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We study the pyrochlore Heisenberg antiferromagnet with additional positive biquadratic interaction in the
semiclassical limit. The classical ground-state manifold of the model contains an extensively large family
of noncoplanar spin states known as “color ice states.” Starting from a color ice state, a subset of spins
may rotate collectively at no energy cost. Such excitation may be viewed in this three-dimensional system
as a “membranelike” analog of the well-known weathervane modes in the classical kagome Heisenberg
antiferromagnet. We investigate the weathervane modes in detail and elucidate their physical properties.
Furthermore, we study the order by disorder phenomenon in this model, focusing on the role of harmonic
fluctuations. Our computationally limited phase space search suggests that quantum fluctuations select three
different states as the magnitude of the biquadratic interaction increases relative to the bilinear interaction,
implying a sequence of phase transitions solely driven by fluctuations.
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I. INTRODUCTION

In simple magnetic systems with well-established classical
long-range order, thermal and quantum fluctuations lead to a
reduction of order parameter and are thus detrimental to the
order. On the other hand, in frustrated magnetic systems [1],
where the lattice geometry and/or competing spin-spin in-
teractions give rise to an accidentally degenerate classical
ground-state manifold, fluctuations can, instead, cause long-
range order by stablizing a unique ground state. While the
energy of every classical ground states is the same, the
excitation spectrum governing the level of thermal or quantum
fluctuations about each ground state is generally different. In
the classical limit, the thermal entropy of each state is different.
Likewise, at zero temperature, different classical ground
states receive different zero-point energy corrections. This is
the engine behind the order by thermal (quantum) disorder
mechanism in which a state with maximal entropy (minimal
energy) gets selected out of the degenerate manifold [2–6].

Given the decisive role that fluctuations may play in
frustrated magnets, one may naturally ask the following: Can
there be fluctuation-driven phase transitions among classically
degenerate states? It is conceivable that, as one tunes the model
parameters of a frustrated magnet, the classical degenerate
ground-state manifold remains the same, but the thermal or
quantum fluctuations select different members of the ground-
state manifold, thereby giving rise to a phase transition solely
driven by fluctuations.

Even though order by disorder seems to be a natural setting
for fluctuation-driven phase transitions, known examples
appear to be relatively rare. To set the stage for this work,
it is useful to review a few related contexts. In some quantum
magnetic systems such as the XY pyrochlore magnet [7] and
the face-centered-cubic (fcc) antiferromagnet with additional
pseudodipolar interaction [8], the zero-point energy correction
gives rise to a quantum phase transition between different
ground states as one tunes a model parameter. In both
examples, the dimension of the classical ground-state manifold

is finite. Perhaps more unusual is the quantum phase transition
in the XXZ kagome antiferromagnet [9,10], which occurs
within an extensively degenerate ground-state manifold.

There are also frustrated spin models in which the true
ground state competes with an energetically metastable state.
In a number of classical models [11–13], thermal fluctuations
modify the free-energy landscape and turn the latter into a
global free-energy minimum over a certain temperature range.
As temperature decreases, the system should, in principle,
exhibit a thermal transition from the energetically metastable
state to the true ground state.1 In their quantum analog
[4,14–18], a quantum phase transition is driven by the
competition between the classical energy and the energy
correction arising from quantum fluctuations. However, these
transitions are better attributed to both the parametric evolution
of the ground-state manifold and its associated fluctuations
rather than due to fluctuations alone.

In this paper, we explore a different example of fluctuation-
driven phase transition in the bilinear-biquadratic pyrochlore
Heisenberg model:

H =
∑
〈ij〉

JSi · Sj + B(Si · Sj )2

≡ J0

∑
〈ij〉

cos θBSi · Sj + sin θB

S2
(Si · Sj )2. (1)

i and j label the pyrochlore lattice sites, and the summation
runs over all nearest-neighbor pairs. J and B are the bilinear

1One generally expects the metastable and minimum energy states
to be of different symmetry. In this case, a thermodynamic transition
between the two should be first order. Whether droplets of the
minimum energy state can, in specific cases, be nucleated out of
the metastable state and drive the transition is an interesting question.
In the numerical works of Refs. [11,13], it was found rather difficult
to reach the ground state by cooling through the metastable and by
using local spin dynamics only.
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and biquadratic exchange couplings, respectively. S is the
spin quantum number. J ≡ J0 cos(θB), and BS2 ≡ J0 sin(θB).
We focus on the semiclassical limit, i.e., S � 1 while θB

remains finite.
Considering antiferromagnetic systems with J > 0, pre-

vious studies of the bilinear-biquadratic model in Eq. (1)
have focused on the parameter space −π/2 < θB � 0, i.e.,
B � 0 [19–25]. In this work, we focus on the opposite
and largely unexplored parameter space with 0 < θB < π/2.
We find that, while the bilinear and biquadratic interactions
admit a common, extensively degenerate classical ground-state
manifold, they produce different quantum fluctuations, which
in turn select three different states as one tunes the value
θB from 0 to π/2. Thus, our results suggest a sequence of
fluctuation-driven quantum phase transitions controlled by θB.

Our paper is organized as follows. In Sec. II, we chart the
classical ground-state manifold of the model in the parameter
space θB ∈ (0,π/2). In Sec. III, we study the order by disorder
phenomenon, focusing on the effects of harmonic fluctuations
and their role in the selection mechanism. We also discuss
a plausible temperature versus θB phase diagram for the
model. In Sec. IV, we provide an outlook toward potentially
interesting directions to explore in the future as well as possible
material realizations.

II. CLASSICAL GROUND STATES

In this section, we explore the classical ground-state
manifold of the model defined by Eq. (1). We begin with
a discussion of the classical ground states of an isolated
tetrahedron in Sec. II A. In Sec. II B, equipped with the result
for an isolated tetrahedron, we show that an extensively large
class of states, known as “color ice states,” belong to the
classical ground-state manifold of the full lattice model. In
Sec. II C, we demonstrate that color ice states support two-
dimensional weathervane modes. These weathervane modes
may give rise to nodal lines in the classical spin wave spectra,
which we discuss in Sec. II D.

A. Classical ground state of a spin tetrahedron

The pyrochlore lattice features a motif of corner-shared
tetrahedra. It is customary to first study an isolated spin
tetrahedron before embarking on a discussion of the full lattice
model. To this end, we label the four classical spins at the
corners of the tetrahedron as 1,2,3,4. The interaction between
a pair of spins takes the same form as in Eq. (1). Replacing
the operator Si by the classical vector Sni , where ni is a unit
vector, we find the classical energy

Etetra = J0S
2
∑
i>j

cos θB(ni · nj ) + sin θB(ni · nj )2. (2)

Here, i,j run over the four sites of the tetrahedron.
A direct numerical minimization of Eq. (2) shows that the

ni in the classical ground state are given by

n1 = 1√
3

⎛
⎝1

1
1

⎞
⎠, n2 = 1√

3

⎛
⎝−1

−1
1

⎞
⎠,

n3 = 1√
3

⎛
⎝ 1

−1
−1

⎞
⎠, n4 = 1√

3

⎛
⎝−1

1
−1

⎞
⎠. (3)

FIG. 1. (a) A classical ground state of an isolated tetrahedron.
Arrows show the direction of the spins n1, n2, n3, and n4, which
are given in Eq. (3). Note that the specific directions of these spins,
colored cyan, magenta, yellow, and black, shall be also, respectively,
referred to as nC, nM, nY, nK in the discussion of Sec. II B on color
ice states [cf. Eq. (7)]. (b) A color ice state. The color code indicates
the spin orientation as per the convention in (a).

