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Finite-Q magnetic instabilities are rather common in frustrated magnets. When the magnetic susceptibility is
maximized at multiple-Q vectors related through lattice symmetry operations, exotic magnetic orderings such
as vortex and skyrmion crystals may follow. Here, we show that a periodic array of nonmagnetic impurities,
which can be realized through charge density wave ordering, leads to a rich phase diagram featuring a plethora of
chiral magnetic phases, especially when there is a simple relation between the reciprocal vectors of the impurity
superlattice and the magnetic Q vectors. We also investigate the effect of changing the impurity concentration or
disturbing the impurity array with small quenched randomness. Alternative realizations of impurity superlattices
are briefly discussed.
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I. INTRODUCTION

The emergence of nonzero bulk spin-scalar chirality, known
as chiral order, has drawn considerable interest in condensed
matter physics. Various consequences of a chiral order have
been discussed in different fields ranging from superconduc-
tivity to Mott insulators [1–4]. An attractive area of research
is generated by potential realizations of chiral liquid states,
i.e., states that exhibit chiral order in absence of magnetic
order [2,5–7]. Another attractive aspect of chiral states is their
potential for inducing nontrivial topological phenomena, such
as topological anomalous Hall effect for electrons coupled
to a chiral spin state through the Berry phase mechanism
[8–13]. The very large fictitious magnetic field produced by
this mechanism (103–104 T) may bring major advances for
spintronics applications [14]. It is then important to understand
the physical mechanisms to stabilize the chiral order.

Noncoplanar magnetic orderings are accompanied by a
nonzero local scalar chirality 〈χjkl〉 = 〈Sj · (Sk × Sl)〉 �= 0,
where j, k, and l are three neighboring lattice sites. Recent
theoretical studies on frustrated Kondo lattice models have un-
veiled a general mechanism for stabilizing noncoplanar mag-
netic orderings in itinerant magnets comprising conduction
electrons coupled to localized magnetic moments [13,15–20].
The mechanism relies on the generation of four- and higher-
spin interaction terms, which appear upon expanding in the
small Kondo interaction beyond the Ruderman-Kittel-Kasuya-
Yosida (RKKY) level [17–19]. These multispin interactions
are relatively weak in strongly coupled Mott insulators. In
terms of a Hubbard model description with hopping amplitude
t and onsite Coulomb potential U , four-spin interactions are
of order O(t4/U 3), while two-spin interactions are O(t2/U ).
Consequently, chiral spin textures are less common in Mott
insulators with isotropic exchange interactions. Indeed, these
systems usually exhibit a conical spiral order with zero net
scalar chirality even in an external magnetic field, otherwise
either collinear or coplanar orderings. However, recent theo-
retical studies in both classical [21–25] and quantum [26–28]

frustrated spin systems have shown that the interplay between
geometric frustration, thermal [21] or quantum fluctuations
[26–28], magnetic anisotropy [22–25,29–31], and long-range
(dipolar) interactions [32–34], can stabilize a plethora of
multiple-Q spin textures in Mott insulators, some of which
have net scalar spin chirality. In this context, it is worth
mentioning a recent experimental confirmation of a triple-Q
vortex crystal in the scandium thiospinel MnSc2S4 induced by
a magnetic field, where geometric frustration and anisotropy
seem to play the key role [35].

In this paper, we demonstrate that frustrated Mott insulators
coupled to a superlattice of nonmagnetic impurities can
generate chiral states in the presence of an external magnetic
field. In contrast to Ref. [36], where we have shown that
a single nonmagnetic impurity nucleates a magnetic vortex
over a finite range of magnetic field values above the bulk
saturation field Hsat, here we focus on the effects of a periodic
array of nonmagnetic impurities below the saturation field.
A crucial observation is that the local saturation field HI

sat
around an impurity can be higher than Hsat in frustrated
magnets with competing ferromagnetic and antiferromagnetic
interactions. Given that a single impurity nucleates a magnetic
vortex around it for Hsat < H < HI

sat, it is natural to ask
about the effect of an array of impurities when H < Hsat.
It is known that nonmagnetic impurities tend to reorient the
surrounding spins into a less collinear fashion by inducing
an effective biquadratic interaction (Sj · Sk)2 with a positive
(hence antiferroquadrupolar) coupling constant [37–40]. This
rather general observation provides an alternative motivation
for studying the magnetic effects of periodic, and nearly
periodic, arrays of impurities.

Motivated by these observations, we focus on the low-
temperature (T ) physics of a classical spin model. An
important prerequisite is to include competing ferromagnetic
and antiferromagnetic exchange interactions so that the Fourier
transform J (q) has multiple degenerate minima Q1,Q2, . . .

connected by lattice symmetry transformations. The ordered
array of nonmagnetic impurities may be realized in a
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hole- or electron-doped system with sufficiently strong off-site
Coulomb interactions so that a charge density wave (CDW)
order leads to an array of holes or doubly occupied sites. For
instance, certain high-Tc superconductors and related materials
are known to have a CDW of holes at a hole concentration
x = 1

8 (Refs. [41,42]). Other possible realizations will be
discussed later.

The rest of the paper is organized as follows. In Sec. II,
we present our model, outline our Monte Carlo (MC) method,
and list the observables that we evaluate. In Sec. III, we show
the temperature (T )-magnetic field (H ) phase diagram for
a perfectly periodic array of nonmagnetic impurities and a
simple relation between the superlattice reciprocal unit vectors
and the Q vectors (a preliminary account of the discussion in
Sec. III A was presented in Ref. [43]). A plethora of multiple-Q
phases are obtained from our MC simulations. In Sec. IV,
we provide a variational analysis that explains all of the
numerically obtained phases close to T = 0. In Sec. V, we
discuss the effects of changing the impurity concentration or
introducing small quenched randomness to the impurity lattice.
Section VI includes a discussion of potential realizations of
periodic arrays of nonmagnetic impurities.

II. MODEL

A. Model

We consider a two-dimensional classical J1-J3 triangular-
lattice Heisenberg magnet in a magnetic field with nonmag-
netic impurities. In the absence of impurities, the Hamiltonian
is

Hpure = J1

∑
〈j,l〉

Sj · Sl + J3

∑
〈〈j,l〉〉

Sj · Sl − H
∑

j

Sz
j . (1)

In order to realize Hsat < HI
sat, we adopt ferromagnetic nearest-

neighbor (NN) exchange J1 < 0 and antiferromagnetic third-
NN exchange J3 > 0. Note that the qualitative features derived
from the J1-J3 model, such as Hsat < HI

sat and the presence of
more than one symmetry related ordering wave vectors [see
Eq. (4)], are expected to hold for a broad class of frustrated
Heisenberg magnets. Sj represents a classical spin located at
the site j with |Sj | = 1. The thermodynamic phase diagram
of this model Hamiltonian includes a magnetic-field-induced
finite-temperature skyrmion crystal phase [21,23–25] for

J3/|J1| > Jc
3 /|J1| = 1.0256(53). (2)

The skyrmion crystal is a state with spontaneously broken chi-
ral symmetry, corresponding to the superposition of harmonic
waves with sixfold-degenerate incommensurate wave vectors
±Qν (ν = 1–3). These are the wave vectors that minimize the
Fourier transform of the exchange interaction

