phase are
J±± = −0.28, Jz± = 0. The thickness of the color in each curve is
proportional to the magnon spectral weight.

shadow branches, which are most significantly seen near the M
point. For multi-Q III states, the spectra seem further scattered
due to the large modulations of incommensurate components.
Particularly in certain intermediate energy regime, sharp
spin-wave dispersion may not be well observed due to
the various shadow bands of magnons that are associated
with the complicated real-space spin pattern of the multi-Q
phase. Surprisingly, we find the spin gap of multi-Q I/II
and large portion of multi-Q III states is vanishingly small.
This suggests the existence of an (approximate) emergent
U (1) symmetry. While this is not as obvious as in the Néel
phase, we can understand it in an intuitive way. Taking
the Fourier component SQ1 as a variational parameter, near
the energy minimum (corresponding to the multi-Q ground
state), the energy depends weakly on the phase of SQ1 . The
excitations along the phase direction (transverse direction to
the amplitude excitations) are then almost gapless, and develop
an approximate Goldstone mode at Q1. Nevertheless in some
multi-Q III regime (close to the Néel AFM phase), the spin
excitation gap can be sizable.

The LSW approach also allows us to examine the effects
of quantum fluctuations to the classical phases. Here we show
the 1/S vs J±±/Jzz phase diagram in LSW theory at zero
temperature in Fig. 6. For the Jz± = 0 case, Néel, collinear,
and multi-Q states all survive weak to moderate quantum
fluctuations. However, the ordered magnetic moments are
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FIG. 6. Phase diagrams taking into account the quantum correction from linear spin-wave theory for (a) Jz± = 0 and (b) Jz± = 0.9. Thinner
solid curves correspond to second-order transitions and thicker solid curves correspond to first-order transitions. The dashed line marks S = 1/2.
In (b), the gray shading shows the regime where the Néel state is a metastable state (which has energy higher than other ordered states).

reduced by quantum fluctuations. For Néel and collinear states,
the moment reduction is uniform for each sublattice, while
in multi-Q states, due to the complicated magnetic structure,
the moment reduction is inhomogeneous, and depends on the
neighboring environment of a spin in each sublattice. In each
phase the (largest) ordered moment reduction is found to be
�0.16, so that the magnetic orders are robust even for S = 1/2.
In our calculation a spin liquid phase can be stabilized for
1/S � 7 where quantum fluctuations are sufficiently strong (as
the spin-wave approach only works in a magnetically ordered
state, it is unable to distinguish between a spin liquid and a
valence-bond solid, so the regime labeled as “SL” in Fig. 6
actually refers to a nonmagnetic regime where a spin liquid
can possibly stabilized).

When |Jz±| is large, the phase diagram changes quite a bit,
as shown in Fig 6(b). We find that all phases become further
unstable against quantum fluctuations. Particularly for the Néel
state, the ordered moment reduction can be as large as 0.3, and
the Néel state becomes a metastable state because its energy is
higher than that of other ordered states. In the multi-Q regimes,
the ordered moment reduction can also be as large as ∼0.3,
and the multi-Q phase is completely unstable to a spin liquid
at 1/S ≈ 3. In this sense, the system in this parameter regime
is very close to a spin liquid phase for S = 1/2.

V. DISCUSSIONS

Magnetic order at multiple Q vectors usually exists in sys-
tems with a complex lattice structure or competing exchange
interactions such that the magnetic unit cell contains more than
one magnetic ion [23]. The multi-Q phase we studied in this
paper exists in simple triangular lattice with nearest-neighbor
exchange couplings. It is induced by the anisotropic J±±
interaction of the model, which introduces strong competition
between the 120◦ Néel and the collinear phases. At low
temperatures, the system attempts to order at both wave vectors
Q0 and QN, and the multi-Q state is eventually stabilized
as a compromise. In fact, the existence of a large number
of energetically competing configurations around the multi-Q
ground state is evidenced by the shallow energy profile around
the minimum in Fig. 4. The competition around the multi-Q
ground state gives rise to enhanced thermal fluctuations, which
can suppress the ordering temperature of the multi-Q state.