Here, each spin orientation is given in a column vector form.
We see that the four spins form a tetrahedron in spin space,
each pointing from the spin-tetrahedron center to a corner
[Fig. 1(a)]. In particular, ni · nj = − 1

3 between a pair of spins.
A global rotation or inversion of the above state is also a
classical ground state thanks to the O(3) symmetry of Eq. (2).
We call the specific classical spin state described in Eq. (3),
along with its global rotations and inversions, tetrahedral spin
states (TSS).

For a general value of θB ∈ (0,π/2), we show rigorously
that the TSS are in fact the global energy minima by using the
following trick. We define a rank-2 traceless symmetric tensor

(Ti)αβ = niαniβ − 1
3δαβ. (4)

Here α,β run over the three spin components x,y,z. niα is the
α component of the unit vector ni . In particular, tr(T2

i ) = 2
3

and tr(TiTj ) = (ni · nj )2 − 1
3 . Using these identities, we may

rewrite Eq. (2) as

Etetra

J0S2
= cos θB

2

(∑
i

ni

)2

+ sin θB

2
tr

(∑
i

Ti

)2

− 2 cos θB + 2

3
sin θB. (5)

Up to a constant independent of {ni}, Etetra is the sum of two
squares. Hence, the energy can be minimized if one can find
states for which

∑
i ni = 0 and

∑
i Ti = 0 simultaneously.

The first condition is the same as the familiar classical ground-
state condition for the bilinear Heisenberg model (θB = 0) on
a tetrahedron. Its solutions can be parametrized by two angles
plus a global O(3) operation [26]. A few lines of algebra
show the second condition further constrains the solutions to
TSS, namely, Eq. (3) and its rotations and inversions. Most
importantly for the discussion that follows, any uniform (rigid)
rotation of three of the nj by an arbitrary angle φ about the
fourth ni (i �= j ) given by Eq. (3) manifestly gives an energy
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minimum. Hence, we have proven that the TSS are the global
minima of Eq. (2) for 0 < θB < π/2.

B. Color ice states

Having determined the classical ground-state manifold for
an isolated tetrahedron, we move on to construct the classical
ground states for the entire lattice. The classical energy of
Eq. (1) is given by

E =
∑

α

Eα, (6)

where Eα is the classical energy of a tetrahedron α [Eq. (2)].
Since each Eα is minimized by a TSS, any four spins belonging
to a tetrahedron must be in a TSS to minimize E. Said
differently, the classical ground states of Eq. (1) must be the
TSS assembled together.

To proceed, we first pick a reference tetrahedron in the
lattice and put its four spins in a TSS. Without loss of
generality, we take the orientation of these four spins defining
our reference TSS to be identical to those given in Eq. (3).
For reference sake, we assign four color labels, cyan (C),
magenta (M), yellow (Y), and black (K), to these specific
spin orientations [see Fig. 1(a)]:

nC ≡ 1√
3

⎛
⎝1

1
1

⎞
⎠, nM ≡ 1√

3

⎛
⎝−1

−1
1

⎞
⎠,

nY ≡ 1√
3

⎛
⎝ 1

−1
−1

⎞
⎠, nK ≡ 1√

3

⎛
⎝−1

1
−1

⎞
⎠. (7)

For the moment, we restrict the orientation of the remaining
spins to this particular set {nC,nM,nY,nK}. By construct, the
four spins on any given tetrahedron are in a TSS if they
take mutually different colors [27]. Such a coloring rule is
analogous to the familiar ice rule in Ising spin ice and is
hence known as color ice rule. If every tetrahedron obeys the
color ice rule, the energy of the full lattice is thereby minimal.
Following the literature, we refer to the classical spin states in
which every tetrahedron obeys the color ice rule as color ice
states [28–30]. An example of color ice states is illustrated in
Fig. 1(b).

We thus have shown that the color ice states are part of
the classical ground-state manifold of Eq. (1). By generalizing
Pauling’s estimate for Ising spin ice to color ice, one can show
that the number of color ice states is approximately (3/2)N/2,
where N is the number of lattice sites [29]. Thus, the classical
ground-state manifold of Eq. (1) is exponentially large in the
volume of the system.

We note that the above construction of the classical ground
states of Eq. (1) is rather similar to the one presented in
Ref. [27], where a different classical spin model arising
from the Affleck-Kennedy-Lieb-Tasaki (AKLT) state on the
pyrochlore lattice was studied. The authors of Ref. [27]
also pointed out that color ice states may support zero-
energy excitations. In the next section, we study these

FIG. 2. (a) An all-in/all-out (AIAO) color ice state. (b) Top: in the
pyrochlore lattice, a kagome layer is sandwiched by two triangular
layers. In the AIAO state shown in (a), the spins on the kagome layer
are colored in magenta, yellow, and black, whereas spins on triangular
layers are colored in cyan. Bottom: collectively rotating the spins on
the kagome layer with respect to nc (vertical-pointing cyan arrows)
by an arbitrary weathervane angle φwv preserves the TSS on every
tetrahedron and thereby does not cost energy. Here, the kagome spins
are rotated by φwv = π/2, which is not a color ice state.

zero-energy excitations in detail and elucidate their physical
properties.

C. Weathervane modes

We note that even though the above set of color ice states is
exponentially large, such a set does not exhaust the classical
ground-state manifold of Eq. (1) [27]. To illustrate this, we first
consider an all-in/all-out (AIAO) long-range ordered state.
In an AIAO state, every site of a given fcc sublattice has
the same color, and, to fulfill the color ice rule, the four fcc
sublattices must be assigned mutually different colors. Such
a state preserves the translation symmetry of the pyrochlore
lattice. An AIAO state is shown in Fig. 2(a).

We may also think of the pyrochlore lattice as alternately
stacked triangular and kagome layers along the cubic [111]
direction. In an AIAO state, spins on the triangular layers are
in the same color. In Fig. 2(b), the spins on triangular layers
take the color cyan or, equivalently, the orientation nC. We
now focus on a given kagome layer and make the following
observation: if we rotate the spins on the said layer by the same
angle φwv about the axis defined by nC while keeping the rest of
the spins unrotated, all tetrahedra remain in TSS [Fig. 2(b)].
Therefore, the resulting state is a classical ground state of
Eq. (1) according to our discussion in Sec. II B. However, it is
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FIG. 3. (a) Top row: an all-in/all-out state. Middle row: a weathervane membrane. There is no energy cost if spins belonging to the
membrane rotate collectively with respect to nC. The black arrow indicates the stacking direction of weathervane membranes. The gray box
shows a conventional cubic unit cell. Bottom row: classical spin wave dispersion along the stacking direction. Here, we set θB = 0.05π for
all displayed spin wave calculation results. (b) A {100} state. In this specific example, the modulation wave vector q = (001). In other words,
the color (spin orientations) are invariant under translation along the [100] and [010] directions but alternating along the [001] direction.
The number ×n in the panels showing the spin wave dispersion indicates the degeneracy of the branch. (c) A