J (q) =
∑

1�j�3

(J1 cos q · ej + J3 cos 2q · ej ). (3)

Here, e1 = x̂, e2 = −x̂/2 + √
3ŷ/2, and e3 = −e1 − e2. The

incommensurate minima emanate from the � point (Lifshitz

transition) for J3/|J1| > 1
4 ,

±Q1 = ±Qx̂,

±Q2 = ±Q(−x̂/2 +
√

3ŷ/2), (4)

±Q3 = ±Q(−x̂/2 −
√

3ŷ/2),

with

Q = 2 arccos

[
1

4

(
1 +

√
1 − 2J1

J3

)]
, (5)

where the lattice spacing is a = a−1 = 1 in our convention.
Thus, according to Eqs. (2) and (5), the skyrmion crystal
phase is only stable for Q/(2π ) > Qc/(2π ) = 0.2623(3).
For |J1|/4 < J3 � J c

3 , J (q) resembles the bottom of a wine
bottle near the � point, with a weaker C6 anisotropy as the
system approaches the Lifshitz transition point J3 = |J1|/4.
In this regime, the phase diagram comprises only the high-
temperature paramagnetic phase and the single-Q conical
spiral phase, both of which have no net scalar spin chirality
[25].

We will first consider the effect of a periodic array of non-
magnetic impurities forming a perfect triangular superlattice.
The primitive reciprocal superlattice vectors are

K± = 2π

aimp
(1,±1/

√
3), (6)

where aimp is the impurity superlattice constant. The impurities
are introduced in the Hamiltonian by replacing

Sj → pj Sj , (7)

where pj = 0 (1) for a nonmagnetic impurity (magnetic) site.
This amounts to introducing the impurity contribution to the
Hamiltonian Himp = HJ

imp + HH
imp, so that

H = Hpure + HJ
imp + HH

imp, (8)

with

HJ
imp = −

∑
j

(1 − pj )
∑

η

Jj,ηSj · Sj+η,

(9)
HH

imp = H
∑

j

(1 − pj )Sz
j .

Here, η is the index of the coordination vectors and the different
notation Jj,η = J1,J3 for the exchange coupling is associated
with the ηth coordination vector at each site j . After presenting
phase diagrams for periodic arrays of impurities (Sec. III), we
will introduce a small randomness in the impurity locations
around the superlattice sites (Sec. V B).

B. Monte Carlo method

We perform classical MC simulations of our spin Hamil-
tonian H given in Eq. (8) for several impurity configurations
to be specified below. Our simulations are carried out with
the standard Metropolis local updates supplemented with the
over-relaxation method [44]. The lattice has N = L2 sites
(including impurity sites) with L = 48, 64, 72, 80, and 96
and we impose the periodic boundary conditions in both
directions. We first perform simulated annealing for 105–106
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MC sweeps (MCS) to find low-energy configuration, which
is then followed by equilibration steps and a subsequent
sampling process of 105–107 MCS at the target temperature.
The statistical errors are estimated from 5–64 independent
runs.

We calculate the specific heat C, the uniform magnetic
susceptibility dM/dH , and the spin and the chirality structure
factors. The spin structure factor Sαα

s (q) (α = x,y,z) is given
by

Sαα
s (q) = 1

N

∑
j,l

〈
Sα

j Sα
l

〉
eiq·(rj −rl ),

(10)
S⊥

s (q) = Sxx
s (q) + Syy

s (q).

We define the chirality structure factor Sμ
χ (q) for the upward

and downward triangles (μ = u,d, respectively) as

Sμ
χ (q) = 1

N

∑
R,R′∈μ

〈χRχR′ 〉eiq·(R−R′), (11)

where R,R′ run over sites of the specified sublattice, μ = u,d,
of the dual honeycomb lattice. χR = Sj · (Sk × Sl) is the spin
scalar chirality associated with a triangle centered at R, where
j,k,l are the sites aligned counterclockwise on the triangle.
We also introduce the following notations for the total scalar
chirality associated with the up (χu) and the down (χd )
triangles

χμ = 1

N

∑
R∈μ

χR for μ = u,d, (12)

and their sum

χ tot = χu + χd, (13)

which is the total scalar chirality.

III. PERIODIC ARRAY OF IMPURITIES

We start our discussion with the case where magnetic
impurities form a perfect triangular superlattice. We first
require commensurability between the superlattice reciprocal
vectors K± and ±Q1�ν�3, which is expected to enhance the
constructive interference between the impurity superlattice and
the spin texture (we will relax this condition later). For the
sake of concreteness, we fix J3/|J1| = 1/(4 − 2

√
2) ≈ 0.854

unless otherwise specified, which corresponds to Q/(2π ) = 1
4

according to Eq. (5). Given that J3 < Jc
3 , the phase diagram

in absence of impurities only includes the single-Q conical
spiral state shown in Fig. 2(b). Such a state is not chiral
because χu and χd cancel each other. For nonzero H , this
quasi-long-range ordered state completely breaks the C6

symmetry of H because of the associated bond ordering,
whereas the C6 symmetry is broken down to C3 for H = 0
as there is a continuous symmetry operation that can change
the sign of the vector chirality. In both cases, our results are
consistent with the single-step first-order transition found for
the zero-field J1-J3 model with classical XY and Heisenberg
spins in Refs. [45–47], where the symmetry is O(2) and O(3),
respectively, corresponding to the cases with and without the
magnetic field in the present consideration.

As described in the Introduction, the nonmagnetic impuri-
ties in a frustrated magnet with competing ferromagnetic and

FIG. 1. Schematic picture for a local configuration in a magnetic
field around a nonmagnetic impurity (at the center). The straight solid
(dashed) lines represent the remaining (removed) ferromagnetic ex-
change J1 interactions. The arc lines represent the antiferromagnetic
exchange J3.

antiferromagnetic exchanges make the local saturation field for
the surrounding spins larger than the bulk value (HI

sat > Hsat).
This is so because the nearest-neighbor spins of the non-
magnetic impurity feel a molecular field, whose component
parallel to the applied field is lower than the average for other
spins. This effect is of course present for any value of the
external field: the spins that surround a nonmagnetic impurity
have a lower magnetic susceptibility because the impurity
removes the ferromagnetic (J1) bonds connecting them to the
missing spin (Fig. 1). Because the field inducing the z spin
component for these spins is smaller than the average, their
xy component becomes larger at low energies. Moreover, we
can anticipate that the resulting local spin configuration near
each impurity is likely to be a vortex as in the case with
Hsat < H < HI

sat [36] because of the competition between J1

and J3 for the six spins surrounding the impurity (Fig. 1).
The rest of the spins have to accommodate their configu-
ration to the local “boundary condition” imposed by each
impurity.

Below, we consider two representative cases where the
superlattice constant for the periodic impurities is aimp = 8 and
4. They correspond to simple relations between the superlattice
reciprocal vectors and the Q vectors, namely, K+ + K− = Q1

and K+ + K− = 2Q1, respectively. We will demonstrate that
such a commensurate impurity superlattice produces a drastic
change of the magnetic phase diagram. Our finite-size scaling
analysis to characterize the phases is summarized in Appendix.

A. Case with aimp = 8

The configuration of impurities is shown in the inset of
Fig. 2(a). The impurities are separated by aimp = 8 sites along
the lattice principal directions. This superlattice spacing is
exactly twice as large as 2π/Q = 4.

