
PHYSICAL REVIEW B 94, 174408 (2016)

Strength of the symmetry spin-filtering effect in magnetic tunnel junctions
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We developed a general theory that allows us to predict the power factor n in the asymptotics of the tunneling
magnetoresistance (TMR), TMR ∝ Nn, in the limit of large number of the tunnel barrier layers, N , for a magnetic
tunnel junction (MTJ) system that has the so-called symmetry spin-filtering properties. Within this theory the
only information required to determine n is the knowledge of the symmetries of the wave functions of the bulk
electrode and barrier materials at the � point in the in-plane surface Brillouin zone. In particular, we show that for
a MTJ that has the in-plane square symmetry only three values for the power factor are allowed: n = 0,1, and 2
for the asymptotics of the TMR enhanced due to the symmetry spin-filtering mechanism. To verify our theory we
performed the density functional theory calculations of transmission functions and TMR for a Fe/MgO/Fe MTJ
which confirm predicted values of the power factor n = 0,1, or 2 in specific ranges of energies (in particular,
n = 1 at the Fermi energy).
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I. INTRODUCTION

The theoretical prediction of the symmetry spin-filtering
mechanism [1,2] of enhanced tunneling magnetoresistance
(TMR) in a Fe/MgO/Fe magnetic tunnel junction (MTJ) and
its quick experimental verification [3,4] allowed for giant
TMR that has been used for advanced magnetic recording
read heads and for potential, high performance, nonvolatile
spin-transfer torque magnetoresistive random-access memory
(STT-MRAM). But despite considerable theoretical attention
to the symmetry spin-filtering effect, the dependence of the
TMR on the number of tunnel barrier layers, N , arising from
this mechanism, is still not fully understood and is somewhat
controversial [3]. Some theoretical calculations based on the
density functional theory (DFT) predict that in the ideal
Fe/MgO/Fe junctions the TMR should increase very fast with
increasing N . More specifically, TMR is predicted to increase
by as much as two orders of magnitude when N increases
from 4 to 12 [1,5]. In contrast, experimental measurements
show that TMR does not depend much on the thickness of
MgO [3,4].

Recently Autes, Mathon, and Umerski showed that the
TMR of a Fe/MgO/Fe MTJ at the Fermi energy, EF , should
be proportional to N at large N [6]. The derivation of the
linear, TMR ∝ N , asymptotics in [6] is based on the expansion
of the pre-exponential factor in the k-resolved transmission
functions, T (k), at small in-plane wave vectors k, over the
powers of k2:

T (k) = (A + Bk2 + Ck4 + . . .) exp [−(γ + αk2)N ] (1)

(this formula will be explained in detail in the next section).
The coefficient A for transmission function in the antiparallel
configuration (APC) of the magnetic electrodes was found
in [6] to be zero based on the symmetry properties of the
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bands of bulk Fe and MgO at k = 0, while the coefficient
B was estimated from numerical calculations for the entire
Fe/MgO/Fe MTJ by fitting the transmission in APC calculated
at large N (N = 15) to Eq. (1). In such an approach the
understanding of the conditions that could lead to zero
coefficient B (C, etc.) from similar symmetry considerations
as coefficient A is still lacking (note that if both coefficients A

and B were zero in the APC then the TMR asymptotics would
become nonlinear, TMR ∝ Nn with n � 2 [see next section
for details]). Therefore, such an approach does not allow fast
screening of the promising candidates for the electrodes and/or
barrier materials if one is searching for stronger than linear
TMR asymptotics, TMR ∝ Nn with n � 2.

In the present paper we developed a general theory that
allows us to predict the power factor n of the TMR ∝ Nn

asymptotics for arbitrary MTJ system based on the symmetry
of the wave functions (and spacial derivatives of these
functions) of the bulk electrode and barrier materials at k = 0.
In particular, we show that for a MTJ that has the in-plane
square symmetry (C4v symmetry group) the asymptotics of
the TMR due to the symmetry spin-filtering effect has a form
of TMR ∝ Nn with only three allowed values for the power
factor: n = 0,1, and 2. All three values of n (n = 0,1, and 2) of
the asymptotic behavior for the exemplary Fe/MgO/Fe system
have been predicted for specific ranges of energy based on
the symmetry properties of the bulk wave functions of Fe and
MgO at k = 0 and confirmed by ab initio DFT calculations of
the transmission functions and TMR for the Fe/MgO/Fe MTJ.

The fast increase of the TMR predicted numerically [1,5]
for the Fe/MgO/Fe MTJ is generally explained by the contribu-
tion to the transmission function in the APC from the interface
resonance states (IRS) that exist in the minority Fe channel in a
very narrow energy window near the Fermi energy [1,5,7–10].
The IRS contribution to the APC transmission is significant
at small N but decays fast when N increases that leads to
superlinear TMR behavior at small N < 10. We show that
TMR ∝ N behavior begins at about N ∼ 12 at EF , when
the effect of the IRS wears out. For energies where the
IRS contribution is small the TMR ∝ N behavior begins at
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significantly smaller N ∼ 4; see Fig. 6. (The effect of the
IRS has not been discussed in [6] where the tight-banding
approach [2] was used for numerical calculations resulting
from one to two orders-of-magnitude smaller TMR at N = 12
as compared to presented here results and results of other DFT
calculations [1,5,11].)

The proposed in this paper approach for analysis of the
strength of the symmetry filtering effect based on the properties
of the bulk wave functions of the candidate electrode and
barrier materials could serve as a tool for quick material
discovery search of suitable electrodes and/or barriers in the
context of emerging technologies that require high TMR.
As an example of such technology that critically depends
on discovery of novel MTJs with high TMR we mention
the STT-MRAM technology (that has a potential to become
a “universal memory” [12]) where the pool of candidate
electrode materials includes several hundred Heusler alloys,
magnetic multilayers, etc.