√
3 × √

3 state. This state is
constructed by stacking the familiar

√
3 × √

3 state in the kagome Heisenberg antiferromagnet [31–33] along a [111] direction. The color
of the triangular (“apical”) sites is magenta. The gray box shows a unit cell. One linking green triangle is being displayed as a visual aid to
highlight a given kagome plane. Note the lowest three branches of the spin wave are dispersive along other directions in momentum space. In
other words, they are not flat bands. (d) A color ice state which does not support a genuine weathervane mode as the weathervane membrane
in fact covers all lattice sites.

not a color ice state if φwv �= 0 or ±2π/3 since the orientations
of rotated spins are not in the set {nC,nM,nY,nK}.2

We can perform the above collective rotations indepen-
dently for each kagome layer, one layer at a time. Moreover,
we may consider kagome layers stacked in other directions
(for instance, [1̄1̄1]) and perform similar rotations. Therefore,
starting from an AIAO state, we may obtain infinitely many
classical ground states through such collective rotations, which
are not color ice states except for special rotation angles. Such
rotations are reminiscent of the weathervane modes in the
classical kagome Heisenberg antiferromagnet [31,32,34–38].
By analogy, we therefore also refer to the aforementioned
zero-energy-cost collective rotations as weathervane modes.
In particular, we call the collective rotation angle φwv of a
weathervane mode the “weathervane angle.” In the example
presented in Fig. 2(b), the weathervane angle is φwv = π/2.

Many color ice states other than the AIAO state support
weathervane modes. One may identify the weathervane modes
supported by a color ice state through the following procedure.

2One may also perform mirror reflections on kagome spins at no
energy cost. However, such operations do not produce new classical
ground states.

We pick a color, say cyan (C), and remove all the cyan
sites in the pyrochlore lattice. Thanks to the color ice rule,
each tetrahedron contains one and only one cyan site. The
remaining sites thus form a network of corner-sharing triangles
whose spins are colored magenta, yellow, and black. This
network may contain several connected components that are
disconnected from each other. We then pick a connected
component and rotate all the spins in this component with
respect to nC by the same angle φwv. Such rotation preserves
the TSS in every tetrahedron. Hence, we have found a
weatherwave mode localized onto this component. We call
the said connected component weathervane membrane since
its topology is that of a membrane. We show in Fig. 3 a
few more examples of weathervane membranes within various
color ice states. In particular, we observe that the weathervane
membranes possess diverse shapes.

An important question concerning the weathervane modes
is how many such modes there are within a given color ice state.
Our analysis of the AIAO states presented below shows that,
for a crystal of linear dimension L subject to periodic boundary
conditions, the number of weathervane modes is of order L

[Fig. 3(a)]. For the specific example shown in Fig. 3(d), we
find only one weathervane membrane covers all lattice sites.
Hence, in this case, the weathervane mode coincides with a
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global spin rotation. In other words, this color ice state does
not support a genuine weathervane mode. In Appendix A,
we prove the weathervane membrane must percolate through
the lattice. Thus, the number of weathervane modes cannot
be of order L3, which would require localized modes and
hence contradict the percolation requirement. We also provide
an argument that the counting is very unlikely to be O(L2). In
addition, by randomly generating a large number of color ice
states in a small system, we found that the AIAO states support
the largest number of weathervane modes. We are therefore
reasonably confident that the total counting of weathervane
modes ranges from 0 to O(L).

D. Spin waves about color ice states

In this section, we discuss the implications of weathervane
modes on the classical spin waves in color ice states. The
details of the spin wave calculations are presented in Sec. III A.
We note each weathervane mode gives rise to a zero mode in the
spin wave spectrum. In the AIAO state shown in Fig. 3(a), the
weathervane membranes are stacked along a [111] direction.
Thus, the spin wave spectrum must contain nodal lines along
the {111} directions as shown in Fig. 3(a). Similarly, the spin
wave spectra in the color ice states shown in Figs. 3(b) and 3(c)
contain nodal lines as well. However, since the color ice state
in Fig. 3(d) does not support nontrivial weathervane modes,
the spin wave spectrum contains no nodal lines as shown in the
bottom panel of Fig. 3(d). Finally, we remark that the nodal
lines in the spin wave spectra are reminiscent of the spin wave
spectra of the fcc Heisenberg antiferromagnet [39,40].

III. ORDER BY DISORDER

In the previous section, we showed that the classical ground-
state manifold of Eq. (1) possesses a rich structure. The color
ice states may be visualized as a set of discrete points. Starting
from a color ice state, a weathervane mode generates a one-
dimensional submanifold, whose topology is that of a circle.
Each point on this circle corresponds to a different value of
weathervane angle φwv, with φwv = 0,±2π/3 being the color
ice states. Therefore, the classical ground-state manifold is a
hybrid of continuous and discrete structures.

In this section, we study the order by disorder phenomenon
in the classical ground-state manifold of Eq. (1) within a
harmonic approximation. In Sec. III A, we briefly review the
formalism. In Sec. III B, we study the thermal and quantum se-
lection within the one-dimensional submanifold generated by a
weathervane mode. By investigating several one-dimensional
submanifolds, we find that the entropy maxima are invariably
twofold dgenerate. One maximum is located at a color ice state,
and the other is located at a non-color-ice state, which is related
to the said color ice state by a weathervane mode with φwv = π .
Similarly, the energy minima are also twofold degenerate, and
the minima are located at the same states. Furthermore, we
point out that such twofold degeneracy results from a special
property of the dynamical matrix. In Sec. III C, we perform a
restricted search for the maximal entropy and minimal energy
states among the color ice states. We find two different maximal
entropy states for different values of the model parameter θB.
While the minimal zero-point energy states coincide with the

maximal entropy states for large and small values of θB, a third
color ice state arises as the minimal energy state in a small
window of θB. In Sec. III D, we discuss the implications of our
finding on the phases of the model (1). In particular, we argue
that our results suggest two unusual fluctuation-driven phase
transitions in an extensively degenerate classical ground-state
manifold.

A. Formalism

To begin, we derive the dynamical matrix for the harmonic
fluctuations near a classical ground state. We replace the spin
operator Si by classical vector Sni and rewrite the unit vector
ni as

ni = ẑi

(
1 − u2

i

2

)
+ ui

√
1 − ui

2

4
. (8)

ẑi is the unit vector that parametrizes the orientation of the
spin i in the classical ground state. Two-dimensional vector
ui ⊥ ẑi parametrizes the deviation from the classical ground
state with ui � 2. In particular, we recover ni = ẑi when
ui = 0. Importantly, the Jacobian of the transformation in
Eq. (8) is 1 [41].