Figure 2(a) shows the T -H phase diagram obtained with
our MC simulations, which features eight different phases
other than the paramagnetic state (Table I). The phase
boundaries are determined by analyzing the structure factors
in Eqs. (10) and (11) (Figs. 3 and 4) and the peak in the
uniform magnetic susceptibility [Fig. 2(d)] as a function of
H . Notably, many phases are multiple-Q states that support
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FIG. 2. (a) Phase diagram for a perfect periodic array of impurities (aimp = 8) with J3/|J1| ≈ 0.854 (Q = 2π/4). The inset shows the
impurity superlattice. (b) Phase diagram of Hpure. (c) T dependence of the net scalar chirality at H/J3 = 0.18, (d) magnetization curve and its
H derivative at T/J3 = 0.05, and (e) H dependence of (χ tot)2 at T/J3 = 0.05, for the model including a periodic array of impurities. (f), (g)
T dependence of the specific heat at (f) H/J3 = 3.6 and (g) H/J3 = 0.9.

long-wavelength modulation of local scalar chirality (chirality
wave), which is not necessarily single-Qχ but some of them
are actually of the multiple-Qχ type (our convention is to use
QM and Qχ , respectively, when it is necessary to make an
unambiguous distinction between spin and chirality textures).
The commensuration between the chirality waves and the
impurity superlattice leads to a majority of magnetically
ordered phases with net scalar spin chirality [see Figs. 2(c)
and 2(e)]. The uniform component arises from uncompensated
positive and negative components of the chirality wave texture:
the impurities remove spins contributing to only one sign
of the modulated chiral structure. Meanwhile, the xy spin

components only exhibit quasi-long-range correlations in
d = 2, as expected from Mermin-Wagner’s theorem [48].
In agreement with our discussion above, the spins around
the impurities form vortices with enhanced xy compo-
nents. In what follows, we describe details of the obtained
phases.

a. Ferrochiral 3QM -6Qχ vortex crystal.1 This phase
appears right below the saturation field near T = 0. Upon

1In our convention, we count the number of pairs ±QM and ±Qχ

corresponding to the (quasi-)Bragg peaks in the structure factor.

TABLE I. Classification of the ordered phases in the classical J1-J3 Heisenberg model with periodic nonmagnetic impurities. Here,
J3/|J1| ≈ 0.854 and the period of the impurity superlattice is aimp = 8. From the fourth to the sixth column, our notation of “n + nsub(+n′

sub)′′

means that the corresponding structure factor has n dominant peaks as well as nsub subdominant (and n′
sub even smaller) peaks.

Nonzero Chirality of Number of Number of Number of Broken point-group
net scalar up and down (quasi-)Bragg (quasi-)Bragg peaks Bragg peaks in symmetry (of the

Phase chirality triangles peaks in S⊥
s (Q) in Szz

s (Q) at q �= 0 Su/d
χ (Q) at q �= 0 lattice with impurities)

Ferrochiral 3QM -6Qχ

vortex crystal
� χu = χd 3 0 3+3

Ferrochiral 3QM

vortex crystal
� χu = χd 3 3 0

Ferrochiral 3QM -1Qχ

spiral
� χu = χd 2+1 1 1 C6

Ferrichiral 3QM -2Qχ

spiral I
� |χu| �= |χd | 1+2 2+1 2+1 C6

Ferrichiral 3QM -2Qχ

spiral II
� |χu| �= |χd | 1+1+1 1+1+1 1+1+1 C6

Antiferrochiral 1QM

spiral
No χu = −χd 1 1 0 C6

Ferrochiral 3QM -2Qχ

spiral
� χu = χd 1+2 1 2+1 C6

Vertical 1QM spiral No 1 1 0 C6 (C3 for H = 0)
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FIG. 3. Snapshots of the spin (left) and the chirality (middle) configurations in the ordered phases for J3/|J1| ≈ 0.854 (Q = 2π/4) when
periodic impurities (triangles) with aimp = 8 are present. The spin and the chirality structure factors are shown on the right: (a) ferrochiral
3QM -6Qχ vortex crystal (H/J3 = 4.0 and T/J3 = 0.05), (b) ferrochiral 3QM vortex crystal (H/J3 = 1.9 and T/J3 = 0.41), (c) ferrochiral
3QM -1Qχ spiral (H/J3 = 3.0 and T/J3 = 0.05), and (d) ferrichiral 3QM -2Qχ spiral I (H/J3 = 1.5 and T/J3 = 0.05). The circles with solid
(dashed) lines indicate the dominant (subdominant) q �= 0 peak(s). Note that the q = 0 component is removed from Szz

s (q). The hexagon with
a solid (dashed) line shows the first Brillouin zone (of the impurity superlattice). To obtain the smooth spin configurations, we integrate out
short-wavelength fluctuations by averaging over 50–500 MCS.
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FIG. 4. Snapshots of the spin (left) and the chirality (middle) configurations in the ordered phases for J3/|J1| ≈ 0.854 (Q = 2π/4) when
periodic impurities (triangles) with aimp = 8 are present. The spin and the chirality structure factors are shown on the right: (a) ferrichiral
3QM -2Qχ spiral II (H/J3 = 2.2 and T/J3 = 0.35), (b) antiferrochiral single-QM spiral (H/J3 = 1.0 and T/J3 = 0.35), (c) ferrochiral
3QM -2Qχ spiral (H/J3 = 0.1 and T/J3 = 0.05), and (d) vertical single-QM spiral (H/J3 = 0.2 and T/J3 = 0.35). The circles with solid
(dashed) lines indicate the dominant (subdominant) q �= 0 peak(s). Note that the q = 0 component is removed from Szz

s (q). The hexagon with
a solid (dashed) line shows the first Brillouin zone (of the impurity superlattice). To obtain the smooth spin configurations, we integrate out
short-wavelength fluctuations by averaging over 50–500 MCS.
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entering this phase via the thermal transition, the specific
heat shows a single weak anomaly as shown in Fig. 2(f).
The spin configuration is a triple-QM vortex crystal similar to
the one reported recently in three-dimensional (3D) frustrated
quantum magnets [26,27]. This phase may be understood
as the natural extension of the single-impurity vortex for
Hsat < H < HI

sat [36]. In fact, as shown in Fig. 3(a), each
nonmagnetic impurity induces a vortex very similar to the
schematic picture in Fig. 1, forming a triangular vortex lattice
as a whole. Upon closer inspection, it is possible to see that
antivortices appear right in the middle of nearest-neighbor
vortices, so that the “boundary condition” by the impurity
array is satisfied. The vortices and antivortices give opposite
contributions to the scalar spin chirality. While this would lead
to a total cancellation of χ tot in a system without impurities
[26], the present vortex crystal has net scalar spin chirality
because the local scalar chirality around each impurity has the
same sign. The net chirality for up and down triangles is equal,
χu = χd , which we refer to as “ferrochiral.” Interestingly, the
chirality wave is primarily characterized by higher harmonics
relative to the wave vectors that minimize J (q), namely,
Qχ