II. ASYMPTOTICS OF THE TMR DUE TO THE
SYMMETRY SPIN-FILTERING EFFECT

A. Surface transmission functions

We consider a general FM/SB/FM MTJ, where the semi-
conductor barrier (SB) with N layers is sandwiched by two
ferromagnetic metal (FM) electrodes. We assume that the
MTJ has one and the same two-dimensional (2D) translational
invariance in the xy plane for each atomic layer of the system,
so the 2D surface Brillouin zone (SBZ) is well defined. For
sufficiently large barrier thickness the transmission function
for electrons with in-plane wave vector k = (kx,ky) and energy
E inside the semiconductor band gap is determined by a single
surviving evanescent state inside the barrier at this k and E,
ψe

k,E , that has the smallest attenuation constant, γk,E . The
transmission function in the limit N → ∞ is given by [13]

Tσσ ′(k,E) = tσkE × e−γk,EN × tσ ′kE, (2)

where subindexes σ and σ ′ describe the spin channel
of the left and right electrodes, correspondingly. We use
notations where σ takes two values, u and d (short for
“up” and “down”) for majority- and minority-spin channel,
correspondingly. Thus, Tuu and Tdd are majority-majority and
minority-minority transmission in parallel configuration (PC)
of the electrodes, and Tud and Tdu are majority-minority and
minority-majority transmission in antiparallel configuration
(APC) of the electrodes. The coefficient tσkE in Eq. (2) is
the so-called surface transmission function (STF) defined for
each electrode separately (in the case of different electrodes)
by solution of the scattering problem at the electrode-barrier
interface:

tσkE =
∑

p

|Be/Ap|2. (3)

Here summation is taken over all eigenstates p of the electrode
with given σ , k, and E; Ap is the amplitude of the eigenstate p

incoming from the electrode; and Be is the corresponding am-
plitude of the scattering wave function inside the barrier taken
at the reference plane. The reference plane is located inside the
barrier at sufficient distance from the interface where scattering
wave functions for all p are already indistinguishable from

surviving evanescent state ψe
k,E . Strictly speaking, with such

definition of the tσkE , N in Eq. (2) is the number of the
barrier layers between reference planes corresponding to the
two electrode-barrier interfaces, but we will use total number
of barrier layers, N , in Eq. (2) assuming proper redefinition
of the tσkE . In general, for different electrodes, tσkE should
also have the electrode index (left or right), but we assume, for
simplicity, that materials of the two electrodes are the same, so
the notation tσkE without reference to the left or right electrode
is used in Eq. (2).

Total transmission of the MTJ is given by the k integral
over the 2D SBZ:

Tσσ ′(E) =
∫

d2kA

(2π )2
Tσσ ′(k,E) =

∑
k

Tσσ ′(k,E), (4)

where A is the in-plane cross-sectional area of the device.
We emphasize two important features of Eq. (2) for the

transmission function: (i) due to the flux conservation the same
STF tσkE describes two different processes—transmission
from the electrode to the barrier and transmission from
the barrier to the electrode, and (ii) the STFs of the two
electrodes are independent from each other (electrodes are
decoupled). One nontrivial consequence of decoupling of the
two electrodes and transmission through a single channel (at
given k) inside the barrier as described by Eq. (2) is that in the
limit N → ∞ transmission function in APC can be expressed
in terms of transmission functions for majority and minority
electrons in PC, namely, limN→∞ T ′

ud (E) = Tud (E), where

T ′
ud (E) =

∑
k

[Tuu(k,E) × Tdd (k,E)]1/2. (5)

In computational studies the closeness of the T ′
ud (E) to Tud (E)

could serve as an indicator whether the asymptotic limit
described by Eq. (2) is already reached at given N or not.

B. Wave functions of bulk materials at small k

Let us assume that the attenuation constant γk,E (the
smallest attenuation constant of the barrier at given k and
E) reaches the absolute minimum, γ0,E , at k = 0 when we
consider γk,E as a function of k in SBZ and increases as

γk,E = γ0,E + αk2 (6)

for small k, with α > 0. Such behavior of γk,E is typical
for semiconductors (e.g., MgO or CaO) that have a high-
lying �1-symmetry small-mass valence band at the � point
and, simultaneously, a low-lying �1-symmetry small-mass
conduction band at the � point. The smaller are the masses
of these bands and the � − � band gap between these bands,
the smaller is the γ0,E [1] and, correspondingly, the higher are
the chances of γk,E to reach the absolute minimum at k = 0.

As follows from Eqs. (2) and (6), for large N the transmis-
sion function (4) of the FM/SB/FM system is dominated by
contributions from the vicinity of the k = 0 point. Therefore,
in order to estimate the STF (3), the transmission functions (2),
and, finally, the TMR, we need to study the symmetry matching
of the wave functions of the bulk FM and SB at small k ∼ 0.

Let us consider a wave function ψk,E(r) of a bulk electrode
or barrier material [here r = (x,y,z)] that satisfies the Kohn-
Sham equation with fixed energy E and 2D wave vector
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k = (kx,ky):

Hψk,E(r) = Eψk,E(r), (7)

where the Hamiltonian has the form

H = − �
2

2m
∂2

rr + U (r). (8)

Here U (r) is the total DFT potential of the material, including
the nuclei, Hartree, and the local-density approximation
exchange-correlation contributions. For the FM electrode the
ψk,E(r) is the wave function ψ

p

k,E(r) of the band p along the
line (k,kz) in three-dimensional reciprocal space with fixed 2D
k and kz = k

p
z chosen in such a way that the band energy is E.

