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Magnetic effects in the paraxial regime of elastic electron scattering
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Motivated by a recent claim [Phys. Rev. Lett. 116, 127203 (2016)] that electron vortex beams can be used to
image magnetism at the nanoscale in elastic scattering experiments, using transmission electron microscopy, a
comprehensive computational study is performed to study magnetic effects in the paraxial regime of elastic
electron scattering in magnetic solids. Magnetic interactions from electron vortex beams, spin polarized
electron beams, and beams with phase aberrations are considered, as they pass through ferromagnetic FePt
or antiferromagnetic LaMnAsO. The magnetic signals are obtained by comparing the intensity over a disk in the
diffraction plane for beams with opposite angular momentum or aberrations. The strongest magnetic signals are
obtained from vortex beams with large orbital angular momentum, where relative magnetic signals above 10−3

are indicated for 10� orbital angular momentum, meaning that relative signals of one percent could be expected
with the even larger orbital angular momenta, which have been produced in experimental setups. All results
indicate that beams with low acceleration voltage and small convergence angles yield stronger magnetic signals,
which is unfortunately problematic for the possibility of high spatial resolution imaging. Nevertheless, under
atomic resolution conditions, relative magnetic signals in the order of 10−4 are demonstrated, corresponding to
an increase with one order of magnitude compared to previous work.
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I. INTRODUCTION

Nanoengineering of magnetic materials allows for
miniaturization of magnetic technology, design of nanos-
tructures with improved properties, as well as exploration
of fundamental phenomena. A complete understanding of
magnetic systems at the length scales relevant in modern
technologies requires readily available characterization
methods capable of reaching high spatial resolution, down to
the atomic distances. The use of circularly polarized x-rays,
available in synchrotron facilities, allows for element specific
imaging of magnetism with resolution down to approximately
10 nm in so-called x-ray magnetic circular dichroism [1–3]
(XMCD) experiments. The discovery of an electron equiv-
alence to XMCD, electron magnetic circular dichroism [4]
(EMCD) opened up possibilities to observe magnetism in the
transmission electron microscope (TEM), potentially allowing
spatial resolution well below the Ångström regime [5] in
scanning TEM (STEM) mode. EMCD, however, suffered from
low signal-noise ratio (SNR) but gained renewed attention
with the discovery of electron vortex beams [6–8], i.e., electron
beams with well defined orbital angular momentum (OAM),
which also facilitate an EMCD signal in electron energy
loss (EELS) experiments [7]. Later it was shown that vortex
beam EMCD can only be observed at atomic resolution [9]
and it remains technologically challenging to perform such
experiments with convincing and reproducible experimental
results, although breakthroughs might be expected with further
improvements in atomic size vortex beam generation [10].

In EMCD experiments, the magnetic signal appears in a
part of the EELS spectrum where merely a small fraction of
the scattered electrons are found, making the signal weak.
Magnetic effects should, however, also appear in the elastic
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scattering regime and albeit previous suggestions that such
effects are very weak [11,12], it was recently shown in
computational work [13] that electron vortex beams carrying
tens of quanta of angular momentum should yield a magnetic
signal in elastic scattering, which is deemed feasible to detect
with modern technology. This appears promising considering
that vortex beams with as much as hundreds of � of OAM
have been produced [8,14]. The magnetic signal is observed
as a difference in the intensity distribution of electrons in
the diffraction plane for opposite OAM beams and will in
the forthcoming be termed OAM magnetic signal. Applying
the same analysis to the signal of oppositely spin polarized
beams, which is referred to as spin magnetic signal in the
following, is of great interest for the emerging development of
spin polarized TEM technology [15]. Further understanding
of these phenomena and how to best detect such magnetic
signals in experiments requires a more comprehensive study
as will be presented in this work, where a discussion of the
relevant theory and computational methods is first provided
in Sec. II. In particular, the paraxial Pauli equation with
relativistically corrected kinetic energy which is used is
derived in Sec. II A. Its solution by a multislice approach
is discussed in Sec. II B. The description of the magnetism
in a magnetic solid, which is required and here obtained
from first-principles electronic structure theory calculations,
is provided in Sec. II D. A comprehensive study of the
OAM and spin magnetic signals and how they depend on
various beam parameters, including acceleration voltage,
convergence angle, and angular momentum, are then provided
for the ferromagnetic compound FePt in Secs. III A-III B.
The case of anti-ferromagnet LaMnAsO is also considered in
Sec. III C. Previous work [13] suggested that an experimentally
measurable magnetic signal was only obtainable with large
OAM beams, which unfortunately hinders the possibility of
high resolution STEM imaging because large OAM also results
in large beam dimensions. One important question to be
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addressed is therefore whether more beneficial conditions can
be found, e.g., by varying the beam parameters, in order to
allow for atomic resolution magnetic measurements with the
suggested technique.

In electron vortex beams, the OAM manifests itself as a
phase winding such that ψl(r) ∝ eilφ , resulting in an OAM of
l�, where l is an integer. Recently, it was suggested [16,17]
and subsequently experimentally corroborated [18] that this is
merely one of many types of phase distributions which can
result in a magnetic interaction in inelastic scattering EMCD
experiments. Alternatives correspond to beam aberrations that
can be controlled in modern aberration corrected (S)TEMs,
thereby opening paths towards high resolution imaging of
magnetism. The possibility of magnetic signals based on
aberrated beams also in elastic scattering is thus explored
in Sec. III D. For further insight into whether the discussed
effects are realistic to observe in experiments, a final Sec. III E
presents a discussion regarding possible noise and errors.

II. THEORY AND METHODOLOGY

A description of the elastic scattering of fast electrons with
wave vector k traveling along the z direction in an electrostatic
potential V (r), is often based on the paraxial Schrödinger
equation [19]

∂

∂z
ψ(r) = i

(
1

2k
∇2

xy + meV (r)

�2k

)
ψ(r), (1)

for the envelope wave function ψ(r) related to the complete
wave function ψf(r) = ψ(r)eikz. Here m = γm0 is the rela-
tivistically corrected mass, −e is the electron charge, � the
reduced Planck’s constant, and ∇2

xy is the two-dimensional
Laplacian. In the paraxial regime,∣∣∣∣∂

2ψ

∂z2

∣∣∣∣ �
∣∣∣∣k ∂ψ

∂z

∣∣∣∣, (2)

Eq. (1) provides a well established and accurate description
of elastic scattering processes [19]. As it is a first order
equation in z it can be solved, for example, through multislice
algorithms, where the solution is computed slice by slice
from the knowledge of the initial wave function at z = 0. The
input required about the system of interest is the electrostatic
potential, V (r), which can be obtained, e.g., via tabulated
values [19] or from calculations based on electronic structure
theory [20]. However, Eq. (1) neglects magnetism as it does
not consider the spin and orbital angular momentum of the
electron beam nor the magnetic fields in the scatterer. With
the development of electron vortex beams and spin polarized
electron microscopes the effects of magnetism in electron
scattering processes are of increasing relevance. Therefore,
in the coming sections, II A–II D, a paraxial equation, which
takes into consideration magnetic effects, will be derived from
a relativistically corrected Pauli equation. The relativistically
corrected form of the Pauli equation can be obtained from
a squared form of the Dirac equation by neglecting certain
effects, such as spin-orbit coupling. A multislice solution
to this equation is then presented and a description of the
magnetic fields in a solid will be discussed. In Sec. II C a brief
discussion is given regarding effects expected in a constant B
field.

A. Paraxial Pauli equation

The time-independent Pauli equation reads[
1

2m
[σ · (p̂ + eA(r))]2 − eV (r)

]
�f(r) = E�f(r), (3)

where p̂ = −i�∇ is the momentum operator, A is the vector
potential, and σ = (σx,σy,σz) contains the Pauli matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0
0 −1

)
. (4)

We are considering an elastic process with energy

E = h2

2mλ2
= �

2k2

2m
, (5)

where k is the wave vector of the incoming electron and
λ = 2π

|k| = 2π
k

its wavelength. Both mass and wavelength are
relativistically corrected according to Fujiwara [11] so m =
γm0 and λ = hc√

(m0c2+T )2−m2
0c

4
, with h and c being Planck’s

constant and the speed of light. T is the kinetic energy which
is typically expressed in terms of the acceleration voltage Vacc,
i.e., T = eVacc.