This well explains the reduction of the ordering temperature
near the boundary between the collinear and the Néel AFM
states observed in a recent Monte Carlo study [16], though the
multi-Q order was not explicitly resolved due to the limited
size of the Monte Carlo simulations.

Our LSW result shows that in some large Jz± regime the
system can be close to a QSL state for S = 1/2. It should be
noted that in cases where S is small and quantum fluctuations
are strong, magnon interactions may significantly renormalize
the system and the LSW approach may no longer be a good ap-
proximation. Therefore, it is possible that magnon interactions
may further suppress the magnetic order and drive the system
towards a spin liquid. A recent study using self-consistent
spin-wave theory finds enhanced quantum fluctuations in the
Néel state once the magnon-magnon interaction is taken into
account. It is found that the Néel state becomes unstable in
a large parameter regime of the phase diagram. It would be
interesting to further explore whether some other magnetic
ordered state (the multi-Q phase, for instance) or a genuine
QSL is stabilized in this regime.

Besides the magnon-magnon interactions, another mech-
anism leading to a QSL comes from the quantum tunneling
effects among different classical configurations with similar
energies. This mechanism is beyond any spin-wave theory
since the spin-wave theory only takes into account fluctuations
above one classically ordered state. For multi-Q states, there
exist large numbers of competing states with similar energies
(Néel, and other multi-Q configurations with different q and
Sq). Quantum tunneling among these states may significantly
destabilize the magnetic order. On the other hand, the classical
configuration of a multi-Q state in the real space looks much
more disordered than other conventional magnetic phases,
such as the Néel and collinear AFM states. Such a disordered
feature also shows up at the linear spin-wave level: the ordered
moment reduction is inhomogeneous. This makes the multi-Q
state most susceptible to quantum fluctuations: once the 1/S

increases to the value such that the ordered moments of
some sites drop down to zero, the multi-Q state is distorted.
However, the corresponding quantum disordered state cannot
be described within the framework of spin-wave approaches.
So it is possible that other types of strong quantum fluctuations
drive the system to a QSL via destabilizing the multi-Q
phase. In other words, the phase diagram of the system under
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strong quantum fluctuations remains to be explored using
other analytical/numerical approaches, such as perturbative
Green’s function theory, Schwinger boson theory, density
matrix renormalization group (DMRG), etc. They not only
help determine the ground-state phase diagram, but may also
provide valuable information on the elementary excitations of
the corresponding phase.

For the YbMgGaO4 compound, the seemingly divergent
magnetic susceptibility and the power-law behavior of the spe-
cific heat CV ∼ T 2/3 suggest absence of long-range magnetic
order. Assuming that the system can be described by the model
Hamiltonian in Eq. (1), the superexchange couplings of the
system have been recently estimated from ESR measurements.
It is found that |J±±/Jzz| ∼ 0.16 and |Jz±/Jzz| ∼ 0.04 [14].
These parameters suggest that the system is very close to the
boundary between the Néel and the multi-Q phase regime,
as shown in Fig. 2(a). Moreover, recent neutron scattering
studies [24,25] have revealed enhanced collinear-type spin
correlations near the M point of the Brillouin zone. This
suggests that the ground state of the system is close to a multi-Q
state, consistent well with our finding that a spin liquid is most
likely to emerge from a multi-Q state under strong quantum
fluctuations. However, according to our LSW calculation, the
ground state is still magnetically ordered even for S = 1/2.
To reconcile the theory with the experimental findings, on the
one hand, other experimental measurements, such as neutron
and/or Raman scattering should be done to confirm or give
better estimates of the exchange couplings [24]. It would
be especially important to accurately determine the value of the
Jz± coupling, because our results show that a spin liquid state
would be much easier to be stabilized with a large Jz± value. On
the other hand, other perturbations beyond the present model
but likely existed in the real materials, such as the longer
ranged exchange couplings, the ring exchange interaction, or
disorder, may further disturb the long-range magnetic order
and drive the system toward a spin liquid [2–6,24].