For the SB the ψk,E(r) is the evanescent state ψe
k,E inside the

barrier that has the smallest attenuation constant γk,E .
The wave function ψk,E(r) can be written as

ψk,E(r) = ei(kxx+kyy)fk,E(r), (9)

where fk,E(r) is the periodic function with respect to transla-
tions in the xy plane. In the linear approximation over small
kx and ky the function fk,E(r) reads

fk,E = f0,E + kx[∂kx
fk,E]k=0 + ky[∂ky

fk,E]k=0 + O(k2).

(10)

If the Hamiltonian of the material has some point-group
symmetry in the xy plane (with such symmetry operations
as rotations around the z axis and/or reflections in vertical
planes) the function f0,E(r) at the k = 0 point (or several
such functions in the case of degenerate bands) will transform
according to some irreducible representation of the symmetry
group. Here and below we assume that the planar 2D point-
group symmetry (in the xy plane) is the same for the FM
and SB. As a consequence, if ψe

0,E of the barrier transforms
according to some irreducible representation of the group,
then the ratio Be/Ap in Eq. (3) is nonzero at the k = 0
point only for ψ

p

0,E of the FM that transforms according to
the same irreducible representation (in another words, the
symmetries of the ψe

0,E and ψ
p

0,E functions match). In the case
of absence of the ψ

p

0,E that transforms with such representation,
corresponding STF and transmission will be zero at the k = 0
point. In such a case small (but nonzero) terms proportional to
the kx and ky in Eq. (10) should be taken into consideration.

Let us express the functions

gx(r) ≡ [∂kx
fk,E(r)]k=0, (11)

gy(r) ≡ [∂ky
fk,E(r)]k=0 (12)

in terms of the function f0,E(r) in order to understand how
these functions transform when the symmetry operations are
applied. Let us consider first the gx(r) function. By using
the form of the wave function (9) and expression for the
Hamiltonian (8) in Eq. (7), removing the exponential terms
ei(kxx+kyy) from both sides of the resulting equation, then taking
the derivative over the kx , and, finally, putting k = 0 one can
obtain the following equation for gx(r):

[H − E]gx(r) = i
�

2

m
∂xf0,E(r). (13)

Since the Hamiltonian is invariant with respect to the symmetry
operations the solution of Eq. (13) can be written in the form

gx(r) = g̃x(r) + Axf0,E(r), (14)

where g̃x(r) transforms under symmetry operations as func-
tion ∂xf0,E(r) (or several such functions in the case of
degenerate bands) and Ax is an arbitrary constant (note that
[H − E]f0,E = 0). The term proportional to Ax leads to
small (∼kx) renormalization of the f0,E(r) contribution to the
function fk,E(r). Therefore, constant Ax can be found from
normalization conditions for the function fk,E(r).

Analogously, function gy(r) can be written in the form

gy(r) = g̃y(r) + Ayf0,E(r), (15)

where g̃y(r) transforms under symmetry operations as function
∂yf0,E(r) (or several such functions in the case of degenerate
bands) and constant Ay can be found from normalization
conditions for the function fk,E(r). Since small correction to
the normalization of the function fk,E(r) is not important for
our purposes, we can safely set Ax = Ay = 0.

C. Transmission for different symmetry matching scenarios
of incoming and scattering waves

Let us consider three most common scenarios for the
symmetry matching of the incoming and scattering waves at
the FM/SB interface.

Scenario (i): The symmetry of the barrier f e
0,E(r) function

matches the symmetry of at least one of the FM electrode
f

p

0,E(r) functions. In such a case the ratio of the scattering
amplitude to the incoming amplitude Be/Ap ∝ 1 in Eq. (3)
and, thus, the STF is

t
(i)
σkE ∝ 1 (16)

(in other words, the STF is not suppressed by any power of
small k).

Scenario (ii): The symmetry of the barrier f e
0,E(r) function

does not match the symmetry of the electrode f
p

0,E(r) function
for all p. But, either (a) the symmetry of the ∂x/yf

e
0,E(r)

functions matches the symmetry of at least one of the f
p

0,E(r)
functions or (b) the symmetry of the f e

0,E(r) function matches
the symmetry of at least one of the ∂x/yf

p

0,E(r) functions. Since,
as derived above, functions [∂kx/y

fk,E(r)]k=0 transform under
symmetry operations as ∂x/yf0,E(r), in both cases, (a) and
(b), the overlap integral 〈ψe

k,E|ψp

k,E〉 at the FM/SB interface
between incoming and scattering waves is proportional to the
first power of k [see Eqs. (9) and (10)]: 〈ψe

k,E |ψp

k,E〉 ∝ |k|.
Therefore, Be/Ap ∝ |k| in Eq. (3), and

t
(ii)
σkE ∝ k2. (17)

Scenario (iii): The symmetry of the barrier f e
0,E(r) function

does not match the symmetry of the electrode f
p

0,E(r) function
for all p. The symmetry of the ∂x/yf

e
0,E(r) functions does not

match the symmetry of the f
p

0,E(r) functions for all p and the
symmetry of the f e

0,E(r) function does not match the symmetry
of the ∂x/yf

p

0,E(r) functions for all p. But, the symmetry
of the ∂x/yf

e
0,E(r) matches the symmetry of the ∂x/yf

p

0,E(r)
functions for at least one p. In such a case the overlap
integral 〈ψe

k,E |ψp

k,E〉 is proportional to the second power of
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k: 〈ψe
k,E |ψp

k,E〉 ∝ k2. Therefore, Be/Ap ∝ k2 in Eq. (3), and

t
(iii)
σkE ∝ k4. (18)

Using three scenarios (16)–(18) for the STFs of both left
and right electrodes, and Eq. (6) for the attenuation constant
in Eq. (2), one can obtain the asymptotic behavior of the
transmission functions (4) that are covered by these scenarios:

T (E) ∝
∫

d2kk2me−(γ0,E+αk2)N ∝ e−γ0,EN

Nm+1
. (19)

Here m = 0 when both left and right electrode have scenario
(i) [we will denote such scenario as (i,i)]. Analogously, for
scenario (i,ii) m = 1, for scenarios (i,iii) and (ii,ii) m = 2, for
scenario (ii,iii) m = 3, and, finally, for scenario (iii,iii) m = 4.