�f(r) =
(

ψf↑(r)
ψf↓(r)

)
(6)

is the two component wave function with a spin up (↑) and
a spin down (↓) part. For fast incoming electrons with wave
vector (0,0,k), it is suitable to use the ansatz

�f(r) = eikz�(r) = eikz

(
ψ↑(r)
ψ↓(r)

)
(7)

so that ψ↑↓(r) are slowly varying with z, k is large, and∣∣∣∣∂
2ψ↑↓
∂z2

∣∣∣∣ �
∣∣∣∣k ∂ψ↑↓

∂z

∣∣∣∣. (8)

In Coulomb gauge, ∇ · A = 0 (which is used throughout
this work), the momentum part, [σ · (p̂ + eA(r))]2, of Eq. (3)
is equivalent to

(−�
2∇2 − 2i�eA · ∇ + e�σ · B + e2A2)�f, (9)

where the magnetic flux density B = ∇ × A has been intro-
duced. In the following the term proportional to A2 is neglected
as it is small compared to all other terms [12]. From the
Dirac equation [21] a term proportional to V 2, related to the
A2 term, would also appear and both would in principle be
straightforward to include here but would only provide minor
quantitative corrections. Furthermore, these terms are diagonal
in spin space and do not couple to orbital angular momentum
whereby they should not be important for the effects which are
in the focus of this work. The gradient operator yields

∇ψf↑↓ = eikz

(
∂

∂x
,

∂

∂y
,

∂

∂z
+ ik

)
ψ↑↓ (10)

and similarly the Laplacian equates to

∇2ψf↑↓ = eikz

(
∇2

xy + ∂2

∂z2
+ 2ik

∂

∂z
− k2

)
ψ↑↓. (11)

Neglecting the term containing the second derivative with
respect to z according to Eq. (8) and rearranging, Eq. (3)
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becomes

∂

∂z
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ψ↓(r)

)
= im

�
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−1

{
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2

2m
∇2

xy + ie�

m
Axy · ∇xy

− �keAz

m
− e�

2m
σ · B + eV

}(
ψ↑(r)
ψ↓(r)

)

≡ Ĥ

(
ψ↑(r)
ψ↓(r)

)
, (12)

which, upon setting A = B = 0, reduces to the paraxial
Schrödinger equation in Eq. (1) for each of the spin com-
ponents.

Equation (12) is a matrix equation, where each term on
the right hand side is diagonal except the σ · B term, which
includes off-diagonal contributions proportional to Bx ± iBy .
Spin flip effects are therefore only caused by the x and y

components of the B field whereby such effects are expected
to be stronger for magnetizations parallel to the xy plane as
has been suggested before [22] and will be further discussed
in Sec. III B.

B. Multislice solution

In order to numerically integrate Eq. (12), formally written
as

∂ψ

∂z
= Ĥψ, (13)

a multislice method [19] is applied. There are a number of dif-
ferent such methods, including the conventional method [23],
invoking Fourier transforms or the real space version [24]
where the propagator is computed via a series expansion of
the exponential function. Here the real space version will be
used as it has been reported to efficiently yield high numerical
precision [25] and is easy to generalize from the paraxial
Schrödinger equation to the paraxial Pauli equation presented
in Eq. (12). That the real space version of the multislice
algorithm does not require periodicity in the xy plane is also
important as it will be necessary to include nonperiodic vector
potentials as discussed further in Sec. II D and Appendix. The
first step in this approach is to note that the formal solution to
Eq. (13) is

ψ(x,y,z + 
z) = Ẑ{e
∫ z+
z

z
Ĥ (x,y,z′)dz′ }ψ(r), (14)

where Ẑ is Dyson’s path ordering operator for the variable z

needed when the Ĥ (x,y,z′) operators do not commute for dif-
ferent z′. With ĥ = Ẑ 1


z

∫ z+
z

z
Ĥ (x,y,z′)dz′, the exponential

can be expanded:

ψ(x,y,z + 
z) =
∞∑

n=1


zn

n!
ĥn(r)ψ(r). (15)

For thin enough 
z the series in Eq. (15) will converge with
a small number of terms and can be truncated with suitable
numerical accuracy and furthermore ĥ ≈ Ĥ .

C. Interactions with a constant B field

The spin and orbital angular momentum operators are

Ŝ = �

2
σ and L̂ = r × p̂ = −i�r × ∇, (16)

and the relevant part of the Hamiltonian discussed in Sec. II A,
which describes the magnetic interactions between the electron
beam and the sample, is

Ĥmag = ie�

m
Axy · ∇xy − e

m
Ŝ · B. (17)

If the magnetic field is a constant along the z direction, then
as detailed in Sec. II D, in the Coulomb gauge

A = 1
2 B × r, (18)

yielding

Ĥmag = − e

m
A · p̂ − e

m
Ŝ · B

= − e

2m
((B × r) · p̂ + 2Ŝ · B)

= − e

2m
((r × p̂) · B + 2Ŝ · B)

= − e

2m
(L̂ + 2Ŝ) · B. (19)

This expression elucidates how not just the spin but also
orbital angular momentum of the beam will couple to the
magnetic field with a strength proportional to the angular
momentum. It is also clear that a similar magnitude of magnetic
effect is expected from spin and orbital angular momentum.
However, the spin of the electron is fixed while orbital angular
momentum of an electron vortex beam can be deliberately
increased by beam shaping techniques and, furthermore, varies
significantly as the beam scatters through a crystal [9,26].
In a magnetic material this term will be significant if the
beam carries large angular momentum, which is possible with
electron vortex beams [8,14,27]. According to the discussion in
Sec. II D the magnetic fields in a solid will be described as the
sum of a periodically varying part and a uniform part related to
the saturation magnetization. For a beam with size significantly
larger than a unit cell, the interaction with the uniform part
is expected to dominate and a proportionality is expected
between angular momentum and magnetic interaction, while
in the atomic resolution limit the behavior should be different.
This is also in agreement with the results of recent numerical
simulations [13].

Equation (19) also permits a discussion of the precession of
a spin vector in a magnetic field, which is relevant in Sec. III B,
where a situation with FePt magnetized in the x direction is
considered. The Hamiltonian for a spin in a constant magnetic
field in the x direction, B = Bx̂ is

ĤB = B · μ = BμBσx, (20)

and as Eq. (12) has the same structure as a 2D time-dependent
Pauli equation, the z evolution of the expectation value of the
Pauli spin vector is

d

dz
〈σ (z)〉 = i

m

�2k
〈[H,σ ]〉

= 2BμBm

�2k
(0, − 〈σz(z)〉,〈σy(z)〉), (21)

i.e., a spin originally parallel to the magnetic field will remain
stationary while a spin pointing in another direction will rotate
about the magnetization direction.
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D. A and B in a magnetic solid

In order to use Eq. (12) for simulating magnetic scattering of
electrons a realistic description of the magnetic vector potential
A and the corresponding flux density B is needed. In this
work, crystalline magnetic solids will be considered but as
brought up in the Appendix, even in a periodic system, A is in
general nonperiodic regardless of gauge choice. Only when the
volume average of B vanishes, as it does in an antiferromagnet,
the vector potential can be made periodic. This leads to a
natural decomposition of the vector potential in a periodic
(Ap) and a nonperiodic (Anp) part, i.e., A = Ap + Anp which
corresponds to a decomposition of the magnetic flux density
B into a periodic but spatially nonuniform part with volume
average zero (Bp) and a uniform part (Bavg), which is the
volume average of the field, with the total field being B =
Bp + Bavg. These fields can now be related according to

Bavg = ∇ × Anp (22)

and

Bp = ∇ × Ap. (23)

Furthermore, in Coulomb gauge Eq. (22) is easily inverted to
obtain

Anp = 1
2 Bavg × r. (24)

Since Bavg is the volume average of the magnetic flux density,
in a magnetic material with no externally applied fields it is
simply Bavg = μ0M, where M is the magnetization of the
material. How to obtain a microscopic description of Bp and
Ap from first principles electronic structure theory is discussed
in the following. The same procedure was applied in recent
preceding work [13].

From electronic structure theory, e.g., using density func-
tional theory (DFT), one can obtain the magnetization density
as a vector field from the spin-resolved density matrix ρ(r)
according to

m(r) = μB〈σ 〉 = μBTr[ρ(r)σ ]

= μB(2Re(ψ∗
↑ψ↓), − 2Im(ψ∗

↓ψ↑),ρspin), (25)

where ρspin = |ψ↑|2 − |ψ↓|2 is the spin density projected on
the spin quantization axis, here chosen to be the z axis. Via a
Gordon decomposition [21,28] it is possible to calculate the
spin current density

jS(r) = ∇ × m(r), (26)

and in the further considerations the orbital current density is
neglected as we focus on ferromagnetic transition metals with
magnetism dominated by the spin, so the index S is dropped
in the notation of current density. From the current density, the
periodic part of the magnetic vector potential Ap is given by
the Poisson equation, since Maxwell’s equations tell us that

∇ × B = μ0j (27)

but

∇ × B = ∇ × (∇ × A) = ∇(∇ · A) − 
A = −
A, (28)

in Coulomb gauge (∇ · A = 0), so


A(r) = −μ0j(r). (29)

Clearly, 
Anp = 0 [as the second derivatives of Eq. (24) are
all zero] whereby Eq. (29) reads


Ap(r) = −μ0j(r), (30)

and Ap can be obtained by solving the Poisson equation with
periodic boundary conditions. A unique solution additionally
requires knowledge of the value of the vector potential at
some point or its volume average, which can be set to an
arbitrary value by the remaining gauge freedom [29]. Finally,
Bp is easily calculated from Eq. (23). This procedure uniquely
determines A and B, given the density matrix. Furthermore,
the fields have been constructed so that B fulfills Maxwell’s
equations with physical boundary conditions (periodicity with
a volume average corresponding to μ0M) and so that A fulfills
its defining equation and Coulomb gauge.

Finally, it is noted that some simplifications occur in
the case of collinear magnetism with ẑ defining the spin
quantization axis. The magnetization density in Eq. (25) then
simplifies to

m(r) = μBρspinẑ, (31)

so the current density in Eq. (26), and hence also A, has
nonzero x and y components only. Therefore the Poisson equa-
tion needs to be solved only in two dimensions, independently
for each value of z, which simplifies the numerical work. The
result of this methodology applied to ferromagnet FePt and
antiferromagnet LaMnAsO will now be presented.