We plug Eq. (8) into the expression for classical energy (6)
and expand E up to second order in ui, E ≈ E0 + E(2).
The classical ground state energy is E0 ≡ NJ0S

2(− cos θB +
sin θB/3), where N is the number of sites. The quadratic piece
is

E(2) ≡ K0

2

∑
i

u2
i + K1

∑
〈ij〉

ui · uj + K2

∑
〈ij〉

(ui · ẑj )(uj · ẑi),

(9)

where K0 = 2J0S
2(cos θB + 2 sin θB),K1 = J0S

2(cos θB −
2/3 sin θB), and K2 = 2J0S

2 sin θB.
To proceed, we introduce explicit frames ui = uix x̂i +

uiyŷi . The choice for {x̂i ,ŷi} is arbitrary as long as {x̂i ,ŷi ,ẑi}
form a right-handed orthonormal basis. All physical observ-
ables are independent of such a choice. E(2) is then recast as a
quadratic form of uix,uiy :

E(2) = 1

2

∑
iα,jβ

Miα,jβuiαujβ. (10a)

Here, the summation of α,β runs over x and y. The
2N × 2N dynamical matrix M encodes the information about
the harmonic fluctuations near a classical ground state. The
diagonal elements of M are given by

Mix,ix = Miy,iy = K0, Miy,ix = Mix,iy = 0. (10b)

The off-diagonal elements are nonzero if and only if i,j are
nearest neighbors, with

Miα,jβ = K1giα,jβ + K2giα,jzgiz,jβ . (10c)

Here, giα,jβ ≡ α̂i · β̂j with α,β taking the label x or y.
Likewise, giα,jz ≡ α̂i · ẑj and giz,jβ ≡ ẑi · β̂j .

Thermal selection. Once the dynamical matrix M is known,
one can compute the entropy from classical thermal harmonic
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fluctuations using

Scl = −kB

2
tr′ ln M. (11)

The thermal fluctuations favor the classical ground state with
maximal Scl. Note that we exclude the zero modes of M in the
trace and hence the prime on tr in Eq. (11).3

Quantum selection. Given M, one can also compute the
classical spin wave spectrum by solving the following equation
of motion (henceforth, we set � to 1):

u̇iα = J0S
∑
jβ

(ηM)iα,jβujβ, (12)

where η is the 2N × 2N skew-symmetric matrix: ηiα,jβ =
ηαβδij , where ηxx = ηyy = 0 and ηxy = ηyx = −1. The clas-
sical spin wave spectrum is then found by diagonalizing
iηM. It can be shown that iηM is diagonalizable if M is
semi-positive-definite [42]. Moreover, the eigenvalues of iηM
come in pairs: ±ω1,±ω2 . . . ±ωN , where ωλ are real and
non-negative. The eigenfrequencies of spin wave modes are
simply given by {ωλ}.

Upon quantization, each spin wave mode λ contributes a
zero-point energy ωλ/2. The total energy at zero temperature
is given by

Eqt = 1

2

∑
λ

ωλ, (13)

where the summation runs over all spin wave modes λ. The
quantum fluctuations select the state with minimal Eqt as the
ground state of the Hamiltonian.

Free energy at finite temperature. The selection effects
of harmonic thermal fluctuations and harmonic quantum
fluctuations may be treated on equal footing by considering
the free energy at finite temperature T :

F =
∑′

λ

ωλ

2
+ kBT ln(1 − e−βωλ ), (14)

where we exclude the zero modes (ωλ = 0) from the summa-
tion. β ≡ 1/(kBT ). In the limit of T → ∞,

F → kBT
∑

λ

ln ωλ = kBT

2
ln[(−)N det(iηM)]

= kBT

2
tr ln M = −T Scl, (15)

which recovers the classical result of Eq. (11). The second
equality follows from the spectral property of iηM that its
eigenvalues come in pairs, and the third equality follows from
det(iη) = (−1)N . We have assumed above that iηM contains
no zero eigenvalues for the sake of simplicity (they can be
removed by an infinitesimally small staggered magnetic field).

3In Eq. (11), we have neglected the contribution from zero modes.
The weathervane modes give rise to zero modes (Sec. II D). However,
the number of zero modes does not exceed O(L) in a periodic system
of linear dimension L (Sec. II C). Therefore, Scl is dominated by
the contribution from modes of finite frequency, whose number is of
order L3. Yet, it is important to note that the covariance matrix M−1

is not well defined due to O(L) zero modes.

FIG. 4. Left: classical entropy per site as a function of the
weathervane mode rotation angle φwv about an AIAO (red dots),
a {100} (green crosses), and a

√
3×√

3 (blue open circles) state.
θB = 0.05π in our calculation. Systems of 30×30×30 magnetic unit
cells are used. Right: similar to the left panel but for the zero-point
energy per site. Outside the right panel: schematic illustration of the
calculation setup. Spins on even weathervane membranes (dashed
lines) are fixed whereas the spins on even weathervane membranes
(solid lines) are rotated by the same angle φwv.

B. Selection of weathervane modes

Equipped with the formalism presented in Sec. III A, we
can now study the thermal and quantum selection in the one-
dimensional submanifold generated by a weathervane mode.
Given that each color ice state may support infinitely many
weathervane mode, and that the number of color ice states is
an exponential function of the system size, we cannot exhaust
all such submanifolds. Instead, we investigate several simple
and typical examples and draw tentative conclusions from
them.

We consider weathervane modes in an AIAO state, a
{100} state, and a

√
3×√

3 state (Fig. 3), in which the spins
rotate with respect to nC. In all three states, the weathervane
membranes are stacked (hence the “even”/“odd” label later)
on one another. For the sake of simplicity, we fix the spins
on even weathervane membranes and rotate the spins on odd
membranes by the same angle φwv (Fig. 4, outside right panel).
To avoid computational issues arising from the zero modes
(Sec. III A), we impose antiperiodic boundary conditions in
two directions and periodic boundary condition in the third.
We consider systems of L×L×L magnetic unit cells. We set
L = 30 and find no visible change if we increase L.

The results are summarized in Fig. 4. We set θB = 0.05π

for illustration purpose. The behavior of Scl or Eqt as function
of φwv is qualitatively the same for other choice of the model
parameter θB. Despite the diverse shapes of the weathervane
membranes, in all three cases, the entropy maxima are at
φwv = 0 and π . Likewise, the zero-point energy minima are
also at φwv = 0 and π . Thus, both thermal and quantum
fluctuations select the same states in a given submanifold.
Note φwv = 0 are color ice states, whereas φwv = π are not.
Furthermore, φwv = 2π/3 and 4π/3, which also correspond
to color ice states, are neither local entropy maxima nor local
(zero-point) energy minima. Hence, not all color ice states
are stable against a weathervane mode. Finally, the energetic
stability of the AIAO, {100}, and

√
3×√

3 states against small
φwv implies that the nodal lines in the classical spin wave
spectra would acquire dispersion at zero temperature once
quantum fluctuations are fully taken into account (Sec. II D).
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The φwv = 0 and φwv = π states are degenerate both in
classical entropy and in zero-point energy. Such degeneracy is
not coincidental. In Appendix B, we prove that the dynamical
matrices M in two classical ground states related by a φwv = π

rotation in a weathervane membrane are identical up to a
local gauge transformation. As a corollary, the two ground
states have the same classical entropy [Eq. (11)] and the
same zero-point energy [Eq. (13)]. For later convenience,
we refer as color companion (CC) a classical ground state
that is obtained from an initial color ice state through a
weathervane mode with a weatherwave angle φwv = π . Note
a color ice state may support many weathervane modes, each
weathervane mode generating a CC of that color ice state. For
instance, an AIAO state supports infinitely many weathervane
modes, each localized onto a kagome layer of the pyrochlore
lattice (Sec. II C). One may pick a specific kagome layer and
collectively rotate the spins in that layer by an angle φwv = π ,
whereby obtaining a CC of the original AIAO state. Since
there are many kagome layers and one can rotate them one by
one, the AIAO state has infinitely many CCs.