In our model, the multi-Q states lie in large areas in
the parameter space of the phase diagram. One may be
curious whether similar states exist in other spin-orbit-coupled
system. Indeed, similar incommensurate ordered states have
been found in a number of theoretical models, such as the
Heisenberg-Kitaev model on triangular lattice, and Heisen-
berg models on hyperhoneycomb and hyperkagome lattices
[26–31]. There is also some experimental evidence of these
exotic magnetic states [32,33]. However, to our knowledge, the
microscopic origin and physical properties of these states are
not yet well addressed. Given the similar magnetic structures
of these incommensurate states to the multi-Q, they likely
share the same origin: as the symmetry is lowered by the
SOC-induced anisotropic interactions, the spin wave of the
original commensurate magnetic ground state (denoted as
the parent state) is destabilized, and the magnons condense
at a nearby incommensurate wave vector. For example, in
the Kitaev-Heisenberg model on the triangular lattice, once
a finite Kitaev exchange coupling is added to the antiferro-
magnetic Heisenberg interaction, the Néel AFM ground state
immediately becomes unstable towards an incommensurate
Z2 vortex crystal [26,27]. This is clearly seen in the spin-wave
spectrum of the Néel AFM state, which is destabilized around
M point of the Brillouin zone as soon as the system goes

away from the Heisenberg point. Interestingly, the nature of
the incommensurate state is closely connected to the properties
of its parent state. Still, in the Heisenberg-Kitaev model, the
parent state of the Z2 vortex crystal state is the three-sublattice
120◦ Néel AFM state, in which the order parameter space
is SO(3), and Z2 point topological defects are allowed [34].
Therefore, the topologically nontrivial Z2 vortex crystal is
stabilized when its parent state is disturbed [26,27]. However,
for the model Hamiltonian in Eq. (1), the parent state of
the multi-Q states are the two-sublattice collinear states.
Therefore, the multi-Q states are topologically trivial. It would
be interesting to further explore whether such a scenario
generally holds for the magnetism in systems with strong
spin-orbit coupling.

VI. CONCLUSIONS

In summary, we investigate the semiclassical phase diagram
of an effective spin model describing the strongly spin-orbit-
coupled local moments in YbMgGaO4. We identify three
novel incommensurate multi-Q antiferromagnetic states in the
classical phase diagram of this model. We study the spin
excitations of these states using a linear spin-wave theory,
and find that the spin excitation spectra contain multiple
branches, and the excitation gap can be vanishingly small.
With the linear spin-wave theory, we further study the effects
of quantum fluctuations on the classical magnetic orders. We
find that all these phases are stable under weak to moderate
quantum fluctuations and multi-Q states are most susceptible
to quantum fluctuations. A spin liquid phase is stabilized for
sufficiently strong quantum fluctuations when the anisotropic
exchange coupling |Jz±| is large.
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APPENDIX A: CONSTRUCTION OF MULTI-Q STATES
WITHIN A MODIFIED LUTTINGER-TISZA APPROACH

States produced by the original LT method have a single-
Q structure, which means only at most two out of all the
Fourier components S±Q is nonzero. One can easily check
that, if the ordering wave vector Q is time reversal invariant
(Q = −Q + G, where G is a reciprocal lattice vector), the
state produced by the LT method is collinear. It satisfies all
local constraints (6) and hence is the physical ground state. On
the other hand, if Q is not time-reversal invariant, by taking
q = 2Q in Eq. (6), we have SQ · SQ = 0. This implies that at
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least two components in SQ must be nonzero. Therefore, if
the minimum of the eigenvalue of the tensor JQ happens to be
at least twofold degenerate, the LT method can still produce
the physical ground state. However, the state necessarily has a
helical spin structure, but if the minimum of the eigenvalue of
the tensor JQ is nondegenerate, the LT method cannot produce
the physical ground state satisfying (6).