1. FePt

FePt in the tetragonal L10 structure is a ferromagnetic ma-
terial with lattice parameters a = 2.71 Å and c = 3.72 Å [30]
and a Curie temperature in the vicinity of 700 K [30], which
has gained much attention, for example, due to its large
magnetocrystalline anisotropy [30,31].

Figure 1(a) shows one unit cell of FePt with planes at z = 0,
z = c

8 , z = c
4 , z = 3c

8 , and z = c
2 . The spin density of this FePt

structure was computed in a collinearly spin polarized DFT
calculation using the full-potential linearized augmented plane
wave (FP-LAPW) [32] method in the generalized gradient

z=0

z=0.16c
z=c/4
z=0.34c

z=c/2

Mn

As
La

O

FIG. 1. One a × a × c sized unit cell of (a) FePt in the L10

structure with planes at z = 0, z = c

8 , z = c

4 , z = 3c

8 , and z = c

2
and (b) LaMnAsO in the tetragonal crystal structure of space group
p4/nmm and planes at z = 0, z = 0.16c, z = c

4 , z = 0.34c, and
z = c

2 .
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c/
2

6 Å -3 6 ÅT 50 T9 T

3c
/8

c/
4

c/
8

spin

z=
0

A
x

B
z

B
x

FIG. 2. Spin density, x component of the Ap field, x component
of Bp field, and z component of Bp in a unit cell of L10 FePt from the
procedure described in the text.

approximation (GGA) [33]. Calculations were performed
with the experimental values of the lattice parameters. Such
calculations produce a magnetic moment of 2.93 μB on the
Fe atom and a smaller induced moment of 0.37 μB on the
Pt atom, which corresponds to a saturation magnetization of
μ0M = 1.38 T, in good agreement with the experimentally
reported value of 1.36 T [34]. In the left column of Fig. 2
the spin density is shown in the planes indicated in Fig. 1(a).
The remaining columns in Fig. 2 show the x component of
Ap, the x component of Bp, and finally the z component
of Bp, respectively. The z component of Ap is zero because
collinear magnetism is considered and as a result of the crystal
symmetry, the y components of Ap and Bp are the same as the
x components but rotated by 90◦ about the z axis. The shape
of the z component of Bp is very similar to the spin density, but
even though only collinear magnetism with a magnetization
density along the z direction is taken into account, Bp has
nonzero x and y components in contrast to m(r). Together with
the constant saturation field Bavg = μ0M ẑ, and the nonperiodic
part Anp = μ0M × r = μ0M(−y,x,0), the fields in Fig. 2 are
used as input in Secs. III A and III B.

2. LaMnAsO

In Sec. III C the antiferromagnetic compound LaMnAsO in
tetragonal crystal structure [space group p4/nmm with lattice
parameters a = 4.114 Å and c = 9.030 Å [35], illustrated in
Fig. 1(b)], is studied. This material has two antiferromagneti-
cally coupled Mn atoms with crystallographic positions (0,0,0)
and ( 1

2 , 1
2 ,0), i.e., the different columns (in the z direction) of

Mn atoms have antiparallel spins while the different planes
have parallel spins, whereby magnetic STEM imaging over
the xy plane should be able to distinguish the different Mn
columns. The additional atoms are As at ( 1

2 ,0,0.1684) and
(0, 1

2 ,1 − 0.1684), La at (0, 1
2 ,0.3674) and ( 1

2 ,0,1 − 0.3674),

c/
2

5 10-2 Å -3 0.7 ÅT 1 T2 T

0.
34
c

c/
4

0.
16
c

spin

z=
0

5 Å -3

A
x

7 ÅT

B
z

50 T

B
x

2 T

FIG. 3. Spin density, x component of the Ap field, x component
of the Bp field, and z component of Bp in a unit cell of LaMnAsO
from the procedure described in the text, in the planes where z = 0,
z = 0.16c, z = c

4 , z = 0.34c, and z = c

2 . Note that there are different
scales for the top row (z = 0) and the next four rows.

and O at (0,0, 1
2 ) and ( 1

2 , 1
2 , 1

2 ). The Neel temperature of the
compound has been experimentally reported as 317 K [36],
although more recent work suggests that this value is due to an
impurity whereas the correct Neel temperature of LaMnAsO
should be 360 K [37]. The magnetic moment of Mn at 2 K
is 3.54 μB [35]. A FP-LAPW calculation in the GGA, with
experimental lattice parameters but computationally relaxed
internal atomic positions, yields a magnetic moment on
Mn of 3.51 μB, in good agreement with the experimental
value [38].

Figure 3 presents the same type of data as in Fig. 2 but
for LaMnAsO, with the first row showing the spin density as
obtained from the FP-LAPW GGA calculation in the planes
where z = 0, z = 0.16c, z = c

4 , z = 0.34c, and z = c
2 as

illustrated in Fig. 1(b). Observations which can be made in
Fig. 3 are similar to in Fig. 2. For example, the shape of the B
field is very similar to the spin density again. Most of the spin
density is located in the plane of the Mn atoms, and it can be
seen that also the small induced spin moments on the O atoms
are antiparallel to those on the Mn atoms in the same atomic
columns. Furthermore, it can be seen that even though both
La and As have magnetic moments which are identically zero,
there is a nonzero distribution of spin density around the atoms,
however, as it integrates to zero over a sphere centered at the
atoms, there is a net moment of zero. Nevertheless, this spin
density yields a nonzero magnetic field around these atoms,
which is, however, 2–3 orders of magnitude weaker than the
field around the Mn atoms.
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III. RESULTS

In this section, results of numerical simulations based on
the methodology introduced in the preceding parts of the
text will be presented. First, results of calculations for FePt
with magnetization parallel (z direction) or perpendicular
(x direction) to the propagation direction are presented in
Secs. III A–III B, respectively, and then results for LaMnAsO
are shown in Sec. III C. The results from calculations with
aberrated electron beams are presented in Sec. III D. The
calculations were performed with the A(r) and B(r) input as
presented in Sec. II D, while the electrostatic potential V (r)
was taken from tabulated data [19]. All electron vortex beams
are generated as disks in reciprocal space, according to

ψl(k⊥,φk) ∼ eilφk�(qmax − k⊥), (32)

where k⊥ =
√

k2
x + k2

y and φk are cylindrical coordinates and
qmax the beam size in reciprocal space, which can be related to
convergence angle α and wavelength λ according to qmax = α

λ
.

A. FePt with magnetization parallel to the
propagation direction

Multislice simulations were performed for an FePt system
with 60 × 60 u.c.2 = 16.26 × 16.26 nm2 in the xy directions
and thicknesses up to t = 200 u.c. = 74.4 nm with various
combinations of acceleration voltage Vacc, convergence angle
α, and OAM l listed in Table I, where also the corresponding
wavelengths λ of the electron beams are given. Each unit
cell was discretized on a 64 × 64 × 32 grid. Parameter
combinations with α = 6 and l � 20 were excluded as they
result in large beam size requiring larger supercell sizes. The
calculations for nonzero l were performed with a beam initially
spin polarized with spin up electrons in the propagation (z)
direction, since the OAM magnetic interaction should be very
similar regardless of spin [13]. The l = 0 calculations were
performed both with spin up and spin down beams in order
to look at spin effects. In Sec. III B we investigate the case
where the magnetization direction is perpendicular to the
beam spin quantization axis instead of parallel. Calculations
were performed for beam position (x,y) = (0,0), which is
on a column of Fe atoms. For beams with spatial extent
significantly beyond atomic distances, the beam position is
not important [13]. For smaller beams the position is important
and will be explored in the context of atomic resolution STEM
imaging later in this section as well as in Sec. III C.

After every unit cell the radial intensity distribution, i.e.,
integral of the diffraction pattern over a disk shaped region

TABLE I. Table containing the parameter values of the acceler-
ation voltage Vacc and its corresponding wavelength λ, convergence
angle α, and OAM l for which calculations were performed for the
FePt system.

Parameter Values

Vacc (kV) 60 100 200 300 1000
λ (pm) 4.87 3.70 2.51 1.97 0.87
α (mrad) 6 15 30 60
l 0 1 2 4 5 10 20 30

up to some maximum collection angle θ , was computed
since the difference between such distributions for opposite
values of OAM yields an OAM magnetic signal [13]. Such
a signal may be experimentally measured in the TEM by
conventional annular detectors in a straightforward manner.
The magnetic signal can then easily be studied as a function
of both collection angles and thickness for each parameter
combination in Table I. Plots of the OAM magnetic signal
as a function of the collection angle and sample thickness are
shown for some example parameters, specified in the captions,
in Fig. 4. In all cases one can see a magnetic signal reaching
magnitudes of order 10−5 varying strongly with both thickness
and collection angle. Some general traits that can be observed
regarding the regions with most magnetic signal include that
higher acceleration voltages move these regions to larger
sample thicknesses while larger convergence angles spread
out this region over larger collection angles. Both of these
observations are expected because larger acceleration voltage,
roughly speaking, will effectively make the sample appear
thinner, while a larger convergence angle will cause the beam
to spread out more. Still it will most likely be difficult to easily
predict where the largest magnetic signals can be found for a
given set of parameters. Therefore, computational studies such
as that presented here will be an important help to experimental
work attempting to detect such a magnetic signal. Another
observation in several of the figures, e.g., Fig. 4(f), is that
there is a region with relatively large negative magnetic signal
for small collection angles, just under 10 mrad, while there
is a smaller positive signal spread out over larger collection
angles. This behavior results from the predominantly positive
magnetic coupling term in the case of the negative OAM beam
reducing its lateral momentum with respect to the positive
OAM beam possessing a negative magnetic coupling term.
Thus the magnetic field has a tendency to localize the negative
OAM beam and delocalize the positive OAM beam around
the propagation axis. Note that at sufficiently large collection
angles the magnetic signal is expected to go to zero since it
is obtained as a difference between two intensities, which are
both normalized and should approach one at large collection
angles. However, in the plots shown here the collection angles
are restricted to 100 mrad for two reasons; firstly for better
visibility of the interesting region with strongest magnetic
signal at rather small collection angles, typically around
25 mrad or smaller, and secondly because the computational
methods used are less accurate for very large scattering angles,
rendering such data less reliable [39].