C. Selection of color ice states

In the previous subsection, we found that within the one-
dimensional submanifold generated by a weathervane mode,
the maximal entropy states are a color ice state and a CC. Even
though we explored only three one-dimensional submanifolds,
we hypothesize that this is true in general, and speculate that
the maximal entropy states in the entire classical ground-state
manifold are a color ice state and its CCs. In particular,
since the classical entropy of a color ice state and its CCs
is degenerate, we can simply search for the maximal entropy
states among the color ice states. The same reasoning applies
to the search for the minimal quantum zero-point energy states,
and hence we consider only the color ice states as well.

The problem remains a formidable one even after such
a simplification because the number of color ice states is
an exponential function of system size (Sec. II B). We are
therefore forced to consider a limited set of candidate color
ice states. Yet, we postulate that both the maximal entropy
states and the minimal energy states are commensurate with
a small magnetic supercell. We then perform a brute-force
search among all commensurate color ice states.

We use three supercells: the 2×1×1 cubic supercell made
by stacking crystallographic unit cells of the pyrochlore lattice;
the 2×2×2 rhombohedral supercell made by stacking the
primitive unit cells of the pyrochlore lattice; the 3×3×1
rhombohedral supercell (Fig. 5, top panel). To compute
entropy (energy), we stack the supercells in all three directions
and diagonalize the matrix M (iηM) for this large system
(Sec. III A).

The results are summarized in Fig. 5. We find the maximal
entropy states are the AIAO states when θB < 0.0916π and
the

√
3×√

3 states when θB > 0.0916π . While there is close
competition between the {100} states and the

√
3×√

3 states
near θB = 0.09π , the latter becomes the one with largest
entropy once the AIAO states have lost stability.

The zero-point energy shows similar behavior. The minimal
energy states are the AIAO states for θB < 0.110π and the√

3×√
3 states for θB > 0.124π . However, different from the

FIG. 5. Top: various supercells used in the search for maximal
entropy states. From left to right: cubic 2×1×1 supercell, rhombo-
hedral 2×2×2 supercell, and rhombohedral 3×3×1 supercell. Gray
boxes highlight the boundary of the supercells. Middle left: entropy
per site of the AIAO (red dots), {100} (green crosses), and

√
3×√

3
states (blue open circles) as a function of θB ∈ (0,π/2). The entropy
of AIAO states is subtracted for better discernibility. Middle right: the
entropy as a function of θB in a smaller interval θB ∈ (0.08π,0.12π ].
Bottom: similar to the middle panels but for the zero-point energy per
site. We use a 30×30×30 grid of 2×2×2 rhombohedral supercells in
calculating the entropy or energy of AIAO states and {100} states and
a 20×20×60 grid of 3×3×1 rhombohedral supercells for

√
3×√

3
states. Our choice of system size ensures the number of sites is the
same.

entropy case, the {100} states become the minimal energy
states in a small window 0.110π < θB < 0.124π .

While both the classical thermal fluctuations and zero-
temperature quantum fluctuations favor the same color ice
states at large and small θB, they differ in a small θB interval. To
gain a better understanding of the selection effect when both
quantum and thermal fluctuations are present, we compare
the free energy [cf. Eq. (14)] of the three competing color
ice states. The results are summarized in Fig. 6. We find that
the θB window of stability for the {100} states diminishes as
the temperature T increases from 0, and eventually disappears
when T/(J0S) � 0.3. While we caution that this calculation
is carried out at the harmonic level, it is interesting that the
quantum calculation shows a collapse of the {100} phase
at sufficiently high temperature, giving only two competing
phases (AIAO and the

√
3×√

3) as in the classical entropy
calculation.
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FIG. 6. Color ice states with minimal free energy at finite temper-
ature. Regions with different minimal free-energy states are colored
differently. Crosses and open circles mark regional boundaries. The
calculation setup is the same as in Fig. 5.

D. Semiclassical phase diagram

In this subsection, we discuss the implications of our finding
in Sec. III C on the phase diagram of the model (1) in the
semiclassical limit. A sketch of the speculated phase diagram
is presented in Fig. 7.

We first consider T = 0, where the quantum fluctuations
dominate. Recall that the zero-point energy of a color ice
state and its CCs is degenerate. Thus, when θB < 0.110π ,
harmonic quantum fluctuations in fact not only select the AIAO
states, but also their CCs. However, the degeneracy among
this set of states S, namely, the AIAO states and their CCs,
is accidental as it results from a peculiarity of the quadratic
approximation (Sec. III B). At a higher-order approximation,
nonharmonic quantum fluctuations would lift the accidental
degeneracy and select a unique member state [up to the global
symmetries of Eq. (1)] from S. Since this state exhibits long-
range dipolar magnetic order, we denote it as Dipolar #1.
By the same reasoning, quantum fluctuations select a second
(denoted as Dipolar #2) and a third ground state (denoted as
Dipolar #3) in the parameter window θB ∈ (0.110π,0.124π )
and θB ∈ (0.124π,0.5π ), respectively. Specifically, Dipolar #2
state is either {100} state or its CCs, and Dipolar #3 state is

FIG. 7. Sketch of the speculated phase diagram of Eq. (1) in the
semiclassical limit (S � 1). The phase boundary curves are mere
guide for eye. θB = 0 corresponds to the bilinear Heisenberg model
(marked as open circle), where the physics is very different from the
bilinear-biquadratic model discussed here. See Sec. IV for discussion
on this limit.

either
√

3×√
3 or its CCs. In short, our results suggest two

fluctuation-driven phase transitions at T = 0.
We must caution that our finding is based on a restricted

search. It is possible that there may exist a state outside our
searched space whose energy is minimal for all 0 < θB < π/2,
whereby evading the phase transition discussed here. We
believe this is unlikely given the high symmetry of the AIAO
states and the fact that the AIAO states have minimal energy
at small θB for the three supercells investigated. Yet, the exact
nature of the minimal energy states for larger θB remains less
certain at this time.

When T > 0, the thermal fluctuations set in. Since all
three ground states are long-range ordered and the system is
three dimensional, they are stable at sufficiently low but finite
temperature. Our finite-temperature free-energy calculation
(Fig. 6) shows the two critical θB decrease as T increases. Each
of the three long-range ordered states would ultimately appear
above their respective critical temperature. Even though the
free-energy calculation shows that two phase transitions may
merge into one at T/(J0S) � 0.3, it seems unlikely to occur
as it may have been well above the critical temperature of the
Dipolar #2 state. To that effect, the schematic phase diagram
of Fig. 7 is drawn such that the Dipolar #2 state is assumed to
have a phase boundary with the Coulomb & Octupolar phase,
and is not pinched off at lower temperature by the Dipolar #1
and Dipolar #3 states.