1 = Q1 + 2Q2, etc.
b.Ferrochiral 3QM vortex crystal. This phase can be seen

as another type of crystallization of vortices found in Ref. [36]
for Hsat < H < HI

sat. It occupies a small corner of the entire
region of the ordered phases, which appears right below
the saturation field in the range of intermediate temperature,
0.37 � T/J3 � 0.43. The spin configuration is characterized
by the triple-QM modulation and net spin scalar chirality
(χu = χd �= 0) [Fig. 3(b)]. However, unlike the ferrochiral
3QM -6Qχ vortex crystal phase discussed above, the chirality
texture does not support a static finite-Qχ component in
the thermodynamic limit (namely, the chirality texture is
homogeneous) as shown in Fig. 14(b) in Appendix; this aspect
distinguishes this phase from the skyrmion crystal phase [21],
although both phases are triple-QM and chiral. Moreover, the
z component near the impurities is Sz ∼ 0 in the ferrochiral
3QM vortex crystal phase, while it is Sz ∼ −1 in the skyrmion
crystal phase, which implies a different topological nature. The
scalar chirality shows a peak near the phase boundary between
this and the ferrichiral 3QM -2Qχ spiral II phase discussed
below [Fig. 2(c)].

c. Ferrochiral 3QM -1Qχ spiral. This phase occupies a
smaller-H region next to the ferrochiral 3QM -6Qχ vortex
crystal phase at low T . As shown in Fig. 3(c), it has a triple-QM

spin texture. In the structure factor for the xy component,
there are two dominant peaks and a single subdominant peak,
while a single-Q peak is in the structure factor for the z

component. Upon closer looking, it becomes clear that the
spin texture is pinned by the impurities via the parts with local
chirality having the same sign; for this reason, this state is
chiral, χu = χd �= 0. In addition to the uniform component,
the chirality texture has a single-Qχ component corresponding
to the stripe modulation.

d. Ferrichiral 3QM -2Qχ spiral I. This phase occupies
the largest portion of the phase diagram among the ordered
phases and it is found next to the ferrochiral 3QM -1Qχ spiral
upon decreasing H . The spin configuration is characterized
by the triple-QM noncoplanar modulation. Szz

s (q) has two
dominant peaks with an additional smaller peak, which in

S⊥
s (q) in turn correspond to two subdominant peaks and

the major peak, respectively [Fig. 3(d)]. We find that the
impurities are on the contour Sz ≈ 0 as shown in the left
panel of Fig. 3(d) in accordance with the general argument
that the effect of the magnetic field is effectively weakened
for spins surrounding impurities. The chirality wave is mainly
characterized by the double-Qχ modulation, which can be
seen as the “checkerboard” pattern. Note that the ferrichiral
3QM -2Qχ spiral I phase also possesses a small subdominant
peak at Q1 + Q2 as shown in the chiral structure factor in
Fig. 3(d). A subtle difference is that Su

χ (q) and Sd
χ (q) have

different profiles in this state. Based on this observation, we
call this state “ferrichiral.”

e. Ferrichiral 3QM -2Qχ spiral II. This state is found in
the intermediate-H regime, next to the ferrichiral 3QM -2Qχ

spiral I phase upon increasing T . While this is very similar
to the ferrichiral 3QM -2Qχ spiral I, the intensities of the
two dominant components of the chiral structure factor are
different in this phase [Fig. 4(a)], while the ones for the
ferrichiral 3QM -2Qχ spiral I phase are the same.

f. Antiferrochiral single-QM spiral. This state appears next
to the ferrichiral 3QM -2Qχ spiral II state upon decreasing
H . The spin configuration shown in Fig. 4(b) resembles
the conical spiral state that is obtained without impurities
[Fig. 2(b)]. The difference, however, is that the impurities
introduce the additional weak longitudinal modulation. The
C6 symmetry is broken in this phase as in the single-Q spiral
phase in the pure J1-J3 model with easy-plane anisotropy,
where the symmetry of the global spin rotation, U(1), is the
same as in the present case [46]. The obtained specific-heat
curve [Fig. 2(g)] is consistent with the single first-order phase
transition reported by Tamura et al. [46] in the pure easy-plane
model, although a more careful finite-size scaling is required
to settle this point. This state is not chiral because χu and χd

cancel each other out: χu = −χd . For this reason, we refer to
this phase as “antiferrochiral.”

g. Ferrochiral 3QM -2Qχ spiral. This phase occupies the
low-field and low-T region of the phase diagram [Fig. 2(a)]
and appears next to the ferrichiral 3QM -2Qχ spiral I phase
with decreasing H . The spin configuration [see Fig. 4(c)]
closely resembles a single-QM vertical spiral state (see below)
although the small additional QM components render the spin
configuration noncoplanar with the triple-QM modulation.
Meanwhile, the chirality wave texture shows the double-Qχ

modulation with a single-Qχ subdominant component, which
is very similar to that of the ferrichiral 3QM -2Qχ spiral I state.
The difference is that the net chirality for up and down triangles
in the present state is equal, χu = χd , while it is different in
the ferrichiral 3QM -2Qχ spiral state. Once again, it is evident
that the spin texture is pinned by the impurities where the local
chirality has the same sign, which leads to nonzero uniform
scalar chirality. The ferrochiral 3QM -2Qχ spiral state extends
its stability down to H = 0, as shown in Fig. 2(e).

h. Vertical single-QM spiral. This phase occupies a region
at higher T next to the ferrochiral 3QM -2Qχ spiral phase. This
is a single-QM coplanar state in an arbitrary plane containing
the vertical c axis when the magnetic field is applied in
the c direction. Thus, this state has no net chirality. The
difference relative to the ferrochiral 3QM -2Qχ spiral state is
the disappearance of the subdominant components in the spin
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FIG. 5. (a) Phase diagram of the model with a periodic array
of impurities with aimp = 4 and J3/|J1| ≈ 0.854 (Q = 2π/4). The
inset shows the impurity configuration. (b), (c) T dependence of the
specific heat at (b) H/J3 = 3.3 and (c) H/J3 = 0.5.

structure factor induced by thermal fluctuations [Fig. 4(d)].
The transition from the paramagnetic state is suggested to be
a single-step first-order phase transition (not shown). This is
similar to the case in the pure J1-J3 model [45–47], albeit with
a subtle difference that the state in the latter is the conical
spiral.

B. Case with aimp = 4

Next, we briefly discuss the case where the superlattice
constant aimp = 4 is half of the previous case, as illustrated in
the inset of Fig. 5(a). This corresponds to the relation K+ +
K− = 2Q1. Even though the commensurability still holds, the
obtained phases summarized in Table II are very different from
the previous case, except for the fact that a vortex crystal still
appears right below the saturation field.

a. Nonchiral 2QM -3Qχ vortex crystal. As it is shown in
Fig. 6(a), the high-field state is another vortex crystal, in
which both the vortices and antivortices are nucleated by
the impurities. The vortex and antivortex chains alternate,
creating the stripe pattern shown in the middle of Fig. 6(a).
This stripe pattern breaks the translational symmetry of the
system. Vortices and antivortices have opposite scalar spin
chirality, producing a chirality wave with a wave vector equal
to half of the impurity lattice reciprocal vector: Qχ = K+/2
[Fig. 6(a)]. Given that both vortex structures, the vortices and
the antivortices, are nucleated around the impurities, the net
chirality is perfectly canceled, rendering this state nonchiral.