D. Symmetry of the wave functions at small k for the system
with planar square group symmetry

For one of the most common planar symmetries—the
square group symmetry, C4v—all possible irreducible rep-
resentations of the wave functions f0,E(r) at k = 0 are the
following.

�1: function f0,E(r) transforms as function x2 + y2.
�2: function f0,E(r) transforms as function x2 − y2.
�2′ : function f0,E(r) transforms as function xy.
�5: two degenerate functions f0,E(r) transform as functions

x and y.
Since the symmetry operations of the group C4v are the

transformations (x → ±x, y → ±y) and (x → ±y, y → ±x)
the set of functions (∂xf0,E(r), ∂yf0,E(r)), where functions
f0,E(r) have one of the above symmetries, will transform the
same way as the set of functions (x × f0,E(r), y × f0,E(r))
when these symmetry operations are applied. (We used the
× multiplication sign in order to separate the multipliers x

and y from the function f0,E(r) to avoid confusion below
where instead of f0,E(r) we use their symmetry-transformation
equivalents such as xy, x, y, etc.) Note that two functions x ×
(x2 + y2) and y × (x2 + y2) have �5 symmetry, two functions
x × (x2 − y2) and y × (x2 − y2) also have �5 symmetry, two
functions x × xy and y × xy also have �5 symmetry, and
three functions x × x, x × y = y × x, and y × y are the linear
combinations of three functions (x2 + y2), (x2 − y2), and xy

that have �1, �2, and �2′ symmetry, correspondingly.
Thus, the ∝|k| correction to the �1-symmetry function

f0,E(r) is the function with �5 symmetry; the ∝|k| correction
to the �2-symmetry function f0,E(r) is the function with �5

symmetry; the ∝|k| correction to the �2′-symmetry function
f0,E(r) is the function with �5 symmetry. Finally, the ∝|k|
corrections to the double-degenerate �5-symmetry functions
f0,E(r) are composed of the linear combination of the �1, �2,
and �2′ symmetry functions. Schematically, we can represent
the above conclusions as follows:

�1 (k = 0)→�1 + |k|�5 + O(k2), (20)

�2 (k = 0)→�2 + |k|�5 + O(k2), (21)

�2′(k = 0)→�2′ + |k|�5 + O(k2), (22)

�5 (k = 0)→�5 + |k|[�1 + �2 + �2′ ] + O(k2). (23)

FIG. 1. (a) Majority and (b) minority Fe bands plotted along the
� − H symmetry line.

E. Asymptotics of the TMR in Fe/MgO/Fe MTJ

We will use the exemplary Fe/MgO/Fe MTJ in order
to demonstrate how one can obtain the asymptotics of the
transmission functions and TMR if the symmetry of the bulk
barrier f e

0,E(r) and electrode f
p

0,E(r) functions at k = 0 are
known. First, we note that Fe/MgO/Fe MTJ has the square-
group symmetry, C4v , therefore the symmetry assignment of
Eqs. (20)–(23) can be applied for bands with corresponding
symmetry at k = 0. It is well known [1] that the evanescent
state of the MgO, f e

0,E(r), at k = 0 has �1 symmetry with
the attenuation constant described by Eq. (6). The symmetry
assignment of the majority and minority bands f

p

0,E(r) of Fe
are shown on Fig. 1 along the �-H line (k = 0).

Based on the symmetry assignments shown in Fig. 1 we
can identify what scenario (i), (ii), or (iii) [see Eqs. (16)–(18)]
is realized for the STF for each spin channel at given energy E

and therefore assign the power factor m in Eq. (19) to obtain
asymptotics of corresponding transmission. For the majority
Fe channel the following scenarios are realized.

For energies (EF − 2.3 eV,EF − 1.0 eV) scenario (ii) is
realized: Fe has �5 + |k|�1 band and MgO evanescent state
has �1 + |k|�5 symmetry, therefore both Fe �5 and MgO
|k|�5 match and also Fe |k|�1 and MgO �1 match. The �2

and �2′ bands of Fe are less important compared to the �5

band since they give higher order of |k| contribution to the
STF.

For energies (EF − 1.0 eV,EF + 3.0 eV) scenario (i) is
realized: both Fe and MgO have �1 bands.

For the minority Fe channel the following scenarios are
realized.

For energies (EF − 2.7 eV,EF − 0.4 eV) scenario (iii) is
realized: Fe has single �2 + |k|�5 band and MgO evanescent
state has �1 + |k|�5 symmetry, therefore the Fe |k|�5 and
MgO |k|�5 match.

For energies (EF − 0.4 eV,EF + 1.5 eV) scenario (ii) is
realized: Fe has �5 + |k|�1 band.

For energies (EF + 1.5 eV,EF + 3.0 eV) scenario (i) is
realized: both Fe and MgO have �1 bands.

Based on these scenarios the Tuu(E) transmission has the
following power factor m in Eq. (19).

174408-4



STRENGTH OF THE SYMMETRY SPIN-FILTERING . . . PHYSICAL REVIEW B 94, 174408 (2016)

For energies (EF − 2.3 eV,EF − 1.0 eV) m = 2 (ii,ii).
For energies (EF − 1.0 eV,EF + 3.0 eV) m = 0 (i,i).
The Tdd (E) transmission has the following power factor m

in Eq. (19).
For energies (EF − 2.7 eV,EF − 0.4 eV) m = 4 (iii,iii).
For energies (EF − 0.4 eV,EF + 1.5 eV) m = 2 (ii,ii).
For energies (EF + 1.5 eV,EF + 3.0 eV) m = 0 (i,i).
The Tud (E) transmission [which is equal to the Tdu(E)

transmission since both electrodes are from the same material]
has the following power factor m in Eq. (19).