The dipolar long-range orders disappear above their critical
temperature. If the temperature remains sufficiently smaller
than the biquadratic interaction energy scale (J0S

2 sin θB),
each tetrahedron must be in a TSS. We speculate that the
system is then thermally fluctuating among the color ice states,
implying that it is in a Coulomb phase [29,30]. Moreover,
the spins in color states are restricted to four symmetric
directions [Fig. 1(a)]. As a result, the system also exhibits
an octupolar magnetic order [43]. We note that the thermal
fluctuations dominate in this temperature regime. Even though
our calculation (Fig. 5) shows the AIAO and the

√
3×√

3 states
are, respectively, the color ice states with maximal classical
entropy for small and large θB, thermal fluctuations alone are
unlikely to stabilize any dipolar long-range ordered state as
the entropy gain would be too small to compete with that of
a Coulomb phase [21,25]. In particular, we do not anticipate
any dipolar long-range order in the strictly classical model.
Yet, the thermal fluctuations should be able to induce different
types of short-range orders in their respective model parameter
space.

Finally, as the temperature increases further, the octupolar
magnetic order melts through a thermodynamic phase tran-
sition into either a Coulomb phase or a trivial paramagnetic
phase, a subtlety that we are unable to expand much on here.
Note that a true phase transition, not merely a crossover, must
occur since the octupolar magnetic order breaks spin rotational
and time-reversal symmetries whereas the high-temperature
phase respects all symmetries.

IV. OUTLOOK

We stress that the phase diagram illustrated in Fig. 7 is
speculative. As pointed out in Sec. III C, the exact nature of
the minimal energy state for large θB is less certain given that
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our result is based on a restricted search. Simulated annealing
would be necessary to resolve this issue. Furthermore, a
classical Monte Carlo study is required to put the postulated
octupolar Coulomb phase on a firmer ground. Similar to the
kagome Heisenberg antiferromagnet and the hyperkagome
Heisenberg antiferromagnet, Eq. (1) possesses extensively de-
generate noncollinear ground states. Performing Monte Carlo
simulation of such systems is nontrivial and would require a
specially tailored algorithm [33,37,43–47]. Notwithstanding
this difficulty, a classical Monte Carlo investigation of Eq. (1)
would likely prove interesting.

Throughout this paper, we consider the semiclassical limit
(S � 1, θB ∼ O(1)) of the model (1). Specifically, our calcula-
tion of the zero-point energy is within the quadratic approxima-
tion or, equivalently, to the order of 1/S. At this order, there is a
partial lifting of energy degeneracy among the classical ground
states. We have argued that the nonharmonic fluctuations
would fully lift the remaining accidental degeneracy between
color ice states and the color companions. To determine the
actual ground state, one would need to go to higher order in
1/S [9,10,32,48]. In the opposite quantum regime (S ∼ 1),
more possible ground states, including quantum spin liquid,
valence bond solids, and quantum multipolar magnetic order
may appear, a matter that would be interesting to explore as
well.

Another subtlety arises when we consider the limit θB → 0.
This limit corresponds to the familiar bilinear antiferromag-
netic Heisenberg model on pyrochlore lattice, which has
a much larger classical ground-state manifold [20,21]. To
the order of 1/S, the quantum fluctuations partially lift the
degeneracy and select a family of collinear states [48–50].
Once θB > 0, the collinear states become metastable saddle
points in the classical energy landscape. For sufficiently small
but finite θB, the harmonic quantum fluctuations may turn the
saddle point into minima, whereby stabilizing the collinear
states. This may occur when θB ∼ 1/S, which is a vanishingly
small window when S � 1. By contrast, all of the three dipolar
magnetic ordered states discussed in Sec. III D occupy a finite
interval of the θB axis.

Given the rich physics displayed by this model, a natural
question is whether there exist materials that may potentially
realize Eq. (1) as a first approximation. We first note that the
pyrochlore lattice does not possess bond-inversion symmetry
and hence the Dzyaloshinskii-Moriya (DM) interaction is
always allowed. The DM interaction lifts the extensive
degeneracy of the bilinear Heisenberg model [51–53]. This
observation suggests that one should focus on 3d5 (half-
filled d shell) transition-metal ions where the spin-orbital
interaction is typically the weakest [54]. Second, one must
look for systems with a sizable positive biquadratic interaction
B. While a negative biquadratic interaction often originates
from magnetoelastic interactions [55], electronic correlations
may produce a biquadratic interaction of either sign. In
the latter case, both the sign and the magnitude of B are
sensitive to the details of the material electronic structure [56].
First-principles electronic structure calculations would be
helpful in guiding the search for suitable candidate materials.
Encouragingly, there exists a report [57] based on first-
principles calculations that FeF3, where S = 5

2 Fe3+ ions
reside on a pyrochlore lattice, possesses B > 0 and a DM

interaction slightly weaker than BS2. A very recent paper [58]
reports the synthesis and characterization of the pyrochlore
antiferromagnet NaSrMn2F7 with S = 5

2 Mn2+ ions. The
Na/Sr disorder causes this material to enter the spin-glass
phase below a very low spin freezing temperature. It would
be interesting to ascertain if it displays some aspects of the
octupolar or dipolar correlations discussed in this work above
the freezing temperature. Finally, we note that there is also
an alternative route toward positive biquadratic interaction
through the double-exchange mechanism. It is known that
double exchange generates a negative (ferromagnetic) bilinear
coupling and a positive biquadratic coupling in Eq. (1) [59,60].
If one could find a material in which the ferromagnetic bilinear
coupling resulting from double exchange is much weaker than
the antiferromagnetic bilinear coupling due to superexchange,
then Eq. (1) could be regarded as a pertinent effective model
Hamiltonian [61].

To conclude, we believe our study has merely uncovered a
small part of the many interesting properties of the bilinear-
biquadratic pyrochlore Heisenberg antiferromagnet model. We
hope that our results instill theoretical interests in this model
and motivate a search for candidate materials along with a
systematic investigation of their properties.

Note added. Recently, we were made aware [62] that a
previous work [63] that studies the problem of magnetic
instability out of the fully polarized state of a pyrochlore
magnetic system does consider the possibility of a positive
biquadratic interaction B.
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APPENDIX A: COUNTING WEATHERVANE MODES

In Sec. II C, we showed that the color ice states support
two-dimensional weathervane modes. An important question
is how many such modes a given color ice state supports.
Below, we give a partial answer to this question. First, we
prove that the weathervane membrane, the two-dimensional
structure that supports a weathervane mode, must percolate
through the system. As a corollary, the number of weathervane
modes in a periodic system of linear dimension L cannot be
O(L3). Second, we argue that the counting of weathervane
modes is unlikely to be O(L2). Finally, we provide numerical
evidence for the claim that the counting of weathervane modes
cannot exceed O(L).