Figure 5(b) shows the specific curve heat near the thermal
phase transition. Although it is suggestive of a single-step
continuous phase transition, a more careful analysis will be
required to draw a final conclusion about the critical behavior.

b. Nonchiral 3QM -2Qχ spiral. The spin configuration in
the low-field phase has a single-QM longitudinal modulation
and a double-QM transverse modulation [Fig. 6(b)]. A closer
inspection reveals that both S⊥

s (q) and Szz
s (q) have additional

peaks induced by the impurities, such as the peaks at q =
π/

√
3 ≈ 1.814 and π/(2

√
3) ≈ 0.907. This fact is more

evident for the double-Qχ chirality wave texture, in which the
subdominant component is induced by the impurities. The spin
configuration accommodates itself to the impurity superlattice
in such a way that the impurities are on the nodal line of the
chirality wave texture [Fig. 6(b)]. As depicted in Fig. 6(b),
the net chirality vanishes. The specific heat near the thermal
phase transition is suggestive of a single-step continuous phase
transition also in this case [Fig. 5(c)].

IV. VARIATIONAL ANALYSIS

Our numerical calculation indicates that multiple-Q ground
states are realized instead of the single-Q conical ground state
that is obtained for the pure system. Below, we provide a vari-
ational analysis confirming that the commensurability relation
between the Q vectors and the superlattice reciprocal vectors
K± renders the single-Q conical state unstable towards more
complex multiple-Q structures. For the sake of concreteness,
we consider below the case aimp = 8 where K+ + K− = Q1.

First we note that HJ
imp in Eq. (9) can be written as

HJ
imp = −ρimp

∑
q,q′∈FBZ

2J (q)

⎛⎝∑
Gimp

δq′,q+Gimp

⎞⎠Sq · S−q′ ,

(14)

after taking the Fourier transform Sq = √
1/N

∑
j e−iq·rj Sj .

Gimp runs over the set of impurity superlattice reciprocal
vectors and ρimp = a−2

imp is impurity concentration. Thus,
because of the commensurability relation, HJ

imp couples the
different Q vectors and the q = 0 component induced by the
magnetic field. Likewise, HH

imp is written as

HH
imp =

√
NρimpH

∑
Gimp∈FBZ

Sz
Gimp

, (15)

where the Q vectors and q = 0 are both included in the
summation.

TABLE II. Classification of the ordered phases for J3/|J1| ≈ 0.854 in the model with periodic impurities (aimp = 4).

Nonzero Number of Number of Number of Broken point-group
net scalar (quasi-)Bragg (quasi-)Bragg peaks Bragg peaks in symmetry (of the

Phase chirality peaks in S⊥
s (Q) in Szz

s (Q) at q �= 0 Su/d
χ (Q) at q �= 0 lattice with impurities)

Nonchiral 2QM -3Qχ

vortex crystal
No 2 0 2+1 C6

Nonchiral 3QM -2Qχ

spiral
No 2 1 1+1 C6

174420-8



VORTICES, SKYRMIONS, AND CHIRALITY WAVES IN . . . PHYSICAL REVIEW B 94, 174420 (2016)

-4

-4 -2  0  2  4

(b)

-2

 0

 2

 4

 5

 10

 15

 20

-1.0

-0.5

 0.0

 0.5

 1.0

 50  55  60  65
-4 -2  0  2  4

-4
 0

 4

 12

 20

-2

 0

 2

 4

-0.8

 0.0

 0.4

 0.8

-0.4

 50  55  60  65

 0

 10

 20

 30

 40

(a)

 5

 10

 15

 20

-1.0

-0.5

 0.0

 0.5

 1.0

 50  55  60  65
-0.3

-0.1

 0.0

 0.2

 0.3

 0.1

-0.2

 50  55  60  65

-4

-4 -2  0  2  4

-2

 0

 2

 4

-4 -2  0  2  4

-4
 0

 3

-2

 0

 2

 4

 0

 4

 12

 16

 20

000

5

0

-1.

-0.

 0.

 0.

 1.0

50 55 60 65

0000000000

5

0

-1.

-0.

 0.

 0.

 1.0

50 55 60 65
-0.

-0.

 0.0

 0.2

 0.3

 0.

-0.

50 55 60 65

-0.

 0.0

 0.4

 0.8

-0.

50 55 60 65

 0

 10

 20

 30

 8

 16

 0

 4

 12

 20

 8

 16

 8

 0

 4

 12

 16

 20

 8

 1

 2

 4

 0

 3

 1

 2

 4

FIG. 6. Snapshots of the spin configuration (left), the chirality texture (middle), and the spin and the chirality structure factors (right)
in the model with periodic impurities (triangles) with aimp = 4 for J3/|J1| ≈ 0.854 (Q = 2π/4): (a) nonchiral 2QM -3Qχ vortex crystal
(H/J3 = 3.9) and (b) nonchiral 3QM -2Qχ spiral (H/J3 = 1.6). The circles with solid (dashed) lines indicate the dominant (subdominant)
peak(s) at q �= 0. The q = 0 component is removed from Szz

s (q). The hexagon with a solid (dashed) line shows the first Brillouin zone (of the
impurity superlattice). We average over 50–500 MCS to integrate out short-wavelength fluctuations.

A. Stability analysis of the conical spiral

We start from showing that the impurity-induced coupling
makes the single-Q state unstable at T = 0. To this end, we
consider the following deformation of the single-Q conical
state, which satisfies the fixed-length constraint required for
classical spins:

Sx
j =

√
sin2 θ̃ − δ2 cos(Q1 · rj ) + δ cos(Q2 · rj ),

S
y

j =
√

sin2 θ̃ − δ2 sin(Q1 · rj ) − δ sin(Q2 · rj ), (16)

Sz
j =

√
cos2 θ̃ − 2δ

√
sin2 θ̃ − δ2 cos(Q3 · rj ),

where δ parametrizes the magnitude of the deformation and θ̃

[which is equal to cos−1(Sz
j ), ∀ j for δ → 0] is a variational

parameter. Following Ref. [25], we introduce

x = δ cos−2 θ̃
√

sin2 θ̃ − δ2, (17)

and Sz
j can be expanded as

Sz
j = cos θ̃

∑
n�0

fn(x) cos(nQ3 · rj ), (18)

where, to O(δ5), f0(x) = 1 − x2/4 − 15x4/64, f1(x) =
−x − 3x3/8, f2(x) = −x2/4 − 5x3/16, f3(x) = −x3/8,

f4(x) = −5x4/64, and fn�5(x) can be neglected at this order.
We find

〈
HH

imp

〉 = NρimpH cos θ̃

(
1 − x − x2

2
− x3

2
− 35x4

64

)
+O(δ5). (19)

Also, by splitting Eq. (14) into different spin components as
HJ

imp = Hxx
imp + Hyy

imp + Hzz
imp and denoting JnQ = J (nQ1) =

J (nQ2) = J (nQ3) and J0 = J (0), we find〈
Hxx

imp

〉 = −2NρimpJQ(sin2 θ̃ + 2x cos2 θ̃ ),
(20)〈

Hyy
imp

〉 = 0,
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which are independent of the deformation, and

〈
Hzz

imp

〉 = −2Nρimp cos2 θ̃

⎡⎣1

4
J0f

2
0 (x) + 1

2
f0(x)

∑
n�1

(J0 + JnQ)fn(x) +
∑
n�1

JnQfn(x)
∑
m�1

fm(x)

⎤⎦
= −2Nρimp cos2 θ̃

[
J0

4
− J0 + JQ

2
x − 2J0 − 8JQ + J2Q

8
x2 + −2J0 + 3JQ + 4J2Q − J3Q

16
x3

+ −34J0 + 112JQ − 8J2Q + 16J3Q − 5J4Q

128
x4

]
+ O(δ5). (21)

These results show that 〈H imp〉δ − 〈H imp〉δ=0 includes a linear contribution in the deformation parameter δ. In the meantime, the
change in Hpure was evaluated in Ref. [25] as 〈Hpure〉δ − 〈Hpure〉δ=0 = N cos2 θ̃ (J2Q − J0)x4/32 + O(δ5). Thus, 〈H〉δ − 〈H〉δ=0
decreases linearly in δ, implying that the conical spiral is indeed unstable in the presence of periodic array of impurities
commensurate with modulation associated with the ordering wave vectors.