For better insight into how the magnetic signal varies with
a given parameter while keeping others fixed, plots of the
magnetic radial profiles at a fixed thickness of t = 50 u.c. =
18.6 nm are shown in Fig. 5, varying either the initial OAM l

in Fig. 5(a), the acceleration voltage Vacc in Fig. 5(b), or the
convergence angle α in Fig. 5(c), while keeping the others
fixed at values specified in the captions. Figure 5(a) shows
an increasing magnetic signal with large OAM. As has been
pointed out before [13], with large OAM and correspondingly
large beam size there is a proportionality between magnetic
signal and OAM as expected also from the discussions in
Sec. II C. This is clearly illustrated in the inset, which shows
the magnetic signal divided by the magnitude of the OAM. For
l = 5 or larger the curves fall almost on top of each other while
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α = 6 mrad, l = ±1.

(b) Vacc = 300 kV,
α = 6 mrad, l = ±1.

(c) Vacc = 100 kV,
α = 30 mrad, l = ±1.

(d) Vacc = 300 kV,
α = 30 mrad, l = ±1.

(e) Vacc = 100 kV,
α = 6 mrad, l = ±10.

(f) Vacc = 300 kV,
α = 6 mrad, l = ±10.

(g) Vacc = 100 kV,
α = 30 mrad, l = ±10.

(h) Vacc = 300 kV,
α = 30 mrad, l = ±10.

(i) Vacc = 100 kV,
α = 15 mrad, l = ±10.

(j) Vacc = 60 kV,
α = 6 mrad, l = ±10.
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FIG. 4. OAM magnetic signal, as functions of sample thickness
t and collection angle, θ , for various OAM l, acceleration voltages
Vacc, and convergence angles α.

the deviation for smaller l is due to the increasing interaction of
the localized vortex probe with the periodic nonuniform part of
the magnetic field rather than the uniform part corresponding
to the saturation magnetization.
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FIG. 5. OAM magnetic signal as function of collection angle after
50 unit cells of FePt for various beam parameters. The inset in (a)
shows magnetic signals normalized w.r.t. to the OAM, i.e., magnetic
signal divided by l.

In Fig. 5(b) one can observe a trend that a stronger magnetic
signal is obtained with lower acceleration voltages. It was
pointed out previously [13] that one possible reason for this is
a factor γ −1 appearing in connection to the magnetic terms in
Eq. (1) but not with the electrostatic potential. As γ increases
with Vacc, the magnetic effects are therefore expected to
decrease with larger Vacc. However, multiplying each of the
curves in Fig. 5(b) with the corresponding γ (not shown), will
only result in a rather small change with most of the increase in
magnetic signal at smaller Vacc remaining, indicating that this
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is only part of the explanation. As larger acceleration voltages
and faster electrons should effectively make the sample appear
thinner, another part of the explanation for the increase in
magnetic signal with smaller acceleration voltage seen here
can also be due to the sample thickness being fixed, and hence
a thicker sample might be needed to accumulate the same
magnitude magnetic signal for larger acceleration voltages.
Furthermore, the acceleration voltage affects the beam width
as a beam with higher energy will be of smaller spatial extent.
It is possible that this also affects the magnetic signal and that
a beam of larger spatial extent will interact more strongly
with the magnetism in the sample. This idea is supported
by looking at Fig. 5(c), where the convergence angle α is
varied. Here the trend appears to be that smaller convergence
angles, i.e., larger beam sizes, yield a stronger magnetic
signal. Unfortunately, this is inauspicious for atomic resolution
imaging of magnetism via elastic scattering of electron vortex
beams.

To provide a more complete view of how the strength of
the magnetic effects in elastic scattering of electron vortex
beams depends on the various parameters considered here,
the absolute value of the maximal magnetic signal w.r.t.
thickness and collection angle (restricted to 100 mrad) for
the various acceleration voltages and convergence angles
have been plotted against l. The data has been split up
so that Fig. 6(a) contains data with smaller convergence
angles of α = 6–15 mrad, which yields larger sized beams,
while Fig. 6(b) contains data with larger convergence angles
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FIG. 6. Maximum of absolute values of the OAM magnetic
signals as shown in Fig. 4 w.r.t. thickness and collection angle as
function of l for various acceleration voltages (in kV) and convergence
angles (in mrad) specified in the legends.
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FIG. 7. Thickness dependence of the relative OAM magnetic
signal for a beam with Vacc = 100 kV, α = 6 mrad, and l = ±10
in FePt.

of α = 30–60 mrad, which yields smaller sized beams. In
Fig. 6(a) it can once again be seen that larger beam sizes result
in a close to linear increase in the magnetic signal strengths
with l. Furthermore, it can be seen that for a given l, smaller
convergence angles or smaller acceleration voltages, i.e., larger
spatial beam sizes, result in a stronger magnetic signal, also
in agreement with previous observations regarding Fig. 5. In
Fig. 6(b) it is observed that, for the smaller sized beams, there is
a rather weak dependence in the magnetic signal as a function
of l. For acceleration voltage and convergence angle, on the
other hand, it still appears that smaller values, corresponding
to wider beams, yield stronger magnetic signals. As pointed
out above, this presents a difficulty for experiments aiming at
very high spatial resolution since the results presented here
indicate that the signal weakens for the smaller beam sizes
required for such experiments.

The largest OAM magnetic signals above 10−4 have
been observed for large OAM, small convergence angles,
and low acceleration voltages. To further elaborate on the
feasibility to experimentally measure the magnetic signals, the
thickness dependence of the relative OAM magnetic signal,
i.e., difference in intensity for opposite OAM divided by the
sum, has been plotted for Vacc = 100 kV, α = 6 mrad, and
l = ±10 in Fig. 7. The collection angles for the disk shaped
regions in the diffraction plane are indicated in the legend. For
a small collection angle the largest relative magnetic signal is
above 10−3, compared to previous values reported just below
10−3 with l = ±30 [13]. With larger values of the OAM one
can then expect relative magnetic signals in the order of a
percent or larger.

In order to look at the effect of magnetism in a solid on
electrons with different spin, for the case of l = 0, calculations
were performed for each of the spin polarizations, up and
down, with respect to the z direction. Similar data as that
above, which was presented for opposite values of l, can
then be obtained for opposite spins s to yield a spin magnetic
signal. It has previously been shown [13] that similar effects
of the same order of magnitude are obtained for s = ±1/2
as for l = ±1, which is expected since the gyromagnetic
factor for the electron is equal to two. Figure 8 shows spin
magnetic signals in FePt as a function of both thickness and
collection angle in (a) and (b), thickness dependence with fixed
collection angles in (c), and dependence on collection angle
with fixed thickness of t = 50 u.c. in (d) and (e). Acceleration
voltages Vacc and convergence angles α are specified in
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(a) Vacc = 100 kV,
α = 15 mrad.

(b) Vacc = 200 kV,
α = 15 mrad.
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FIG. 8. Spin magnetic signal as function of thickness and/or
collection angle in FePt for various beam parameters with l = 0.

captions and legends. Fig. 8(a) displays the spin magnetic
signal with Vacc = 100 kV and α = 15 mrad as a function of
both thickness and collection angle for a disk shaped region
in the diffraction plane, and it reaches values of magnitude in
the order of 10−5, which is comparable to the OAM magnetic
signals seen with rather low OAM. As pointed out, this is
due to the value of two for the gyromagnetic ratio of the

electron. Figure 8(b) contains the same type of data but with a
higher acceleration voltage of Vacc = 200 kV which results in
a moderately weaker signal, similarly as was observed for the
OAM magnetic signal. Figure 8(a) also reveals an oscillatory
thickness behavior in the spin magnetic signal, which becomes
somewhat more blurred out and distorted at larger thickness,
presumably because of the deformation of the beam wave
function as it propagates through the sample. A somewhat
similar thickness behavior is seen in Fig. 8(b), although more
distorted. This distortion might be because the beam with
larger acceleration voltage is more focused and thus scatters
more strongly at an atomic column. The thickness dependence
for Vacc = 100 kV and α = 15 mrad is more clearly shown
in Fig. 8(c), where an oscillatory behavior with periodicity
of approximately 24 u.c., independent of collection angle, is
distinctly seen. Comparison with the intensity for a given spin
channel (not shown), indicates that this behavior could be
related to Pendellösung oscillations.

Figures 8(d) and 8(e) indicate similar results as those
observed in the case of the OAM magnetic signal, namely that
a stronger magnetic signal is obtained with low acceleration
voltages and small convergence angles. An apparently contrary
behavior is shown in Fig. 8(e), where lower magnetic signals
are observed for Vacc = 100 kV than for Vacc = 200 kV. This
can, however, be understood by looking at Figs. 8(a) or 8(c),
where t = 50 u.c. happens to be a thickness where the spin
magnetic signal is close to zero independent of collection angle
for these parameters.