No O(L3) scaling. To begin, we consider a pyrochlore
lattice with open boundaries. Specifically, we take the open
surfaces to be (100), (010), and (001) surfaces [Fig. 8(a)].
We assume the spins are in a classical ground state. In other
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FIG. 8. (a) A system with open boundary conditions in all three
directions. The blue torus presents a possible weathervane membrane
localized in the system. (b) Two (001) layers in the pyrochlore lattice.
The bottom layer (blue) and the neighboring layer (green) are shown.
(c) A system with open boundary condition in [100] and [010] and
periodic boundary condition in [001]. The open boundary surfaces are
(100) and (010). The blue cylinder represents a possible weathervane
membrane that percolates along the crystallographic cubic [001]
direction.

words, every tetrahedron is in TSS. We now prove by reducio
ad absurdum that the weathervane membrane must percolate
in this system. Suppose the opposite is true, and that there is a
weathervane membrane localized inside the system. In such a
case, if we fix the orientation of all spins on the six boundaries,
the dimension D of the classical ground-state manifold in such
an open boundary system supporting a weathervane mode must
be at least D = 1. However, such situation cannot occur. To
see this, we start with the (001) boundary layer at the bottom
and suppose all the spins in this layer are fixed [Fig. 8(b), blue
tetrahedra]. We then consider the next (001) layer [Fig. 8(b),
green tetrahedra]. On one hand, every tetrahedron in the second
layer shares two sites with the first layer. On the other hand,
given that the four spins belonging to a tetrahedron are in
TSS [Fig. 1(a)], if two member spins are fixed, the other two
spins cannot rotate continuously (but a reflection is allowed).
Thus, the spins in the second layer cannot rotate continuously.
By repeating this argument, we find that no spin can rotate
continuously if we fix the boundary spins and, therefore, the
classical ground-state manifold dimension is D = 0, and not
D � 1 as demanded above.

We have therefore proven that a localized weathervane
membrane does not exist and that, instead, it must percolate
through the boundaries. An immediate corollary is that the
number of weathervane modes cannot be of order L3 in a
periodic lattice of linear dimension L. This follows from the
observation that a number O(L3) of weathervane modes would
require a localized weathervane membrane (of finite size) and
whose spatial positioning in the system would then generate
O(L3) weathervane modes. The latter situation reminds one
of the weathervane mode about the so-called

√
3×√

3 ground
state in the two-dimensional classical Heisenberg kagome
antiferromagnet [35]. In that case, those modes correspond
to localized zero-energy excitations that reside on 6-site
hexagons, with their number being proportional to the number
of the sites in the system.

No O(L2) scaling. Having ruled out an O(L3) scaling, one
is next led to ask whether the counting of weathervane modes
could be O(L2). The existence of O(L2) weathervane modes
would require that the weathervane membrane percolates
through the lattice in one direction while being localized in
the other two directions [Fig. 8(c)]. We call the direction along

which the weathervane membrane percolates the “percolation
direction.” We now show that the percolation direction cannot
be [001]. By symmetry, the percolation direction cannot be
[100] and [010] either.

We consider a lattice with periodic boundary conditions
along [001] and open boundary condition along [100] and
[010]. Specifically, (100) and (001) are the open boundary
surfaces for this system. Suppose there is a weathervane
membrane percolating along the [001] direction. We would
then be able to contain the membrane within our system. As
a result, the classical ground-state manifold dimension would
be D � 1 after we fix the orientation of the spins on the open
boundaries. However, by using the same line of reasoning as
in the argument just above, we can show that the classical
ground-state manifold dimension is actually D = 0, which is
a contradiction.

Likewise, we can rule out other high-symmetry directions,
namely 〈111〉 and 〈110〉, as percolation directions. We there-
fore argue that the counting of weathervane modes is unlikely
to be O(L2).

Plausibility of O(L1) scaling. Finally, we performed a
direct numerical enumeration of the weathervane modes. We
consider color ice states commensurate with the 3×3×3
rhombohedral supercell (Sec. III C) and stack them into a
6×6×6 grid. We generate more than 3×106 random color
ice states by using loop updates [28–30], and enumerate the
weathervane modes within each color ice state by using the
procedure detailed in Sec. II C. We find that the maximal
number of weathervane modes is attained by the AIAO states.
Since the AIAO states in a system of linear dimension L

have O(L) weathervane modes, our result therefore strongly
suggests the counting cannot exceed O(L).

APPENDIX B: A SPECIAL PROPERTY
OF THE DYNAMICAL MATRIX

In Sec. III B, we stated that the dynamical matrices M
in two classical ground states are identical up to a gauge
transformation if these two ground states are related by a
weathervane mode with rotation angle φwv = π . Here, we
prove this statement and discuss its implications.

Our strategy is as follows. We consider two classical ground
states, dubbed GS1 and GS2, and the associated dynamical
matrices M1 and M2. GS2 is related to GS1 by a weathervane
mode with φwv = π . We utilize the gauge covariance of M: the
explicit form of M depends on the local frame {x̂i ,ŷi ,ẑi}. While
ẑi is fixed by the spin orientation in a classical ground state,
we are free to choose x̂i ,ŷi , which amounts to a gauge choice
since it would not affect any of the physical observables. Here,
we shall choose the frames in GS2 such that M1 = M2. Note
that we ought to maintain the right handedness of the spin
frames.

GS1 and GS2 differ by a φwv = π weathervane mode that
is localized on a weathervane membrane. Therefore, only the
local frames on sites belonging to the weathervane membrane
take different orientation between these two classical ground
states. Consequently, (M1)iα,jβ and (M2)iα,jβ may be poten-
tially different if and only if i or j is on the membrane.

We first consider the case in which i is on the weathervane
membrane while j is off the membrane. Let {x̂i ,ŷi ,ẑi} and
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{x̂j ,ŷj ,ẑj } be the orthonormal frames at sites i and j in
GS1, respectively. In particular, ẑi and ẑj indicate the spin
orientation at i and j in GS1. We recall that, in a weathervane
mode, the spins on the weathervane membrane rotate with
respect to a common axis. The axis coincides with the
orientation of unrotated spins. Here, the spin ẑi rotates with
respect to ẑj by π in the weathervane mode. We thus obtain
GS2 from GS1 by the said π rotation. In particular, the frame
on i becomes

x̂ ′
i = 2(x̂i · ẑj )ẑj − x̂i ,

ŷ ′
i = 2(ŷi · ẑj )ẑj − ŷi , (B1a)

ẑ′
i = 2(ẑi · ẑj )ẑj − ẑi ,

after the rotation. We could use the above as the frame on
site i in GS2. However, we utilize the aforementioned gauge
freedom and choose a different frame. Specifically, we rotate
the x̂ ′ and ŷ ′ by π with respect to ẑ′

i :

x̂ ′′
i = x̂i − 2(x̂i · ẑj )ẑj ,

ŷ ′′
i = ŷi − 2(ŷi · ẑj )ẑj , (B1b)

ẑ′′
i = 2(ẑi · ẑj )ẑj − ẑi .

We take {x̂ ′′
i ,ŷ ′′

i ,ẑ′′
i } to be the frame attached to i in GS2.

In particular, since all aforementioned rotations are proper
rotations, {x̂ ′′

i ,ŷ ′′
i ,ẑ′′

i } is a right-handed frame. Note the frame
on j in GS2 is the same as in GS1, namely {x̂j ,ŷj ,ẑj }, since
the spin on site j is unrotated.

Given the frames, we now compare giα,jβ, giα,jz, and giz,jβ

in GS1 and GS2. We find

giα,jβ = g′′
iα,jβ,

giα,jz = −g′′
iα,jz, (B1c)

giz,jα = −g′′
iz,jα.

Here, the left-hand side is for GS1 whereas the right-hand side
is for GS2. Substituting the above into Eq. (10c), we obtain

(M1)iα,jβ = (M2)iα,jβ . (B1d)

Likewise, we may consider the case in which both i and j

are on the weathervane membrane and show that (M1)iα,jβ =
(M2)iα,jβ . Putting both cases together, We therefore have
M1 = M2.