B. Luttinger-Tisza analysis

The next question is whether the numerically found field-induced phases can be analytically explained in a simple manner.
Below, we first perform a soft-spin variational analysis at T = 0 by adopting the following ansatz:

S̃j = M0 +
∑

1�μ�3

(MμeiQμ·rj + c.c.), (22)

where M0 = N−1 ∑
j S̃j is a three-component real vector for the uniform component and Mμ = N−1 ∑

j e−iQμ·rj S̃j (1 � μ � 3)
are three-component complex vectors. The tilde attached to the spin variable indicates that the fixed-length constraint is replaced
by the average normalization condition given by a quadratic function

N−1
∑

j

|̃Sj |2 = |M0|2 + 2
∑

1�μ�3

|Mμ|2 = 1. (23)

This average constraint can be easily taken into account with the Lagrange multiplier method.
The variational energy density extended by the Lagrange multiplier λ is Evar = E

pure
J + E

imp
J + EH + Eλ with

E
pure
J = J0|M0|2 + 2JQ

∑
1�μ�3

|Mμ|2,

E
imp
J = −2ρimpJ0|M0|2 − 2ρimpJQ

∣∣∣∣∣∣
∑

1�μ�3

(Mμ + M∗
μ)

∣∣∣∣∣∣
2

− 2ρimp(J0 + JQ)
∑

1�μ�3

M0 · (Mμ + M∗
μ),

EH = −(1 − ρimp)HMz
0 + ρimpH

∑
1�μ�3

[
Mz

μ + (
Mz

μ

)∗]
,

Eλ = −λ

⎛⎝|M0|2 + 2
∑

1�μ�3

|Mμ|2 − 1

⎞⎠. (24)

By rewriting M0 = A0 and (Re Mμ,Im Mμ) = (Aμ,Bμ) for 1 � μ � 3, we first look into the quadratic part E
quad
var = Evar(λ) −

EH ,

Equad
var = (A0 A1 A2 A3)

⎛⎜⎜⎝
ω0 0Q 0Q 0Q

0Q ωQ Q Q

0Q Q ωQ Q

0Q Q Q ωQ

⎞⎟⎟⎠
⎛⎜⎝A0

A1

A2

A3

⎞⎟⎠ + 2JQ

∑
1�μ�3

|Bμ|2

=
∑

0�κ�3

εκ |�κ |2 + 2JQ

∑
1�μ�3

|Bμ|2, (25)

where ω0 = (1 − 2ρimp)J0 − λ, ωQ = (2 − 8ρimp)JQ − 2λ, 0Q = −2ρimp(J0 + JQ), and Q = −8ρimpJQ. Here, we have
diagonalized the 4 × 4 real symmetric coefficient matrix, obtaining the eigenvalues ε0 = ε1 = 2(JQ − λ), ε2 = ε+, and ε3 = ε−
with

ε± =
ω0 + ωQ + 2Q ±

√
122

0Q + (ω0 − ωQ − 2Q)2

2
. (26)

174420-10



VORTICES, SKYRMIONS, AND CHIRALITY WAVES IN . . . PHYSICAL REVIEW B 94, 174420 (2016)

{Aμ} → {�κ} is the associated orthogonal transformation

⎛⎜⎝�0

�1

�2

�3

⎞⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
0 2√

6
− 1√

6
− 1√

6

0 0 1√
2

− 1√
2

c+√
c2++3

1√
c2++3

1√
c2++3

1√
c2++3

c−√
c2−+3

1√
c2−+3

1√
c2−+3

1√
c2−+3

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎝A0

A1

A2

A3

⎞⎟⎠,

(27)

with

c± = ε± − ωQ − 2Q

0Q

. (28)

By adding the Zeeman contribution, we have

Evar =
∑

0�κ�3

εκ |�κ |2 + 2(JQ − λ)
∑

1�μ�3

|Bμ|2

− (1 − ρimp)c+ − 6ρimp√
c2+ + 3

H�z
2

− (1 − ρimp)c− − 6ρimp√
c2− + 3

H�z
3. (29)

From Eq. (29), the magnetic field is expected to induce a
collinear triple-Q state because of the magnetic-field coupling
to the triple-Q modes �z

2,3 [see Eq. (27)] within the Luttinger-
Tisza approximation. In fact, by taking derivatives of Evar with
respect to �

x,y,z
κ and B

x,y,z
μ , we find that a collinear triple-Q

state is stable above a threshold magnetic field Hs ∼ 3.39,
whereas it is replaced with a single-Q or other multiple-Q
states with different amplitudes for Q1, Q2, and Q3 below
Hs . This behavior is at least qualitatively consistent with
that observed in our Monte Carlo simulations. However, the
resulting triple-Q state is collinear, implying a rather strong
violation of the fixed-length constraint. Although, strictly
speaking, the violation of the constraint means a breakdown
of the Luttinger-Tisza approach, the important implication
in this analysis is that mixing of different Q components is
indeed expected as a result of the combination of the magnetic
field and the special periodic impurities commensurate to
modulation of spin texture. In other words, the Luttinger-
Tisza approximation provides a simple understanding of the
stabilization mechanism of a triple-Q solution, although a
more sophisticated variational approach is necessary in order
to determine the magnetic structure, as given in the following
section.

C. Real-space variational analysis

The above Luttinger-Tisza analysis suggests that a more
strict treatment of the constraint is crucial, and the correspond-
ing nonlinear effect is expected to drive the collinear triple-Q
state into a noncoplanar multiple-Q state. To proceed, we note
that the commensurate Q vectors allow to work on a real-space
variational calculation based on the following simple ansatz:

Sj = 1

Nj

⎡⎣M0 +
∑

1�μ�3

(MμeiQμ·rj + c.c.)

⎤⎦, (30)
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FIG. 7. H dependencies of (a) the energy per site, (b) magnetiza-
tion, M , (c) S⊥

s (Qν)/N , and (d) Szz
s (Qν)/N (ν = 1–3) for Q = 2π/4

and aimp = 8. “V” and “MC” represent the results obtained by T = 0
variational calculations and Monte Carlo simulations at T/J3 = 0.05.

where Nj is a normalization factor which enforces the
S · S = 1 constraint exactly and Mμ = M∗

−μ. The variational
parameters are seven: M0 and three pairs of (ReMμ, ImMμ)
(μ = 1–3).