For energies (EF − 2.3 eV,EF − 1.0 eV) m = 3 (ii,iii).
For energies (EF − 1.0 eV,EF − 0.4 eV) m = 2 (i,iii).
For energies (EF − 0.4 eV,EF + 1.5 eV) m = 1 (i,ii).
For energies (EF + 1.5 eV,EF + 3.0 eV) m = 0 (i,i).
Finally, the optimistic TMR, defined by expression

TMR(E) = TPC − TAPC

min(TPC,TAPC)
, (24)

where TPC = Tuu + Tdd , and TAPC = Tud + Tdu, has the
following asymptotics.

For energies (EF − 2.3 eV,EF − 1.0 eV) TMR ∝ N .
For energies (EF − 1.0 eV,EF − 0.4 eV) TMR ∝ N2.
For energies (EF − 0.4 eV,EF + 1.5 eV) TMR ∝ N .
For energies (EF + 1.5 eV,EF + 3.0 eV) TMR ∝ 1.
In general, if the MTJ system has planar square group

symmetry, the TMR due to the symmetry filtering mechanism
can only have three possible asymptotics: TMR ∝ Nn with
n = 0,1, or 2. This follows from the fact that the STF is the
same for the electrode that does not switch the spin direction
when going from the PC to the APC, while the STF of
the electrode that switches the spin direction in each of the
spin states can only have one of three possible scenarios:
(i), (ii), or (iii) [see Eqs. (16)–(18)]. The last statement is a
consequence of the fact that for the square-symmetry group
all possible symmetry assignments are described by Eqs. (20)–
(23). Therefore, the m factor in Eq. (19) for the transmission
in PC, mPC, and the m factor in Eq. (19) for the transmission
in APC, mAPC, can only differ by |mAPC − mPC| = 0,1, or
2, resulting in the TMR ∝ Nn with only possible values of
n = 0,1, or 2.

In conclusion of this section we present the expressions for
the k-resolved transmission functions for the Fe/MgO/Fe MTJ
in the limit of small k and large N for the energies in the range
(EF − 0.4 eV,EF + 1.5 eV):

Tuu(k,E) = Auue
−(γ0,E+αk2)N, (25)

Tud (k,E) = Auufud (k/|k|)k2e−(γ0,E+αk2)N, (26)

Tdd (k,E) = Auuf
2
ud (k/|k|)k4e−(γ0,E+αk2)N . (27)

Here Auu is a constant (for fixed energy), and fud (k/|k|),
in general, is a function of the k direction, k/|k|. Note that
in Eq. (27) the square of the function fud (k/|k|) is used, as
prescribed by Eq. (2) that demands the equality Tuu(k,E) ×
Tdd (k,E) = T 2

ud (k,E) in the limit of large N .
The k-resolved transmission functions Tud (k,E) and

Tdd (k,E) in the limit of small k and large N for the
energies in the range (EF − 1.0 eV,EF − 0.4 eV) have the

FIG. 2. (a) Comparison of two expressions for the APC
transmission, Tud (E) = ∑

k Tud (k,E) (red lines), and T ′
ud (E) =∑

k[Tuu(k,E) × Tdd (k,E)]1/2 (blue lines) for the Fe/MgO/Fe MTJ
with number of MgO layers N = 4, 6, 8, 10, and 12. (b) Majority-
majority transmission in PC, Tuu(E), for the Fe/MgO/Fe MTJ with
different N .

form

Tud (k,E) = Auufud (k/|k|)k4e−(γ0,E+αk2)N, (28)

Tdd (k,E) = Auuf
2
ud (k/|k|)k8e−(γ0,E+αk2)N . (29)

The Tuu(k,E) for this energy range is given by Eq. (25).
In the following section we will compare these theoretical
expressions with calculated k-resolved transmission functions.

F. Ab initio calculations for Fe/MgO/Fe MTJ

In order to confirm the theoretical formulas derived above
we performed ab initio DFT calculations of the transmission
functions for the Fe/MgO/Fe MTJ with N = 4,6,8,10, and
12 using the TB-LMTO-ASA Green’s-function approach
[14–16]. We used relaxed nuclear coordinates of the Fe/MgO
interface from Ref. [17].

The transmission functions Tud (E) and T ′
ud (E) are shown

in Fig. 2(a) and transmission functions Tuu(E) are shown in
Fig. 2(b) for different N . One can see that Tud (E) defined
by Eq. (4) and T ′

ud (E) defined by Eq. (5) indeed are very
close to each other even for N = 4. For larger N , agreement
between Tud (E) and T ′

ud (E) becomes better and at N = 12 they
are almost indistinguishable. We conclude that the asymptotic
behavior described by Eq. (2) is reached for the Fe/MgO/Fe
MTJ starting already with N = 4.

FIG. 3. (a) Attenuation constant γ0,E estimated from Eq. (31).
(b) Tuu(E)N exp [γ0,EN ] calculated for N = 6,8,10, and 12. Curves
with N = 8,10, and 12 are indistinguishable in the figure.
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FIG. 4. Transmission functions Tuu(k,E) (green dots), Tud (k,E)
(cyan dots), and Tdd (k,E) (blue dots) shown for the Fe/MgO/Fe
MTJ with N = 10 for 6 energies E − EF = −0.8,−0.4,0,0.05,0.4,
and 0.8 eV as function of the absolute value of the wave vector |k|
(shown in units of 2π/a). Red dashed curves are theoretical curves
that describe behavior of the transmission functions at small |k|.
Theoretical curves were plotted using Eqs. (25), (28), and (29) for
E − EF = −0.8 eV and Eqs. (25)–(27) for all other energy points
(see text for details).