When exploiting magnetic effects in electron scattering
for high resolution imaging techniques to probe magnetism
in the electron microscope, it is highly desirable to achieve
atomic spatial resolution. In previous calculations only very
weak magnetic signals were visible in the atomic resolution
STEM simulations [13]. Hence, a further investigation of the
parameter space, as performed here, to obtain better signals is
of crucial importance. For atomic resolution STEM imaging,
the parameters included in Fig. 6(b), which yield small beam
sizes, are the most relevant. Out of these parameters, those
which yield the strongest magnetic effects appear to be Vacc =
100 kV and α = 30 mrad. Hence, using these parameters in
combination with l = ±1, a set of calculations was performed
at beam positions (x,y) = a

8 (i,j ) for i,j = 0,1,2,3,4, i.e., a
5 × 5 grid covering a quarter of the unit cell from which
the remaining unit cell is reconstructed using the fourfold
rotational symmetry. The results of these calculations are
shown in Fig. 9 for different sample thicknesses in the
range 10–60 unit cells as indicated in the different rows and
with varying collection angles as indicated in the different
columns. Figure 9(a) shows the total intensity for an l = +1
beam averaged over spin channels (although the results for
different spins differ negligibly). Due to the symmetry aspects
of electron vortex beams [40], if neglecting the magnetic
interactions studied in this work, the images obtained with
l = −1 would be identical to that obtained by taking the
l = +1 image and applying a mirror symmetry operation of the
crystal [visually the image obtained is identical to the mirror
image of Fig. 9(a) also with magnetism since the magnetic
scattering is relatively weak], whereas this symmetry is broken
by magnetism, which changes sign with mirror operations.
As has previously been pointed out [13], this means that an
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FIG. 9. Simulated STEM images over one unit cell of FePt for an electron probe with Vacc = 100 kV, α = 30 mrad, and l = ±1. Different
rows show different sample thicknesses while different columns show different maximum semiangles for the disk shaped collection region. (a)
Total intensity for a l + 1 beam averaged over spin channels, (b) magnetic signal obtained as difference between l = +1 and l = −1 probes
after mirroring in the y = x line, and (c) magnetic signal as obtained for a fixed l = +1 and by taking a difference between spin channels.

atomic resolution magnetic signal can be obtained by taking
the difference between the signal for a +l OAM beam at (x,y)
and −l OAM beam at (y,x), if mirroring at the y = x line
belongs to the crystal symmetries, as it is for L10 FePt with the
c axis oriented along the propagation direction z. The magnetic
image obtained from such a procedure is shown in Fig. 9(b). As
one might expect, the strongest magnetic signals are seen for
beams located on top of or near the Fe atomic columns (at the
corners of the unit cell). After 50 unit cells a magnetic signal
of magnitude 10−5 is obtained if using a collection angle of
8 mrad. Albeit small, this is one order of magnitude larger
than values previously reported [13]. Nevertheless, atomic
resolution imaging of magnetism with the considered scheme
will remain challenging unless further improvements can be
made.

With spin polarized beams, a magnetic signal can be ob-
tained by taking the difference between spin up and spin down
beams at the same beam position, without considering mirror
operations. Such images, obtained by taking a difference over
spin channels for fixed l = +1, are shown in Fig. 9. As for the
case of OAM magnetic signal, the strongest magnetic signals
have a tendency to be localized around the Fe columns. At a
thickness of 50 or 60 unit cells and with a collection angle of
6 or 8 mrad, a reasonable signal is also seen for beams exactly
on the Pt column. This might be related to the very localized
spin density and corresponding Bz observed at c/2 in Fig. 2.

B. FePt with magnetization perpendicular to the
propagation direction

In the calculations presented thus far as well as in
previous work [13], the magnetization of the sample, the
beam propagation direction, as well as the OAM and spin
quantization axis were parallel. Such a setup is expected to

increase magnetic effects as it makes L · B or S · B large.
However, other magnetic effects such as spin flip processes
might be enhanced in a setup where the sample magnetization
is perpendicular to the spin quantization axis, as has been
suggested before [22] and can also be seen in Eq. (12) by noting
that the only off-diagonal terms are proportional to the x and
y components of the magnetic field. In this section we explore
this effect by performing simulations for an FePt sample
which has been rotated, while keeping the spin quantization
axis parallel to the propagation direction. Since FePt is a
very hard magnet with easy magnetization axis along the c

direction, both the crystal axis and the magnetization direction
were rotated, resulting in an a × c × a unit cell, which was,
however, still discretized on a 64 × 64 × 32 grid.

Calculations have been performed with Vacc = 100 kV,
convergence angle 15 mrad, and l = ±10, and the results
are summarized in Fig. 10. Figure 10(a) shows the OAM
magnetic signal as a function of thickness and collection angle.
This signal is significantly weaker than that observed in the
previous section as one would expect when the magnetic field
is mainly perpendicular to the OAM, but nevertheless reaches
magnitudes of order 10−6 for certain thicknesses and collection
angles. Figure 10(b) shows the proportion of spin down
electrons in the initially completely spin up polarized beam, as
a function of sample thickness. Within the thicknesses studied
this is a monotonically increasing function and it reaches
approximately 10−8 after 80 nm ≈300 u.c. Albeit being a
very small fraction of the electrons, this is several orders of
magnitude more than was seen for magnetizations parallel
to spin polarization where less than 10−12 of the majority
spin states scattered into minority spin states, in agreement
with the expectations mentioned above. The inset shows a
closeup of the region around 40 nm and allows one to see a
regular steplike behavior with periodicity somewhat less than
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(a) OAM magnetic signal as function of thickness and
collection angle.
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(b) Fraction of spin down electrons from an initially spin
up polarized beam as function of thickness with l = +10.
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FIG. 10. Simulations of l = ±10 vortex beams with 100 keV,
15 mrad convergence angle, and spin polarization in the propagation
direction for FePt with magnetization perpendicular to the propaga-
tion direction.

one third of a nanometer, i.e., corresponding to one unit cell
with thickness 0.271 nm.

Figure 10(c) illustrates the rotation of the spin of the beam
as a function of thickness in terms of the polar and azimuthal

angles θ and φ describing the direction of the spin expectation
value 〈S〉 relative to the sample and propagation direction. The
polar angle θ reaches values in the order of 10−4 within the
thicknesses studied while the azimuthal angle φ is of similar
size for very small thicknesses but remains at least one or
two orders of magnitude smaller than θ for larger thicknesses.
The inset shows a closeup for small thicknesses and displays
clear oscillations in φ with periodicity of the lattice, which
can be understood as the variation of φ should be mainly due
to interactions of the beam with the nonuniform part of the
magnetic field (Bp). For comparison, the angle

θ̃ = 2mμ0MsμB

�2k
t, (33)

expected for a spin in a homogeneous magnetic field according
to Eq. (21), is shown. t denotes thickness, i.e., the z coordinate.
The angles θ and θ̃ are similar, especially for small thicknesses
up to about 2 nm, after which θ is somewhat enhanced
compared to θ̃ .

C. AFM LaMnAsO

In an antiferromagnetic (AFM) compound such as
LaMnAsO, the saturation magnetization is zero and conse-
quently the volume average of the magnetic field is also zero,
Bavg = μ0M = 0. In this case there is no reason to expect
any proportionality between the magnetic signal and OAM,
for nanometer sized beams. Instead one can expect that a
large OAM and correspondingly large spatial extent of the
beam, for a given convergence angle, results in a vanishingly
small magnetic signal as the beam size grows significantly
beyond the dimensions of one unit cell. This is confirmed in
Fig. 11, which illustrates the magnetic signal for various values
of the initial OAM l, with convergence angle α = 30 mrad
and acceleration voltage Vacc = 100 kV, after the beam passes
through 20 u.c. of LaMnAsO with each unit cell discretized
on a 64 × 64 × 64 grid. These beams have initial widths
(calculated as the diameter of the ring with maximum intensity)
increasing with l and ranging from 0.6 Å, a fraction of an
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FIG. 11. Magnetic signal as a function of collection angle for
α = 30 mrad, Vacc = 100 kV, and various values of l after the beam
passes through 20 u.c. of LaMnAsO.
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atomic distance, to 22 Å, well above atomic distances. The
beam with l = 10 has a diameter of 5 Å, i.e., slightly more
than the in-plane lattice parameter. Reasonably large magnetic
signals can be observed with l � 10, while it becomes notably
reduced for larger values, when the beam widths increase
significantly beyond the size of one unit cell.