Figure 7 shows the H dependence of (a) the energy density,
(b) magnetization, (c) the xy component of the spin structure
factor, and (d) the z component of the spin structure factor,
which are obtained by variational calculations at T/J3 = 0.00
and Monte Carlo simulations at T/J3 = 0.05. The Monte
Carlo calculations are consistent with the variational results
except for the region 1.6 � H/J3 � 2.1. The slight deviation
around this region is due to a finite-temperature effect in the
Monte Carlo simulations. In fact, another phase transition
occurs at T/J3 ∼ 0.03 for H/J3 = 2.0. Thus, most of the
low-temperature phases obtained from the finite-temperature
Monte Carlo simulations shown in Fig. 2(a) remain stable
down to T = 0.

V. TOWARDS MORE REALISTIC CONSIDERATIONS

So far, we have assumed a periodic array of impurities,
which is commensurate with the spin texture. Below, we
discuss the stability of the chiral phases upon relaxing this
condition.

A. Different impurity concentrations

First, we investigate the stability of the chiral phases shown
in Fig. 2 upon changing the impurity concentration. Our
numerical results and the stability analysis have shown that
the multiple-Q structures arise from the fact that Qν and
Qν ′ (ν �= ν ′) are connected by K±. Below, we demonstrate
that the multiple-Q structure is suppressed upon changing
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FIG. 8. H dependence of (χ tot)2 for J3/|J1| ≈ 0.394 (Q = 2π/6)
at T/J3 ≈ 0.1268 in the model with or without periodic impurities:
aimp = ∞ (no impurities), 12, and 11.

the periodicity of impurity array, i.e., upon reducing the
commensurability effect.

Figure 8 shows the H dependence of the square of the
scalar chirality at a low enough T for several different impurity
concentrations and J3/|J1| ≈ 0.394 (corresponding to Q =
2π/6 < Qc). In addition to the case without impurities,
we show the results for aimp = 11 and 12. The case with
aimp = 12 is similar to the case we discussed in Sec. III A,
in the sense that aimp = 12 is twice as large as 2π/Q = 6
and K+ + K− = Q1 holds. In fact, the H dependence of
(χ tot)2 is qualitatively very similar to the previous case
shown in Fig. 2(e). Strictly speaking, the other case with
aimp = 11 is also commensurate with the optimal magnetic
order. However, the minimal period of the combined structures
is 44 lattice spacings, which is significantly large and thus
almost incommensurate. Interestingly enough, we find that
the net chirality is finite in the intermediate magnetic field
range, although the functional form is rather different. The

FIG. 10. Allowed positions of a nonmagnetic impurity. Partial
randomness is included by locating the nonmagnetic impurities either
at a regular superlattice site (the open circle at the origin) or at one of
its neighbors (see the text). The filled circles, triangles, and squares
denote the NN, second-NN, and the third-NN sites, respectively. The
average distance between closest impurities is aimp = 8.

spin configuration is triple QM with vortices located around
each impurity (Fig. 9). The corresponding chirality wave
has a multiple-Qχ ferrichiral structure with slightly different
profiles in Su

χ (q) and Sd
χ (q). Our results suggest that chiral

states resulting from nonmagnetic impurities are rather robust
against changing the impurity concentration when Q is
small.

B. Skyrmion crystal induced by small randomness

Finally, we introduce small quenched randomness into the
array of impurities. In the example of a CDW, nonmagnetic
ions (holes or doubly occupied sites) can be frozen at
positions slightly away from the perfect superlattice sites.
Thus, it is natural to ask what would be the consequence of
such small quenched randomness in terms of the magnetic
ordering.
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FIG. 9. Snapshots of the spin configuration (left), the chirality texture (middle), and the spin and the chirality structure factors (right) in the
model with perfect periodic impurities (triangles) with aimp = 11 for J3/|J1| ≈ 0.394 (Q = 2π/6) at H/J3 ∼ 0.634. The q = 0 component is
removed from Szz

s (q). We average over 500 MCS to integrate out short-wavelength fluctuations.
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FIG. 11. The impurity structure factors (a) for the regular super-
lattice site and with a randomly distribution up to (b) NN sites, (c)
second-NN sites, and (d) third-NN sites.

To simplify our discussion, we consider the following three
cases where, as illustrated in Fig. 10, each nonmagnetic ion
is uniformly and randomly placed at (i) one of seven sites
comprising a site of the perfect superlattice and its six NNs
of the underlying lattice, (ii) one of 13 sites comprising a
perfect superlattice site, the six NNs, and the six second NNs
or (iii) one of 19 sites that include up to the third-NN sites. For
each case, we take statistical averages by generating 32–144
different impurity configurations.

First, we show the impurity structure factor

Simp(q) = 1

N

∑
j,l

〈(1 − pj )(1 − pl)〉eiq·(rj −rl ), (31)
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FIG. 13. (a) H dependence of (χ tot)2 for the model with partial
randomness of the impurity array [J3/|J1| ≈ 0.854(Q = 2π/4) and
T/J3 = 0.05]. (b), (c) Enlarged views of (a).

for the different randomness (i)–(iii) in Fig. 11. In the case of an
ideal impurity array, the Bragg peaks appear at c1K+ + c2K−
(c1 and c2 are integer) with the same intensity, as shown in
Fig. 11(a). With increasing the degree of randomness from
the case (i) in Fig. 11(b) through the case (iii) in Fig. 11(d),
the amplitudes of the Bragg peaks for large q diminish. In
particular, the amplitude at q = Qν remains finite (almost
disappears) for the cases (i) and (ii) [the case (iii)]. This
difference is crucial for the emergence of the skyrmion crystal
(see Fig. 12) that we discuss below.

As shown in Figs. 13(a)–13(c), we compute (χ tot)2 at a
low T for J3/|J1| ≈ 0.854 (Q = 2π/4). While there is no net
chirality in the low and high magnetic field regions, we find that
the scalar chirality is drastically enhanced in the intermediate
field regime 1.2 � H/J3 � 1.6 for the moderate impurity
randomness, i.e., the cases of (i) and (ii), as shown in Fig. 13(c).
Such a drastic enhancement indicates the emergence of a
new phase induced by the quenched randomness. The spin
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FIG. 12. Snapshots of the spin configuration (left), the chirality texture (middle), and the spin and the chirality structure factors (right) for
periodic impurities slightly disordered up to NNs (triangles) with aimp = 8, H/J3 = 1.4, T /J3 = 0.05, and J3/|J1| ≈ 0.854 (Q = 2π/4). The
dashed circles represent the positions without randomness. The q = 0 component has been removed from Szz

s (q). We average over 500 MCS
to integrate out short-wavelength fluctuations.
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configuration corresponds to a triple-QM hexagonal skyrmion
crystal (Fig. 12), similar to the state found by Okubo et al.
in a different parameter regime of the same model without
impurities [21]. A similar phase is also obtained for the same
model with easy-axis anisotropy [23–25]. We note that, unlike
the ferrochiral 3QM spiral state in Fig. 4(b), the chirality
structure factor of this state shows six peaks at q = ±Q1�ν�3,
in addition to the q = 0 peak (see also Appendix).