In Fig. 3(a) we show attenuation constant γ0,E estimated
from the expression for Tuu(E),

Tuu(E) = A exp [−γ0,EN ]/N, (30)

with N = 10 and 12:

γ0,E = 1

2
ln

(
10Tuu(E,N = 10)

12Tuu(E,N = 12)

)
. (31)

In order to verify the convergence of calculated γ0,E with
respect to N we plotted the product Tuu(E)N exp [γ0,EN ]
for N = 6,8,10, and 12 in Fig. 3(b). As can be seen the
curves for N = 8,10, and 12 are indistinguishable in the figure,
confirming both validity of the asymptotic formula (30) and
convergence of calculated γ0,E with respect to N for a broad
range of energies. Decline of the γ0,E at E = EF − 0.85 eV
could be explained by approaching the edge of the �1-
symmetry majority band that occurs at the energy slightly
below E = EF − 0.85 eV [see Fig. 1(a)].

The k-resolved transmission functions Tuu(k,E), Tud (k,E),
and Tdd (k,E) calculated for the Fe/MgO/Fe MTJ with N = 10
for six energy points E − EF = −0.8,−0.4,0,0.05,0.4, and
0.8 eV are presented on six panels of Fig. 4 as functions of the
absolute value of the wave vector |k| (shown in units of 2π/a,
where a is the lattice constant of Fe). The mesh of 128 × 128
divisions of the full SBZ was used that resulted in 2145 k

points in the irreducible wedge of the SBZ (ISBZ). (These
2145 k points of the ISBZ were used for plotting Fig. 4.)
For each transmission function the corresponding theoretical
curve (shown by red dashed curves) that describes the small
|k| behavior of the transmission is also plotted. Theoretical
curves for Tuu(k) transmission were fitted according to Eq. (25)
using γ0,E shown in Fig. 3(a) and two fitting constants: Auu

and α. Theoretical curves for Tud (k) transmission were fitted
according to Eq. (28) for E − EF = −0.8 eV and according
to Eq. (26) for other energy points with additional fitting
constant fud that corresponds to the maximum value of
the function fud (k/|k|), fud = maxk fud (k/|k|). Theoretical
curves for Tdd (k) transmission were plotted according to
Eq. (29) for E − EF = −0.8 eV and according to Eq. (27) for
other energy points without any additional fitting constants.

One can see that theoretical curves describe the small |k|
behavior of all transmission functions rather well in a broad
range of energies, including the E − EF = −0.8 eV energy
where behavior of the Tud (k) and Tdd (k) changes from that
described by Eqs. (26) and (27), to that described by Eqs. (28)
and (29). We stress that behavior of the Tdd (k) transmission is
very well described by the corresponding theoretical curve that
was plotted without any additional fitting—by using only the
constants derived from fitting the Tuu(k) and Tud (k) functions
[which provides yet another conformation of the validity of
Eq. (2)].

For all six energy points theoretical curves correctly predict
small |k| behavior of the Tuu(k) function up to |k| ∼ 0.2,
where Tuu(k) is reduced by many orders of magnitude from its
maximum. Theoretical curves for Tud (k) and Tdd (k) functions
start to deviate from calculated transmissions at |k| ∼ 0.1,
where the small |k| approximation becomes invalid. The
theoretical curves correctly describe the local maximum of
the Tud (k) at small k for all considered energy points except
E − EF = −0.4 eV energy which is a transitional point where
the �5 minority band disappears [see Fig. 1(b)]. Due to
corresponding Van Hove singularity in the minority Fe density
of states (DOS) at this energy the maximum of the Tud (k) is
the largest for E − EF = −0.4 eV as compared to maxima
of Tud (k) for another five energy points [which leads to the
smallest TMR at N = 10 compared to other energy points,
see Figs. 5 and 6].

The global maximum of the function Tud (k) does not
coincide with the local maximum described by the theoretical
curves also for two other energy points: E − EF = −0.8 eV
and E = EF . For E − EF = −0.8 eV the small |k| region is
strongly suppressed by the |k|4 factor [see Eq. (28)], so Tud (k)
near the M point (M point on Fig. 4 corresponds to largest
|k| = 1/

√
2) is larger compared to Tud (k) near |k| = 0. At

sufficiently large N the contribution from the |k| = 0 region
will eventually become dominant, but this asymptotic has not
been reached yet at N = 10 for E − EF = −0.8 eV.

The global maximum of the Tud (k) at the E = EF energy
point reached at |k| ∼ 0.15 is not described by Eq. (26) and
corresponds to the interface resonance states that exist in a
narrow energy window near EF [1,5,7–10]. The IRS are very
sensitive to small changes of the energy and, as can be seen
in Fig. 4, the peak in Tud (k) associated with IRS disappears
already at E − EF = 0.05 eV. The IRS contribution to the
APC transmission can be seen as a narrow peak on Fig. 2(a)
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FIG. 5. Tuu(E)/[N × Tud (E)] shown as function of the energy
for N = 4,6,8,10, and 12.

with maximum at E − EF = −0.009 eV and width ∼0.02 eV
(at N = 10), and, also, as a narrow dip in the TMR, in Fig. 5.
We note that the energy position of the IRS states is very
sensitive to the details of the Fe/MgO interface and depends
on the DFT functional used for relaxation of the interface
structure [9]. In addition, recent beyond-DFT quasiparticle
self-consistent GW (QSGW) calculations show that the IRS-
induced peak in the minority DOS is shifted from E = EF

(as predicted by DFT) to E = EF + 0.12 eV [10], which is in
agreement with experimental measurements [18].