Generally speaking, for a system with a continuous U (1)
symmetry, in some cases the minimum of the eigenvalue of
JQ is at least twofold degenerate protected by symmetry, then
LT method still works. However, the model we studied here
has only discrete symmetries, so the LT method immediately
fails once the minimum of the eigenvalue of JQ deviates Q0.
In this case, the ground state contains a multi-Q structure as
determined by numerical optimization. Though these multi-Q
ground states can never be constructed within the original LT
approach, they can still be well reconstructed in a modified
version of the LT method by introducing finite Fourier
components SQ on multiple Q values based on the collinear
states so as to minimize the energy on the premise of satisfying
all local constraints (8).

For a pure collinear state there is only one nonzero
component SQ0 where Q0 is the collinear ordering wave vector.
If there exists a (non-time-reversal-invariant) Q1 point where
the eigenstate of JQ1 is lower than the minimal eigenvalue of
JQ0 , the system may tend to partially condense at ±Q1 points
in order to gain more energy. By taking q = 2Q1 in (6) one
introduces Q2 = [2Q1 − Q0] component to satisfy the local
constraint, i.e., SQ1 · SQ1 + SQ0 · SQ2 + SQ2 · SQ0 = 0.

From the above equation we can see that the magnitude
of SQ2 is about the order of |SQ1 |2/|SQ0 |. In general, the
eigenvalues of JQ2 are much larger than the minimal ones
of JQ0 and JQ1 , so |SQ2 | is very small in order not to cause
too much energy penalty. Following the same procedure, by
taking q = 2Q2 in (6) we will need to introduce finite Q3

component in order to satisfy the constraint. In principle, this
way of construction will generate an infinite series of finite
SQn

that satisfy (6) rigorously. However, their magnitudes
decay exponentially with n, and for n > 2, these components
are in practice too small to be detected (no greater than
the order of |SQ1 |3/|SQ0 |2) and hence have no physical
significance. Therefore, we can safely truncate the series at
n = 2. Although the truncated configuration {SQ0 ,S±Q1 ,S±Q2}
does not exactly satisfy (6) strictly, it already provides a very
good approximation to the multi-Q configurations.

The ground state is therefore obtained by minimizing

E{SQ0 ,SQ1 ,SQ2} = S∗
Q0

· JQ0 · SQ0 + 2S∗
Q1

· JQ1 · SQ1

+ 2S∗
Q2

· JQ2 · SQ2 (A1)

within constraints [by taking q = G, Q0 + Q1, 2Q1, Q1 + Q2

in (6) respectively]

|SQ0 |2 + |SQ1 |2 + |SQ2 |2 = NS2 (A2)

SQ0 · SQ1 + SQ1 · S−Q2 = 0 (A3)

SQ1 · SQ1 + 2SQ0 · SQ2 = 0 (A4)

SQ1 · SQ2 = 0. (A5)

We can see from (A3) and (A5) that SQ1 ⊥ SQ2 and approx-
imately SQ1 ⊥ SQ0 (as the magnitude of S−Q2 is generally
much smaller than SQ0 ). By taking the energy optimization,
we find that the energy minimum of multi-Q I/II phases satisfy
SQ2 ‖ SQ0 , i.e., all SQ’s are in the same plane. So multi-Q I/II
states are coplanar, with all spins lying in the plane spanned
by SQ0 and SQ1 . However, this relation does not hold for the
multi-Q III phase, which implies that multi-Q III states are not
coplanar. Also, we find that the phase of SQ1 , which is relevant
to the spin configuration, does not affect the energy within our
approximation.