The local spin reorientation induced by impurities is central
to explain why the skyrmion crystal appears only for small
charge randomness in the range of 1.2 � H/J3 � 1.6. Without
the randomness, the ferrichiral 3QM -2Qχ spiral I phase is
realized in this region, where the spin texture creates the vortex
configuration with Sz ≈ 0 around each impurity. This state
is more stable than the skyrmion crystal in the absence of
randomness because impurities would be near the center of
the skyrmions (commensurability effect). Such a situation is
energetically unfavorable due to the large-|Sz| value of the
spins near the skyrmion core. (According to our preliminary
considerations, the energy is minimized by increasing the xy

components of the spins near the nonmagnetic impurities
relatively to the other spins.) By introducing the small
quenched randomness, as shown in the left panel of Fig. 12,
the impurities can escape from the skyrmion core towards
the perimeter region where Sz ≈ 0 and nucleate antivortices
around themselves. While the chirality structure is to a large
extent characterized by the q = 0 component, as shown in the
middle panel in Fig. 12, there are spots with the opposite sign
around the impurities because of the induced antivortices. In
contrast, the randomness increases the energy of the ferrichiral
3QM -2Qχ spiral I phase because it pushes the impurities away
from their “comfortable” Sz ≈ 0 zone. This is also the reason
why the skyrmion phase is destabilized when the randomness
becomes too strong, i.e., in the case (iii) (see Fig. 13). Once the
typical deviation exceeds the skyrmion radius, the impurities
are pushed into the large-|Sz| region again. This result points
to a new mechanism of stabilizing skyrmion crystals, namely,
moderate randomness in the array of nonmagnetic impurities
can induce a chiral phase when combined with frustrated
exchange interactions.

VI. SUMMARY AND DISCUSSION

As we discussed above, CDW ordering of a strongly
coupled single-band model away from half-filling can provide
a natural realization of our periodic array of nonmagnetic
impurities. Moreover, it is natural to expect that charge
orderings which are commensurate with the magnetic ordering
wave vectors will be naturally selected at the corresponding
filling fractions of the Hubbard model. Our previous analysis
of the effect of small randomness in the periodic array
of impurities suggests the interesting possibility of having
skyrmion crystals stabilized by the zero-point fluctuations of
the CDW.

What are the alternative realizations of the model studied
in this work? Here, we present three additional proposals
for realizing periodic arrays of nonmagnetic impurities. The
first realization involves surface science technology [49]. For
instance, a selective atom substitution based on the scanning

tunneling microscope technique enables manipulation of
atoms on the surface of Mott insulators with spiral order,
such as FexNi1−xBr2 [50] and ZnxNi1−xBr2 [51]. The second
possibility is through Kondo lattice systems with long-range
Coulomb interaction between conduction electrons. Even
not taking into account Coulomb interaction explicitly (i.e.,
in the usual Kondo lattice model) charge ordering can be
induced by magnetic ordering [52–56] and produce a periodic
potential for the spin degrees of freedom similar to the one
induced by the periodic array of nonmagnetic impurities.
Coulomb interactions can enhance this tendency producing
an even stronger CDW ordering. In a similar manner, the
Hubbard-Holstein model [57,58] and the Hubbard (or t-J )
model discussed in the Introduction might provide alternative
realizations of a periodic array of nonmagnetic impurities
by charge ordering. The third proposal is based on selective
Kondo screening: some heavy-fermion compounds are known
to exhibit partially ordered magnetic states. For instance, the
partially disordered compound UNi4B exhibits a magnetic
vortex structure [59–61]. A possible scenario is that the partial
disorder is produced by a site-selective formation of Kondo
singlet states [62–64]. The site-selective Kondo screening is
then an alternative mechanism for producing a nonmagnetic
superlattice.

To summarize, by taking the classical J1-J3 Heisenberg
model on the triangular lattice as an example, we have shown
that exotic multiple-Q states can be induced by periodically
distributed nonmagnetic impurities. The interplay between the
spin configuration and the underlying impurity superlattice
renders most of the states chiral (i.e., with net scalar chirality).
We have also shown that weak randomness in the impurity
positions, relative to the periodic array, induces a skyrmion
crystal phase for intermediate magnetic field values. Our
results suggest that a variety of magnetically ordered states
with nonzero net scalar chirality can be realized by changing
the concentration of nonmagnetic impurities, magnetic field,
and temperature.
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APPENDIX: CHARACTERIZATION OF
EACH PHASE

Figures 14, 15, and 16 show the 1/L dependence of the
xy and z components of the spin structure factor and the
chirality structure factor normalized by the system size N .
They should scale S(q) ∼ O(1),L2−η, and N , respectively,
when the corresponding mode is disordered, critical, and
long-range ordered. Note that the Mermin-Wagner theorem
precludes the long-range order in the xy component at
finite T .
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FIG. 14. Size dependence of the order parameters for each phase described in the phase diagram of Fig. 2(c): the chirality structure
factor evaluated at q = 0,0′,Q1,Q2,Q3 [Sχ (q) = Su

χ (q) + Sd
χ (q) for q = 0,Q1,Q2, and Q3 and Sχ (0′) = Su

χ (0) − Sd
χ (0)] and the magnetic

structure factor at q = Q1,Q2,Q3 in (a) the ferrochiral 3QM -6Qχ vortex crystal phase (H/J3 = 3.8), (b) ferrochiral 3QM vortex crystal phase
(T/J3 = 0.41), (c) ferrochiral 3QM -1Qχ spiral phase for Q = 2π/4 (H/J3 = 3.0), and (d) ferrichiral 3QM -2Qχ spiral I phase (H/J3 = 1.0)
for Q = 2π/4 and different temperature and magnetic fields.
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FIG. 15. Size dependence of the order parameters for each phase described in the phase diagram of Fig. 2(c): the chirality structure factor
evaluated at q = 0,0′,Q1,Q2,Q3 [Sχ (q) = Su

χ (q) + Sd
χ (q) for q = 0,Q1,Q2, and Q3 and Sχ (0′) = Su

χ (0) − Sd
χ (0)] and the magnetic structure

factor at q = Q1,Q2,Q3 in (a) ferrichiral 3QM -2Qχ spiral II phase (H/J3 = 2.0), (b) antiferrochiral single-QM spiral phase (H/J3 = 1.0),
(c) ferrochiral 3QM -2Qχ spiral phase (H/J3 = 0.2), and (d) vertical single-QM spiral phase (H/J3 = 0.2) for Q = 2π/4 and different
temperature and magnetic fields.
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FIG. 16. Size dependence of the order parameters for two phases described in the phase diagram of Fig. 5(b): (a) the xy and z components
of the spin structure factor evaluated at q = Q1,Q2,Q3 and the chirality structure factor evaluated at q = Q1 and Q′

1 [Q′
1 = π/(2

√
3)] in the

nonchiral 3QM -2Qχ spiral phase (H/J3 = 1.0) and (b) the z (xy) component of the spin structure factor evaluated at q = Q′′
1,Q

′′
2, and Q′′

3

where Q′′
ν = π/

√
3 (q = Q1,Q2, and Q3) and the chirality structure factor evaluated at q = Q1 and Q′

1 in the nonchiral 2QM -3Qχ vortex
crystal phase (H/J3 = 3.0).
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