Since an AFM has a vanishing saturation magnetization
and the magnetic scattering of electron vortex beams cannot
be enhanced by using large OAM beams, these materials
should mainly be of interest if atomic resolution imaging can
be performed. Hence, an atomic resolution STEM simulation
has been done with the same parameters as was used in the
FePt case, i.e., Vacc = 100 kV, α = 30 mrad, and l = ±1. One
unit cell was discretized on a 16 × 16 grid and calculations
were performed for beam positions over one half of the unit
cell. For FePt the mirror operation in the y = x line was a
symmetry operation of the crystal, and this was used to obtain
a magnetic signal by taking differences in intensity between
opposite OAM beams for mirror points. For the LaMnAsO
crystal structure illustrated in Fig. 1(b), a mirroring in y = x

is not a symmetry operation of the crystal, whereas mirroring
in y = 0 (as well as x = 0) is, whereby such mirror points
were used to create a magnetic signal from opposite OAM
beams, with the result shown in Fig. 12(b). The strength of
this magnetic signal is of similar size to that observed in the
case of FePt, although slightly stronger maximum signals were
observed for FePt. As one would expect there is a signal of
a different sign at the corner Mn atom with spin up and the
central spin down Mn atom. Furthermore, it can be noted
that essentially no magnetic signal is seen at the other atomic
columns containing atoms around which the spin density is
two orders of magnitude smaller (Fig. 3). Figure 12(c) shows
the spin magnetic signal, obtained as the difference between

opposite spin channels for fixed OAM of l = +1, at a given
beam position. Again this is of similar order of magnitude as
the magnetic signal seen in Fig. 12(b), indicating that it might
be easier to use spin polarization than electron vortex beams for
STEM imaging of magnetism in the atomic resolution, if spin
polarized beams and detectors can be made available, as it does
not require comparison between measurements at different
beam positions. For some of the larger thicknesses and smaller
collection angles, “doughnut” shapes characteristic to vortex
beams are seen around the Mn columns, similarly to the shapes
observed also in Fig. 12(a), most likely related to the radial
shape of the electron vortex beams.

D. Phase aberrated beams

It was recently suggested [16] that electron vortex beams
are merely a special case of a wider class of beams with
nontrivial phase distributions and that magnetism can be
observed in EMCD experiments using phase aberrated electron
beams. Such beams are readily available in modern aberra-
tion corrected electron microscopes, and their creation was
recently discussed [17] and experimentally demonstrated [18].
Motivated by this, the magnetic interaction between a phase
aberrated beam and a magnetic sample in the elastic scattering
regime is investigated in this section, in order to see whether
such beams are potentially useful in imaging magnetic mate-
rials also in elastic scattering experiments. Phase aberrated
electron beams have a phase distribution described by an
aberration function [17,41]

χ (k⊥,φk) = 2π

λ

∑
n,m

θn+1

n + 1

[
Ca

n,m cos(mφk)+ Cb
n,m sin(mφk)

]
,

(34)
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FIG. 12. Simulated STEM images over a unit cell of LaMnAsO for an electron probe with Vacc = 100 kV, α = 30 mrad, and l = ±1.
Different rows show different sample thicknesses while different columns show different maximum semiangles for the disk shaped collection
region. (a) Total intensity for a l + 1 beam averaged over spin channels, (b) magnetic signal obtained as the difference between l = +1 and
l = −1 probes after mirroring in the y = 0 line, and (c) magnetic signal as obtained for a fixed l = +1 and by taking a difference between spin
channels.
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where n is a non-negative integer which denotes the order of
the aberration, and the non-negative integer m = n + 1,n −
1,n − 3, . . . denotes the order of the rotational symmetry of the
aberration. θ = arctan(k⊥/kz) is the axial angle, while φk =
arctan(ky/kx) is the azimuthal angle, as in Eq. (32). The idea
behind using aberrated electron beams to observe magnetism
is that a magnetic signal should be obtained by comparing a
beam with +Ci

n,m aberration, where i = a or b, to one with
−Ci

n,m aberration, e.g., by looking at the intensity difference in
a disk shaped region in the diffraction plane, similarly as done
with electron vortex or spin polarized beams in other sections
of this paper. For this to yield a magnetic signal requires that
the mirror symmetry operations of the crystal map the +Ci

n,m

term onto −Ci
n,m. Changing the sign of the aberration is then

equivalent to a mirror operation of the crystal, which leaves
everything invariant except magnetism, which changes sign.
It is also important that the rotational symmetry operations of
the crystal do not map +Ci

n,m to −Ci
n,m since the magnetic

signal is then expected to be zero. It can also be noted that the
expectation value of the OAM operator w.r.t. a beam with a
phase distribution such as that described by Eq. (34) is zero.
Based on Eq. (19) one would therefore not expect a magnetic
signal from large beams interacting mainly with the uniform
part of the magnetic field, but mainly from atomic resolution
electron beams where the phase distribution can locally couple
to the microscopic magnetic field in the sample.

Calculations with aberrated electron probes have been
performed for the ferromagnetic FePt crystal for which C4v

is a subgroup of the crystallographic point group. Similarly as
in the case of EMCD [17], the lowest order aberration expected
to be useful in observing magnetism is then Cb

34 (i.e., fourfold
astigmatism). For a beam with 100 keV, convergence angle
α = 30 mrad, and the lattice parameters of FePt, it has been
shown that Cb

3,4 = ±14 μm is useful for observing magnetism
in EMCD [17], whereby the same value is attempted here.
The magnetic signal obtained from the intensity difference
of opposite value Cb

3,4 aberrations as a function of thickness
and collection angle is illustrated in Fig. 13. The maximum
values of the magnetic signal is of order 10−5, which is
similar to what was found both in the spin magnetic signal
and in the OAM magnetic signal with low values of l. This
indicates that aberrated electron beams are potentially useful
in observing magnetism in elastic scattering experiments in
a similar way that spin polarized or vortex beams can be.
The possible advantage of aberrated beams is that aberration
modification technology is more readily available than spin
polarization or vortex beam generation technology. Moreover,
there is no implicit intensity loss due to Fresnel zone plates or
magnetic needles required for producing a vortex beam, when
employing aberrated beams.

E. Noise and error analysis

In the preceding sections it has been shown that magnetic
signals result from the elastic scattering of electrons with
angular momentum or phase aberrations as they scatter through
magnetic matter. The signals discussed have, however, been
found to be weak. In order to estimate the feasibility of
experimental observations of the discussed phenomena, it is
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FIG. 13. Magnetic signal obtained as intensity difference for
opposite aberration values of an electron probe with aberration of
±C3,4b. The results shown are for a beam with Vacc = 100 kV and
α = 30 mrad.

therefore crucial to consider the effect of statistical noise as
well as systematic errors, as is done in this section.

Firstly, regardless of the precision of experimental equip-
ment, statistical noise in the form of Poisson (i.e., shot)
noise must be taken into account. To provide an idea of the
acquisition times required, a beam current of 100 pA together
with either a large OAM beam with l = ±10, convergence
angle of 6 mrad, and 100 keV (see Fig. 7), or a small
OAM atomic resolution case of l = ±1, convergence angle
of 30 mrad, and 100 keV (see Fig. 9) is considered. In the
large OAM case, considering a 6 mrad collection angle and
sample thickness of 54 u.c., the magnitude of the magnetic
signal is 10−4, whereby the acquisition time required to obtain
a signal-to-noise ratio (SNR) of 3 is 144 μs. For the small
OAM case, the largest magnitude magnetic signal, out of
the conditions shown in Fig. 9, is obtained with a collection
angle of 8 mrad and sample thickness of 50 u.c., where it is
approximately 10−5. The acquisition time needed for a SNR
of 3 is then 1.44 ms.

Any experimental setup will suffer from some degree of
mechanical noise due to, for example, vibrations, drift, or tilt
of the sample, and the effect of this will now be addressed
for the same large and small OAM cases as above. Together
with the required acquisition times stated above an idea of
the experimental feasibility can then be obtained. Firstly, drift
is considered by performing calculations for beam positions
ranging from zero to five steps, in the x direction, in units
of the smallest grid spacing, i.e., a

64 = 4.23 pm, so the biggest
shift is 21 pm from an Fe atomic column, which corresponds to
realistic scanning distortions in STEM experiments. The result
of such calculations is shown in Fig. 14 with OAM magnetic
signal as a function of collection angle for the two sets of beam
parameters in (a) and (b), respectively, and various beam shifts
indicated in the legend, after 50 unit cells of FePt. Clearly the
considered shifts are of no relevance for the large OAM case
whereas a small quantitative change is observed for the small
OAM case. This change should, however, only yield a small
quantitative error and mechanical drift in the considered range
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FIG. 14. OAM magnetic signals at a given beam position for two
sets of beam parameters and various small beam shifts.

should not present a significant problem, neither in the large
nor small OAM case.

The data presented in Fig. 14 assumed that the signals
for positive and negative OAM beams were collected for
identical beam positions, which might be difficult to achieve
in experiments. Hence, in Fig. 15 similar data is presented
for the small OAM case except that the magnetic signal is
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FIG. 15. OAM magnetic signal from a positive OAM that has
been shifted by a given amount and a negative OAM beam at the Fe
atomic column, with l = ±1, 30 mrad, and 100 keV.
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FIG. 16. Effect of tilt on the OAM magnetic signal as a function
of collection angle for a beam with l = ±10, 6 mrad, and 100 keV
after passing through 50 unit cells of FePt.

obtained as the difference in intensity for a shifted positive
OAM beam and a nonshifted negative OAM beam. Here it can
be seen that a shift of 0.04 Å is already enough for a difference
that is much larger than the magnetic signal to appear. In the
large OAM case (not shown), however, the data is visually
identical to that in Fig. 14(a). Hence, drift noise should not
present a problem for large beams with spatial dimensions
well above the interatomic distances, while it might present
a problem for atomic resolution measurements if positive and
negative OAM beams are measured at slightly different beam
positions.