APPENDIX B: LINEAR SPIN-WAVE METHOD

Here we present our linear spin wave method, which
applies to a general antiferromagnetic state. Suppose the
configuration can be divided into M sublattices. This method
apparently works for Néel (three sublattices) and collinear (two
sublattices) order. For multi-Q states one can still apply such
method if we carefully choose the model parameters and the
cluster size such that all ordering wave vectors well matches
the reciprocal lattice of the cluster.

The method is performed as follows [17–19]. Label the
classical ground-state configuration to be {nns}, where nns is
the unit vector pointing direction of the spin at the site i labeled
by magnetic unit cell index n and sublattice index s. Since the
spin direction only depends on the sublattice index s, i.e.,
nns = ns . For each ns one can always find a rotation operation
Rs ∈ SO(3) that rotates ẑ to ns direction, i.e., ns = Rsẑ.

Introduce Sns = Rs S̃ns , so each S̃ns has classical configura-
tion ferromagnetically aligned along the ẑ direction. Then we
perform H-P transformation for S̃ns .

S̃z
ns = S − b†nsbns

S̃+
ns =

√
2S − b

†
nsbnsbns

S̃−
ns = b†ns

√
2S − b

†
nsbns . (B1)

At the LSW level, Sns can be expressed as

Sns =
√

S

2
(u∗

s bns + usb
†
ns) + vs(S − b†nsbns), (B2)

where u
μ
s = R

μx
s + iR

μy
s , and v

μ
s = R

μz
s for μ = x,y,z com-

ponents.
Take Eq. (B2) into the Hamiltonian (1), after Fourier

transformation

bns =
√

M

N

∑
k∈MBZ

bkse
iRns ·k, (B3)

the Hamiltonian can be rewritten in terms of boson bilinears
at the LSW level

H = E0 + 1

2

∑
k∈MBZ

[	(k)†h(k)	(k) − 1

2
tr h(k)], (B4)

where E0 is the classical energy, 	(k) = [bk1, . . . ,

bkM,b
†
−k1, . . . ,b

†
−kM ]T , h(k) is a 2M × 2M Hermitian matrix,

and MBZ stands for the first magnetic Brillouin zone.
H can be diagonalized via Bogoliubov

transformation 	(k) = Tk
(k) where 
(k) = [βk1, . . . ,
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βkM,β
†
−k1, . . . ,β

†
−kM ]T and Tk ∈ SU (M,M). Here the symbol

SU (M,M) stands for indefinite special unitary group, which
is defined as [35]

SU (M,M) = {g ∈ C2M×2M : g†�g = �, det g = 1}, (B5)

where � is the metric tensor

� =
(

IM×M

−IM×M

)
. (B6)

It is straightforward to prove that such transformation pre-
serves the bosonic commutation rules.

The diagonalized Hamiltonian reads

H = E0 + 1

2

∑
k∈MBZ

[

(k)†E(k)
(k) − 1

2
tr h(k)

]

= E0 + Er +
∑

k∈MBZ

ωksβ
†
ksβks , (B7)

where E(k) = diag[ωk1, . . . ,ωkM,−ω−k1, . . . ,−ω−kM ] and
Er = 1

4N

∑
k∈MBZ tr [E(k) − h(k)] is the zero-point energy

correction due to quantum fluctuations.
Following Ref. [17], at zero temperature, the ordered

moment reduction for the sth sublattice ms reads

ms = M

N

〈∑
n

b†nsbns

〉
= M

N

∑
k∈MBZ

(TkT
†

k )s+M,s+M (B8)

and the dynamical structure factors take the form

Sμν(k,ω) = S

2N

M∑
s=1

[T †
k Uμ(Uν)†Tk]s+M,s+Mδ(ω − ωks),

(B9)

where Uμ = [uμ

1 , . . . ,u
μ

M,(uμ

1 )∗, . . . ,(uμ

M )∗]T are vectors in
2M dimension.
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