Figure 5 shows Tuu(E)/[N × Tud (E)] as a function of
the energy for N = 4,6,8,10, and 12. It is seen that for
all considered N functions Tuu(E)/[N × Tud (E)] are very
close to each other in the energy range E > EF + 0.4 eV,
thus confirming that linear with N asymptotic behavior of
the TMR resulting from the symmetry filtering effect is
established in Fe/MgO/Fe MTJ starting already with N = 4 for
E > EF + 0.4 eV. Established linear asymptotical behavior is
also seen in Fig. 6(b) where TMR is plotted as a function of
N for several energy points with E � EF + 0.4 eV.

For energies between, approximately, EF − 0.2 eV and
EF + 0.2 eV the asymptotic behavior is reached at larger N

FIG. 6. Calculated TMR shown as function of N for (a) six energy
points with E � EF + 0.2 eV and (b) five energy points with E �
EF + 0.4 eV. (c) TMR for E = EF − 0.4 eV (shown on larger scale)
and TMR1/2 for E − EF = −0.8 and −0.6 eV.

due to two factors: (i) contribution of the IRS to the Tud (E) and
(ii) generally small h(k/|k|,E) multiplier in the ∝k2 term of the
minority STF at small |k|, tdkE = k2h(k/|k|,E), in this energy
window. Smaller h(k/|k|,E) for E between EF − 0.2 eV and
EF + 0.2 eV as compared to h(k/|k|,E) at E > EF + 0.4 eV
leads to increased relative contribution to the Tud (E) from parts
of the SBZ other than |k| ∼ 0 [although the contribution of the
|k| ∼ 0 region to Tud (E) still increases with increased N ] and
thus larger N where linear asymptotic behavior, TMR ∝ N , is
established.

As seen in Fig. 5 and also in Fig. 2(a), the width of the IRS
peak reduces with increased N due to fast decaying of the IRS
states (with |k| away from the |k| ∼ 0 region) inside the barrier
with attenuation constant larger than γ0,E . As a result, curves
with N = 10 and 12 shown in Fig. 5 are very close to each
other for the whole range E > EF − 0.4 eV, except a small
region with width ∼0.02 eV near EF where the contribution
of some IRS states (states that have |k| ∼ 0 which decays with
γ0,E) to the Tud (E) still survives.

The effect of small h(k/|k|,E) is seen in Fig. 5 as a broad
peak of the Tuu(E)/[N × Tud (E)] functions for E between
EF − 0.2 eV and EF + 0.2 eV. The fact that minority STF
tdkE = k2h(k/|k|,E) at |k| ∼ 0 is smaller for E between
EF − 0.2 eV and EF + 0.2 eV compared to that outside
of this energy window can also be seen by comparing the
k-resolved transmission Tud (k) in Fig. 4 for E − EF = 0 and
0.05 eV with that for E − EF = −0.4,0.4, and 0.8 eV. [Note
that majority STF tukE does not change much in the broad
energy range E > EF − 0.4 eV, as can be concluded from
comparing Tuu(k) on panels corresponding to different energy
points in Fig. 4 and the smooth behavior of the Tuu(E) shown
in Figs. 2(b) and 3(b).] Small STF of minority electrons for
energies between EF − 0.2 eV and EF + 0.2 eV results in
larger values of TMR for N � 6 in this energy window (see
Fig. 6) as compared to the TMR outside of this window, but
within the broader window E > EF − 0.4 eV where the �5

minority Fe state still exists. Therefore, we can conclude that
it is the combination of the symmetry filtering effect and small
multiplier for the ∝k2 term in the minority STF h(k/|k|,E)
at the Fe/MgO interface that is responsible for huge values
of the TMR > 10 000% predicted for the Fe/MgO/Fe MTJ at
E = EF for N � 8. Although large TMR has been predicted
for the Fe/MgO/Fe MTJ in many previous works [1,2,5–11],
it has been assigned to the symmetry spin-filtering effect
alone and the contribution of the energy-dependent interface
scattering effects to the enhanced TMR values has not been
discussed. The reason why the h(k/|k|,E) function is small
near EF is yet to be determined.

In the energy window from EF − 1.0 eV to EF − 0.4 eV
there is no �5-symmetry state along the � − H line in the
minority Fe channel (see Fig. 1), so TMR ∝ N asymptotic
behavior changes to the TMR ∝ N2 asymptotic behavior
[see Figs. 5, 6(a), and 6(c)]. The maximum of Tuu(E)/[N ×
Tud (E)] occurs at E = EF − 0.85 eV where Tud (E) is small
due to the |k|4 factor in Tud (k), while Tuu(k) is enhanced due to
the Van Hove singularity at the edge of the �1 majority Fe band
[see Figs. 1 and 2(b)]. In the energy window from EF − 2.3 eV
to EF − 1.0 eV the TMR asymptotics return to the TMR ∝ N

behavior, as predicted in the previous section and as confirmed
by convergence of the function Tuu(E)/[N × Tud (E)] shown
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in Fig. 5 at E < EF − 1.0 eV to a N -independent function of
E at large N .

Calculated TMR is shown as a function of N in Fig. 6(a)
for six energy points with E � EF + 0.2 eV and in Fig. 6(b)
for five energy points with E � EF + 0.4 eV. Figure 6(c)
shows TMR for E = EF − 0.4 eV [in a scale larger than that
of Fig. 6(a)] and TMR1/2 [to identify the N2 behavior] for
E − EF = −0.8 and −0.6 eV. The TMR shown in Fig. 6 is
calculated using the definition TMR = [Tuu − 2Tud ]/(2Tud )
that neglects the Tdd contribution to the transmission in PC.
Such definition is used since, in general, Tdd is much smaller
than Tuu except in the case of small N where, at energies near
EF , the IRS contribution to Tdd is significant and Tdd becomes
comparable with (or even larger than) Tuu. As was noted in [5]
the contribution of IRS to Tdd at small N is significant due to
the energy matching of the surface resonances at the left and
right Fe/MgO surfaces that occurs “only for ideal, symmetric
junctions, and only at zero bias.” Slight nonideality in any of
the electrode or bias voltage as small as 0.01 V is sufficient
to destroy this resonance matching [5]. Therefore we neglect
such contributions.