Next, tilt is considered by shifting the origin of the Fourier
transform of the initial beam by (
kx,
ky), which yields a tilt
of approximately 
kx/k and 
ky/k radians around the y and
x axes, respectively. The smallest tilt possible for a 100 keV
beam and a system size of 60 × 60 unit cells in the xy plane
is then 0.34 mrad, corresponding to a realistic misalignment
in STEM experiments. The result of calculations for the large
OAM beam after passing through 50 unit cells of FePt is
displayed in Fig. 16, with the OAM magnetic signal obtained
either from the difference of positive and negative OAM beams
with the same tilt in (a) or with a positive OAM beam with tilt
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and a negative OAM beam with no tilt in (b). If the tilt is the
same for both beams, it does not have a significant effect on
the magnetic signal in this case, whereas if the tilt is different
for the two beams, 0.34 mrad is enough to cause a difference
significantly larger than the magnetic signal. Hence, sample
tilt is expected to be problematic for large OAM beams, only
if the diffraction pattern for opposite OAM beams is acquired
for different tilt angles. In the case of the small OAM beam
(not shown), a large error is caused by the 0.34 mrad tilt
also if measurements for both beams are done at the same
tilt. Atomic resolution measurements would hence require
extremely high precision electron optics in the experimental
setup.

One aspect, which has not been considered so far, is
thermal scattering effects. This could be taken into account
by performing computationally expensive frozen phonon
calculations, including frozen magnetic field configurations,
which is beyond the scope of the current work. Nevertheless,
for the large OAM beams, with correspondingly large spatial
dimensions, atomic vibrations are not expected to be of
significant importance. This is because the measured effect
is averaged over a large number of atoms. For high spatial
resolution STEM imaging, with small OAM beams of atomic
size, the thermal scattering effects might be more significant.
However, such effects are expected to be most important for
large scattering angles, while the magnetic signals studied
here are observed at small scattering angles. On the other
hand, Fig. 15 indicates that high resolution magnetic imaging,
with the technique proposed here, would be sensitive to small
spatial displacements of the probe relative to the sample. This
might indicate that atomic resolution measurements could be
sensitive to thermal motion in the sample.

IV. SUMMARY AND CONCLUSIONS

A comprehensive computational study has been presented
regarding magnetic effects in the paraxial regime of elastic
electron scattering in magnetic crystals. This has been done
using recently implemented methods [13] to provide a realistic
description of the coupling between a highly energetic electron
beam, such as that used in transmission electron microscopy,
with magnetism in a solid. Such effects are especially
interesting in the context of high resolution TEM imaging of
magnetism. In particular three ways of obtaining a magnetic
signal have been considered: electron vortex beams, spin
polarized beams, or beams with phase aberrations. In all three
cases a magnetic signal is obtainable by taking a difference
in radial intensity distributions for beams with opposite sign
angular momentum or aberration coefficients. This potentially
allows for three different methods of imaging magnetism in
a transmission electron microscope, in a relatively simple
experimental setup compared to EELS experiments such as
EMCD. Two of the suggested methods were already discussed
in recent work [13], where large OAM vortex beams were
pointed out as the most feasible method, which unfortu-
nately restricts the spatial resolution, while atomic resolution
measurements with small OAM or spin polarized beams
were deemed technically very challenging, if not impossible.
The more comprehensive computational study presented here
indicates significantly stronger magnetic signals, increased by

one or two orders of magnitude both for large and small OAM
beams, for certain beam parameters, compared to the previous
work. Specifically it appears promising to use relatively low
acceleration voltages and convergence angles, unfortunately
again setting restrictions to spatial resolutions. In addition to
vortex beams and spin polarization, the effect of magnetism
on the elastic scattering of phase aberrated electron beams
has been demonstrated. This effect is of similar order of
magnitude as that obtained with low OAM vortex beams and
thus deemed possible but challenging to detect experimentally.
Considering continuous technological improvements related
to electron vortex beams [6–8,14,27,42,43], spin polarization
technology, [15] and aberration correctors [41,44], the present
work will hopefully stimulate various experimental efforts to
detect magnetism based on the suggested effects. An analysis
of errors due to, e.g., sample drift and tilt also suggests
that it will be challenging to perform atomic resolution
measurements, while nanometer resolution measurements are
expected to be feasible.
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APPENDIX: MAGNETIC FIELD AND VECTOR
POTENTIAL OF A PERIODIC SYSTEM

The magnetic field B should fulfill Maxwell’s equations

∇ · B(r) = 0, ∇ × B(r) = μ0J(r), (A1)

where J is the current density, together with physical boundary
conditions. In the case of periodic boundary conditions one
more constraint, e.g., specifying B at a given point or its volume
average, is necessary and sufficient for a unique solution to
exist [29]. Similarly, any periodic B can be decomposed into a
periodic part with volume average zero Bp and a uniform part
Bavg corresponding to the volume average of B, as discussed
also in Sec. II D of this paper. Such a periodic B is suitable to
Fourier transform according to

B(r) =
∫

BZ
b(k)eik·rdk, (A2)

with integration over the Brillouin zone (BZ), so that Eqs. (A1)
read

k · b(k) = 0, ik × b(k) = μ0j(k), (A3)

where b(0) corresponds to the volume average of B(r), j(k)
is the Fourier transform of J(r), and it was assumed that J(r)
was also periodic with a zero volume average, i.e., j(0) = 0
[otherwise Eqs. (A3) cannot be fulfilled].

The vector potential A(r) should fulfill the defining equa-
tion B = ∇ × A together with some gauge choice, rather
than physical boundary conditions such as periodicity. If,
nevertheless, one assumes that A(r) is periodic, its Fourier
transform a(k) must fulfill ik × a(k) = b(k), which clearly can
only be fulfilled in the case that b(0) = 0, i.e., if the volume
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average of B(r) is zero. As has been pointed out before [45],
this leads to the conclusion that a periodic vector potential is
only possible to construct in the case that the volume average
of the magnetic field is zero. With respect to the division of the
magnetic field according to B = Bp + Bavg, this corresponds to
Bavg = 0. However, by doing a corresponding decomposition
of the vector potential into a periodic part Ap and a nonperiodic
part Anp, as done in this paper, and relating

Bp = ∇ × Ap, Bavg = ∇ × Anp, (A4)

it is clear from the above arguments that Ap can be chosen
to be periodic whereas Anp necessarily is nonperiodic for
nonzero Bavg. In Coulomb gauge one obtains Anp = 1

2 Bavg ×

r, possibly with the addition of an arbitrary constant, as
mentioned in Sec. II D.

The impossibility of relating a periodic vector potential
to a nonzero, uniform magnetic field can also be seen by
considering the line integral of such a periodic Ap along a
closed path γ around a parallelogram of lattice vectors [45].
Such integral is zero due to contributions of equal magnitude
but opposite sign from opposing sides of the parallelogram,
whereby ∮

γ

Ap · dr =
∫

S

B · dS = 0 (A5)

for any surface S with boundary γ . The only uniform B which
can fulfill this is B = 0.
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Novák, M. F. E. Carlino, G. Panaccione, and G. Rossi, Nature
(London) 441, 486 (2006).

[5] R. Erni, M. D. Rossell, C. Kisielowski, and U. Dahmen, Phys.
Rev. Lett. 102, 096101 (2009).

[6] M. Uchida and A. Tonomura, Nature (London) 464, 737 (2010).
[7] J. Verbeeck, H. Tian, and P. Schattschneider, Nature (London)

467, 301 (2010).
[8] B. J. McMorran, A. Agrawal, I. M. Anderson, A. A. Herzing,

H. J. Lezec, J. J. McClelland, and J. Unguris, Science 331, 192
(2011).

[9] J. Rusz and S. Bhowmick, Phys. Rev. Lett. 111, 105504 (2013).
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[26] S. Löffler and P. Schattschneider, Acta Crystallogr. Section A

68, 443 (2012).
[27] K. Saitoh, Y. Hasegawa, N. Tanaka, and M. Uchida, J. Electron

Microsc. 61, 171 (2012).
[28] H. Eschrig, The Fundamentals of Density Functional Theory

(University of Technology Dresden, Dresden, 2003).
[29] J. D. Jackson, Classical electrodynamics, 3rd ed. (Wiley, New

York, 1999).
[30] D. A. Gilbert, L.-W. Wang, T. J. Klemmer, J.-U. Thiele, C.-H.

Lai, and K. Liu, Appl. Phys. Lett. 102, 132406 (2013).
[31] T. Burkert, O. Eriksson, S. I. Simak, A. V. Ruban, B. Sanyal, L.

Nordström, and J. M. Wills, Phys. Rev. B 71, 134411 (2005).
[32] P. Blaha, G. Madsen, K. Schwarz, D. Kvasnicka, and J.

Luitz, WIEN2k, An Augmented Plane Wave + Local Orbitals
Program for Calculating Crystal Properties (Vienna University
of Technology, Vienna, 2001).

[33] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,
3865 (1996).

[34] T. Seki, S. Mitani, K. Yakushiji, and K. Takanashi, Appl. Phys.
Lett. 88, 172504 (2006).

[35] N. Emery, E. J. Wildman, J. M. S. Skakle, A. C. Mclaughlin, R.
I. Smith, and A. N. Fitch, Phys. Rev. B 83, 144429 (2011).

[36] N. Emery, E. J. Wildman, J. M. S. Skakle, G. Giriat, R. I. Smith,
and A. C. Mclaughlin, Chem. Commun. (Cambridge, U. K.) 46,
6777 (2010).