The above result implies that GS1 and GS2 have the
same spin wave spectrum and the same zero-point energy
within the quadratic approximation [Eq. (13)]. We remark
that the property of the dynamical matrix M discussed here is
reminiscent of the situation in the classical kagome Heisenberg
antiferromagnet, where the dynamical matrix is identical for
all coplanar states [35]

APPENDIX C: ZERO MODES AND SOFT MODES

In Sec. II C, we showed that a color ice state may support
weathervane modes, which are genuine zero-energy collective
spin rotations. In Sec. II D, we pointed out that weathervane
modes imply the dynamical matrix M (Sec. III A) has zero
eigenvalues. However, the converse is not true; a classical
ground state with zero eigenvalues in its M does not necessarily

FIG. 9. (a) Top left: an AIAO state. Spins colored in cyan,
magenta, yellow, and black point along nC, nM, nY, and nK, respec-
tively. Top right: a color-companion (CC) of the AIAO state. Shaded
triangles highlight the weathervane membrane. Spins belonging to
the weathervane membrane are rotated by an angle π with respect to
nM. Bottom left: a weathervane mode supported by the AIAO state.
Spins on the shaded traingles may collectively rotate with respect to
nC by an arbitrary angle φ at no energy cost. We set φ = π/2 for
the visualization purpose. Bottom right: a soft mode supported by the
CC state. Spins covered by the shaded triangles rotate by an angle
φ with respect to various axes (see the main text for details). Here,
we arbitrarily set φ = π/2. Tetrahedra with red bottom are not in a
tetrahedral spin state (TSS). (b) Classical energy cost �E per defect
tetrahdron (i.e., a tetrahedron that is no longer in a TSS) as a function
of rotation angle φ. We set θB = 0.1π (red dots) and θB = 0.25π

(blue crosses). (c) Behavior of �E as a function of φ in the limit
of φ → 0.

support true zero-energy excitations beyond quadratic order.
Exciting a zero eigenmode of M costs no classical energy
within the quadratic approximation. Once we go beyond the
quadratic approximation, the energy cost for exciting such a
mode may be nonzero. It is therefore necessary to classify
the zero eigenmodes of M into two categories. To borrow
the terminology used for the classical kagome Heisenberg
antiferromagnet [35], we refer to the zero eigenmodes of
M which correspond to genuine zero-energy collective spin
rotations as zero modes and those that do not as soft modes.
As we shall see below, the classical energy cost for exciting a
soft mode is proportional to the fourth power of its amplitude
in the small-amplitude limit.

The weathervane modes discussed in Sec. II C are zero
modes by definition and need no further elaboration. The best
way to illustrate the soft modes is through a concrete example.
To this end, we begin with an AIAO state [Fig. 9(a), top left
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panel]. In Sec.II C, we showed that an AIAO state supports
an infinite number of weathervane modes. Each weathervane
mode is localized onto a kagome layer. We pick a given kagome
layer and then rotate all the spins in this layer with respect to
nM by an angle π [Fig. 9(a), top right panel]. The resulting
state is a new ground state: a color companion (CC) of the
AIAO state (Sec. III B). Hereafter, we refer to this state simply
as the CC state.

We now show that the CC state supports soft modes. Our
strategy is as follows. We utilize the fact that the dynamical
matrix of the CC state in appropriately chosen spin frames is
identical to that of the AIAO state (Appendix B). Therefore, a
zero eigenmode of the former dynamical matrix corresponds
to a zero eigenmode of the latter. We then extend the zero
eigenmodes supported by the CC state, which are infinitesimal
spin rotations, to finite rotations and demonstrate that it costs
nonzero energy.

We consider a weathervane mode in the AIAO state. In
the example shown in the bottom left panel of Fig. 9(a),
the spins belong to a given kagome layer (shaded triangles)
rotated collectively with respect to nC by the same angle φ.
Let {x̂i ,ŷi ,ẑi} be the spin frame attached to a kagome site i

in the AIAO state. In the limit of φ → 0, the resulting spin
orientation is given by ni = xi x̂i + yi ŷi + ẑi , where

xi = φ(nC×ẑi) · x̂i , yi = φ(nC×ẑi) · ŷi . (C1)

The list of {xi,yi} for all sites i belonging to the kagome layer
describes a zero eigenmode of the dynamical matrix for the
AIAO state.

To find the corresponding zero eigenmode of the dynamical
matrix for the CC state, we use the results in Appendix B.
Recall the CC state is obtained from the AIAO state by a π

rotation with respect to nM on a subset of spins [Fig. 9(a), top
right panel]. To ensure that the dynamical matrix for the CC
state and the AIAO states is the same, we need to choose the
spin frames in the CC state properly. Specifically, if a spin on
a site i is rotated, we set the frames in the CC state to be x̂ ′

i =
−R(nM,π )x̂i , ŷ ′

i = −R(nM,π )ŷi , and ẑ′
i = R(nM,π )ẑi . Here,

R(nM,π ) stands for the rotation matrix with respect to nM by
angle π , and {x̂i ,ŷi ,ẑi} is the spin frame in the AIAO state. On
the other hand, if the spin on site i is not rotated, we set the
spin frame attached to i in the CC state to be the same as in
the AIAO state, i.e., {x̂i ,ŷi ,ẑi}.

With this properly chosen system of spin frames, the
dynamical matrix of the CC state is identical to that of
the AIAO state. Hence, the previously prescribed list of
{xi,yi}, where i runs over all sites of the same kagome layer
[Fig. 9(a), bottom right panel], describes a zero eigenmode of
the dynamical matrix for the CC state.

To determine the spin orientation in the zero eigenmode,
we use the previously chosen spin frames. In particular, if the
kagome site i was previously rotated during the construction
process of the CC state from the AIAO state [sites covered by
the thick blue line in the bottom right panel of Fig. 9(a)], the
spin orientation is given by

ni = xi x̂
′
i + yi ŷ

′
i + ẑ′

i

= −xiR(nM,π )x̂i − yiR(nM,π )ŷi + R(nM,π )ẑi

= R(nM,π )[ẑi − φ(nC×ẑi)]

≈ R(nM,π )R(nC, − φ)ẑi . (C2)

In the third line, we plug Eq. (C1) in and recognize that the
operation in the square brackets is an infinitesimal rotation
with respect to nC. In the last line, we have upgraded it to a
finite rotation. Otherwise, if a kagome site i does not get rotated
during the AIAO → CC construction, the spin orientation is
given by

ni = xi x̂i + yi ŷi + ẑi

= ẑi + φ(nC×ẑi) ≈ R(nC,φ)ẑi . (C3)

We thus have explicitly constructed a zero eigenmode of the
dynamical matrix for the CC state.

We now demonstrate the aforementioned eigenmode indeed
is a soft mode. We first show that it costs finite classical energy
when φ is not small. Inspection of the resulting state [Fig. 9(a),
bottom right panel] shows that performing the aforementioned
rotation on the CC state brings some of the tetrahedra out of a
TSS (the tetrahedra with red bottom). Therefore, the classical
energy increases. This is confirmed by a direct evaluation of the
classical energy cost �E(φ) [Fig. 9(b)]. We show in Fig. 9(c)
�E(φ) ∝ φ4 when φ is small. This confirms our previous
claim that the energy cost for exciting a soft mode is a quartic
function of its amplitude when the amplitude is small.
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