The TMR curves shown in Fig. 6 have linear with N

asymptotic behavior for all energy points except E − EF =
−0.8,−0.6, and 0 eV. For energy points with E � EF +
0.4 eV linear with N behavior starts already with N = 4. For
E − EF = −0.4 eV linear behavior starts somewhat later, at
N = 8 due to the approaching band edge of the Fe �5 minority
band [see Fig. 1(b)] and corresponding reduction of the k
integration range where the �5 bands still exist (see fast drop
of the Tud (k,E) at |k| ∼ 0.08 at this energy shown in Fig. 4).
For E − EF = −0.2 and 0.2 eV linear with N behavior begins
also somewhat later, at N = 8, due to generally small STF tdkE

at |k| ∼ 0 for energies between EF − 0.2 eV and EF + 0.2 eV
and, therefore, enhanced weight of the contributions from other
than |k| ∼ 0 parts of the SBZ at smaller N .

For E = EF the linear asymptotic regime is not established
yet even at N = 12 due to the narrow IRS-related peak in
Tud (E). On the other hand, as seen in Fig. 5, linear asymptotic
is established already for N = 10 for energies just 0.1 eV
smaller or larger then EF . We note that in real experiment
the contribution of the IRS to the transmission functions is
suppressed due to the interface roughness.

As can be concluded from the linear behavior of the TMR1/2

as a function of N shown in Fig. 6(c) for the energy E − EF =
−0.6 eV, the asymptotic behavior TMR ∝ N2 starts already
with N = 6. For E − EF = −0.8 eV the asymptotic behavior
TMR ∝ N2 (or TMR1/2 ∝ N ) begins somewhat later, at N =
8, due to enhanced weight of the contributions from other
than |k| ∼ 0 parts of the SBZ at smaller N , as we noted in
discussion of Fig. 4.

III. CONCLUSIONS

In conclusion, we derived the general expression for the ∝k
contributions (where k is the wave vector in 2D SBZ) to the
wave functions of bulk materials in terms of the wave functions
at k = 0 that allows us to identify the symmetry properties
of such ∝k contributions. In particular, for a planar square
group symmetry, C4v , we derived the irreducible symmetry
representations of the ∝k terms that correspond to all possible

symmetries (irreducible representations) of the wave functions
at k = 0. We derived the ∝ exp [−γ0,EN ]/Nm+1 asymptotics
of the transmission functions at large N for the general
FN/SB/FM MTJ that has symmetry filtering properties and
identified power factor m for several most common scenarios
of the symmetry matching of the wave functions at both FM/SB
interfaces. We show that for a MTJ system that has planar
square group symmetry, C4v , the TMR due to the symmetry
filtering mechanism can only have three possible asymptotics:
TMR ∝ Nn with n = 0,1, or 2.

Based on the symmetry properties of bulk Fe and MgO
states at k = 0 we predicted the asymptotics of the transmis-
sion functions and TMR for the Fe/MgO/Fe MTJ. In particular,
we predicted TMR ∝ N for energies from EF − 0.4 eV to
EF + 1.5 eV and from EF − 2.3 eV to EF − 1.0 eV, and
TMR ∝ N2 for energies from EF − 1.0 eV to EF − 0.4 eV. Ab
initio calculations performed for the Fe/MgO/Fe MTJ confirm
these theoretical predictions in a broad range of energies and
N .

Large TMR obtained for the Fe/MgO/Fe MTJ at energies
near EF (TMR > 10 000% for N � 8) is attributed to the
combination of the symmetry spin-filtering effect and small
multiplier for the ∝k2 term in the minority surface transmission
function, h(k/|k|,E), that leads to an additional enhancement
factor of the order of ∼20 for the TMR at the energy near EF

compared to that at E > EF + 0.4 eV or E ∼ EF − 0.4 eV
(see Fig. 5). To the best of our knowledge the effect of small
h(k/|k|,E) (strong scattering of minority Fe electrons at the
Fe/MgO interface at energies near EF ) has not been discussed
in the literature yet.

Superlinear behavior of TMR at energies near EF obtained
in this and previous theoretical works [1,5] at N � 12 is
associated with contribution of the interfacial resonance states
(quickly decaying with N ) to the APC transmission. In real
experiment the IRS contribution is suppressed due to surface
roughness, thus providing a natural explanation as to why
no strong dependence of the TMR on N has been found
experimentally. We note also that the overlap integral at the
Fe/MgO interface between Fe minority eigenstates and the �1-
symmetry MgO eigenstate is proportional to |k| at small k only
because of mismatching symmetry of these eigenfunctions at
k = 0. Therefore, surface roughness and/or interface chemical
disorder that breaks the symmetry of the wave functions at the
interface will inevitably lead to nonzero value of the the overlap
integral at k = 0 and therefore to saturation of the TMR at
large N , which is observed experimentally [3,4]. In addition, a
nonideal surface (due to interface chemical disorder or steps in
surface layers) induces scattering of |k| > 0 Fe minority states
into the |k| = 0 MgO barrier eigenstate that also leads to the
saturation of the TMR at large N [6,19].

The method for prediction of the strength of the symmetry
filtering effect (asymptotics of the TMR) suggested in the
present paper is based on simple analysis of the band structure
of the bulk electrode and barrier materials at k = 0. Therefore,
such method could be used as a tool for quick material
discovery search among a vast number of possible candidate
electrode (e.g., Heusler alloys or magnetic multilayers) and/or
barrier materials for suitable MTJs in the context of emerging
technologies (such as STT-MRARM technology) that require
high TMR.
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