[37] M. A. McGuire and V. O. Garlea, Phys. Rev. B 93, 054404
(2016).

[38] It has been suggested, in JAP 115, 17D723 (2015), that the GGA
overestimates the magnetic moment on Mn, but this mainly
appears to be a misunderstanding due to a misprint in Emery
et al. (2011).

[39] A. Lubk and J. Rusz, Phys. Rev. B 92, 235114 (2015).
[40] J. Rusz, S. Bhowmick, M. Eriksson, and N. Karlsson,

Phys. Rev. B 89, 134428 (2014).

174414-16

https://doi.org/10.1103/PhysRevLett.68.1943
https://doi.org/10.1103/PhysRevLett.68.1943
https://doi.org/10.1103/PhysRevLett.68.1943
https://doi.org/10.1103/PhysRevLett.68.1943
https://doi.org/10.1103/PhysRevLett.70.694
https://doi.org/10.1103/PhysRevLett.70.694
https://doi.org/10.1103/PhysRevLett.70.694
https://doi.org/10.1103/PhysRevLett.70.694
https://doi.org/10.1016/S0304-8853(99)00407-2
https://doi.org/10.1016/S0304-8853(99)00407-2
https://doi.org/10.1016/S0304-8853(99)00407-2
https://doi.org/10.1016/S0304-8853(99)00407-2
https://doi.org/10.1038/nature04778
https://doi.org/10.1038/nature04778
https://doi.org/10.1038/nature04778
https://doi.org/10.1038/nature04778
https://doi.org/10.1103/PhysRevLett.102.096101
https://doi.org/10.1103/PhysRevLett.102.096101
https://doi.org/10.1103/PhysRevLett.102.096101
https://doi.org/10.1103/PhysRevLett.102.096101
https://doi.org/10.1038/nature08904
https://doi.org/10.1038/nature08904
https://doi.org/10.1038/nature08904
https://doi.org/10.1038/nature08904
https://doi.org/10.1038/nature09366
https://doi.org/10.1038/nature09366
https://doi.org/10.1038/nature09366
https://doi.org/10.1038/nature09366
https://doi.org/10.1126/science.1198804
https://doi.org/10.1126/science.1198804
https://doi.org/10.1126/science.1198804
https://doi.org/10.1126/science.1198804
https://doi.org/10.1103/PhysRevLett.111.105504
https://doi.org/10.1103/PhysRevLett.111.105504
https://doi.org/10.1103/PhysRevLett.111.105504
https://doi.org/10.1103/PhysRevLett.111.105504
https://doi.org/10.1016/j.ultramic.2016.05.006
https://doi.org/10.1143/JPSJ.16.2226
https://doi.org/10.1143/JPSJ.16.2226
https://doi.org/10.1143/JPSJ.16.2226
https://doi.org/10.1143/JPSJ.16.2226
https://doi.org/10.1016/j.ultramic.2008.08.008
https://doi.org/10.1016/j.ultramic.2008.08.008
https://doi.org/10.1016/j.ultramic.2008.08.008
https://doi.org/10.1016/j.ultramic.2008.08.008
https://doi.org/10.1103/PhysRevLett.116.127203
https://doi.org/10.1103/PhysRevLett.116.127203
https://doi.org/10.1103/PhysRevLett.116.127203
https://doi.org/10.1103/PhysRevLett.116.127203
https://doi.org/10.1103/PhysRevLett.114.034801
https://doi.org/10.1103/PhysRevLett.114.034801
https://doi.org/10.1103/PhysRevLett.114.034801
https://doi.org/10.1103/PhysRevLett.114.034801
https://doi.org/10.1088/1742-6596/371/1/012004
https://doi.org/10.1088/1742-6596/371/1/012004
https://doi.org/10.1088/1742-6596/371/1/012004
https://doi.org/10.1088/1742-6596/371/1/012004
https://doi.org/10.1103/PhysRevLett.113.145501
https://doi.org/10.1103/PhysRevLett.113.145501
https://doi.org/10.1103/PhysRevLett.113.145501
https://doi.org/10.1103/PhysRevLett.113.145501
https://doi.org/10.1103/PhysRevB.93.104420
https://doi.org/10.1103/PhysRevB.93.104420
https://doi.org/10.1103/PhysRevB.93.104420
https://doi.org/10.1103/PhysRevB.93.104420
https://doi.org/10.1186/s40679-016-0019-9
https://doi.org/10.1186/s40679-016-0019-9
https://doi.org/10.1186/s40679-016-0019-9
https://doi.org/10.1186/s40679-016-0019-9
https://doi.org/10.1038/nmat2941
https://doi.org/10.1038/nmat2941
https://doi.org/10.1038/nmat2941
https://doi.org/10.1038/nmat2941
https://doi.org/10.1107/S0365110X57002194
https://doi.org/10.1107/S0365110X57002194
https://doi.org/10.1107/S0365110X57002194
https://doi.org/10.1107/S0365110X57002194
https://doi.org/10.1111/j.1365-2818.1980.tb04084.x
https://doi.org/10.1111/j.1365-2818.1980.tb04084.x
https://doi.org/10.1111/j.1365-2818.1980.tb04084.x
https://doi.org/10.1111/j.1365-2818.1980.tb04084.x
https://doi.org/10.1016/j.micron.2008.11.003
https://doi.org/10.1016/j.micron.2008.11.003
https://doi.org/10.1016/j.micron.2008.11.003
https://doi.org/10.1016/j.micron.2008.11.003
https://doi.org/10.1107/S0108767312013189
https://doi.org/10.1107/S0108767312013189
https://doi.org/10.1107/S0108767312013189
https://doi.org/10.1107/S0108767312013189
https://doi.org/10.1063/1.4799651
https://doi.org/10.1063/1.4799651
https://doi.org/10.1063/1.4799651
https://doi.org/10.1063/1.4799651
https://doi.org/10.1103/PhysRevB.71.134411
https://doi.org/10.1103/PhysRevB.71.134411
https://doi.org/10.1103/PhysRevB.71.134411
https://doi.org/10.1103/PhysRevB.71.134411
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1063/1.2198819
https://doi.org/10.1063/1.2198819
https://doi.org/10.1063/1.2198819
https://doi.org/10.1063/1.2198819
https://doi.org/10.1103/PhysRevB.83.144429
https://doi.org/10.1103/PhysRevB.83.144429
https://doi.org/10.1103/PhysRevB.83.144429
https://doi.org/10.1103/PhysRevB.83.144429
https://doi.org/10.1039/c0cc01380c
https://doi.org/10.1039/c0cc01380c
https://doi.org/10.1039/c0cc01380c
https://doi.org/10.1039/c0cc01380c
https://doi.org/10.1103/PhysRevB.93.054404
https://doi.org/10.1103/PhysRevB.93.054404
https://doi.org/10.1103/PhysRevB.93.054404
https://doi.org/10.1103/PhysRevB.93.054404
https://doi.org/10.1103/PhysRevB.92.235114
https://doi.org/10.1103/PhysRevB.92.235114
https://doi.org/10.1103/PhysRevB.92.235114
https://doi.org/10.1103/PhysRevB.92.235114
https://doi.org/10.1103/PhysRevB.89.134428
https://doi.org/10.1103/PhysRevB.89.134428
https://doi.org/10.1103/PhysRevB.89.134428
https://doi.org/10.1103/PhysRevB.89.134428


MAGNETIC EFFECTS IN THE PARAXIAL REGIME OF . . . PHYSICAL REVIEW B 94, 174414 (2016)

[41] O. Krivanek, N. Dellby, and A. Lupini, Ultramicroscopy 78, 1
(1999).

[42] J. Verbeeck, P. Schattschneider, S. Lazar, M. Stöger-Pollach, S.
Löffler, A. Steiger-Thirsfeld, and G. Van Tendeloo, Appl. Phys.
Lett. 99, 203109 (2011).

[43] D. Pohl, S. Schneider, J. Rusz, and B. Rellinghaus,
Ultramicroscopy 150, 16 (2015).

[44] O. Krivanek, G. Corbin, N. Dellby, B. Elston, R. Keyse, M.
Murfitt, C. Own, Z. Szilagyi, and J. Woodruff, Ultramicroscopy
108, 179 (2008), proceedings of the Sixteenth International
Microscopy Congress.

[45] E. Brown, in Solid State Physics, Solid State Physics, Vol. 22,
edited by D. T. Frederick Seitz, D. Turnbull, and H. Ehrenreich
(Academic Press, New York, 1969), pp. 313–408.

174414-17

https://doi.org/10.1016/S0304-3991(99)00013-3
https://doi.org/10.1016/S0304-3991(99)00013-3
https://doi.org/10.1016/S0304-3991(99)00013-3
https://doi.org/10.1016/S0304-3991(99)00013-3
https://doi.org/10.1063/1.3662012
https://doi.org/10.1063/1.3662012
https://doi.org/10.1063/1.3662012
https://doi.org/10.1063/1.3662012
https://doi.org/10.1016/j.ultramic.2014.11.025
https://doi.org/10.1016/j.ultramic.2014.11.025
https://doi.org/10.1016/j.ultramic.2014.11.025
https://doi.org/10.1016/j.ultramic.2014.11.025
https://doi.org/10.1016/j.ultramic.2007.07.010
https://doi.org/10.1016/j.ultramic.2007.07.010
https://doi.org/10.1016/j.ultramic.2007.07.010
https://doi.org/10.1016/j.ultramic.2007.07.010



