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Zak phases and band properties in acoustic metamaterials with negative modulus or negative
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Zak phases in two types of acoustic metamaterials with negative density or negative modulus are studied.
Different from phononic crystals based on Bragg scattering, extraordinary performance in acoustic metamaterials
originates from local resonance. We find that the Zak phases in metamaterials are determined by the resonances of
scatterers, side pipes, or membranes. Additionally, it is observed that the topological transition points, symmetrical
properties of edge states, input impedances, and reflection phases in forbidden bands are all related to the
resonances of the scatterers, and the relationship can be used to create surface states at the interface of two types
of acoustic metamaterials.
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The geometric phase, which is induced by the geometrical
properties of the parameter space of the Hamiltonian, is a phase
difference acquired over the course of a cycle while a system
is subjected to cyclic adiabatic processes [1]. In addition to
quantum mechanics, the studies concerning the geometric
phase were spread into various wave systems [2–5]. Then the
Zak phase, which specifically refers to the geometric phase
that characterizes the topological energy bands of electron
motions in one-dimensional periodic solids, was presented [6].
The Zak phase was first measured on the basis of a dimerized
model [7] corresponding to the classical Su-Schrieffer-Heeger
model devised to study soliton formation in polyacetylene
[8,9]. Furthermore, the studies concerning the Zak phase
were conducted in photonic crystals theoretically [10] and
experimentally [11,12], and then interface states and band
topology in two-dimensional photonic crystals were studied
[13,14]. Recently, the concept of the Zak phase was introduced
into acoustics [15], in which the Zak phases and interface
states were measured in a phononic crystal composed of
an alternately established cylindrical pipe with two types of
cross-sectional areas.

Apart from phononic crystals, acoustic metamaterials are
considered to be the other type of artificial materials which can
produce unprecedented acoustic phenomena. The fundamental
mechanisms for phononic crystals and acoustic metamate-
rials are completely different. For phononic crystals, Bragg
scattering in periodic structures is the primary mechanism of
band gaps [16]. From the perspective of acoustic transmission,
the gaps are induced by the reflections of acoustic waves,
which originate from the mismatch of acoustic impedances
at the boundaries of the periodic structures in phononic
crystals. Unlike phononic crystals, characteristic frequency
bands and extraordinary performance of metamaterials result
from local resonance of artificial structures other than Bragg
scattering [17]. Therefore, in this work, we explore the
relations between the Zak phase and local resonance of two
types of scatterers, side pipes or membranes, in the acoustic
metamaterial with a negative modulus or negative density,
respectively. Furthermore, due to the local resonance, the
band edges in the metamaterials are classified into two types
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induced by different mechanisms, which also determine the
symmetrical properties of the edge states. Finally, on the basis
of the relationship among the Zak phases, input impedances,
and reflection phases, interface states are created at the border
of two types of metamaterials with negative modulus or
negative density.

The models of two types of metamaterials are shown in
Fig. 1, in which the negative density is realized with peri-
odically distributed membranes Mi [18,19] and the negative
modulus is created by side pipes Pi with hard terminals other
than side holes [19–21] or Helmholtz resonators [22]. In both
metamaterials, the acoustic waves in adjacent units UN−1 and
UN can be expressed based on Bloch theory [19,21]:
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where � represents the acoustic pressure p or particle velocity
v, and the superscripts + and–represent the incident and
reflected waves, respectively. � is the transfer matrix indicating
the relationship between the quantities � in the adjacent units.
Neglecting damping, the components of the transfer matrix
for the negative-modulus metamaterial �M can be obtained
as �M11 = (1 + jρ0c0/2SXHA)e−jkL, �M12 = jρ0c0/2SXHA

and �M22 = �∗
M11, �M21 = �∗

M12, where the asterisk indicates
complex conjugation. XHA = −ρ0c0tan−1(kls)/Ss is the ef-
fective reactance of the side pipes determined by the effective
length ls and cross-sectional area Ss = πr2

s of the side pipes
[23]. S = πa2 is the cross-sectional area of the main tube,
L is the length of the unit, and k is the wave number of
the conventional acoustic waves. ρ0 and c0 are the density
and acoustic velocity of air in the metamaterial, respectively.
Then, solving the eigenequation (1), we can obtain the eigen-
values λ±

M = e±jqML and corresponding eigenvectors BM =
[β1,β2]T = [�M12,e

jqML − �M11]T , where the superscript T

indicates transposition. Furthermore, the dispersion equation
and eigenvectors can be achieved:

cos(qML) = cos(kL) + sin(kL)ρ0c0/2SXHA, (2)

and

BM = [jρ0c0/2SXHA,j{sin(qML) + sin(kL)

− cos(kL)ρ0c0/2SXHA}]T , (3)
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FIG. 1. Models of the metamaterials with (a) negative modulus
and (b) negative density.

where qM is the Bloch wave number for the negative-modulus
metamaterial.

For plane acoustic waves transmitting along the x direction,
the Zak phase for the mth isolated passband is defined to be
[15]

θZak
m =

∫ π/L
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[
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2
0
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(x)

]

× dqM. (4)

The system is invariant under space inversion if the
inversion center is chosen at the origin x = 0, and thus the
distribution of the Bloch wave exhibits a space symmetry of
�m,qM

(x) = �m,−qM
(−x). Therefore, the Zak phase calculated

with Eq. (4) must be 0 unless the isolated passband contains a
special frequency fAr at which both β1 and β2 equal 0. From
Eq. (3), β1 and β2 simultaneously equal 0 at the frequency
where XHA → ∞ (see Supplemental Material, Part I [24]),
which demonstrates that fAr is the antiresonance frequency
of the side pipes [23]. In this case, the coefficient matrix
� exhibits a diagonal form, and we do not need to search
for the eigenvectors. Therefore, in the passbands containing
the antiresonance frequencies fAr , the system acquires a Zak
phase of π ; otherwise the Zak phase is 0. Furthermore, for the
metamaterial with a negative density, it can be proven that if
an isolated passband covers a resonant frequency fMr of the
membranes, at which the effective reactance of the membrane
XMA = 0, the Zak phase of the band is π ; otherwise the Zak
phase is 0 (see Supplemental Material, Part I [24]). Thus
it is demonstrated that the local resonance of the scatterers
determines the Zak phase in an acoustic metamaterial.

According to the Zak phases, the isolated passbands in
acoustic metamaterials can be classified into two types,
which exhibit different properties in band edges and sym-
metry of eigenstates. First, we can determine the band
edges in the negative-modulus metamaterial from disper-
sion Eq. (2). Defining a dimensionless normalized acoustic
impedance ZM = ρ0c0/2SXHA, Eq. (2) can be rewritten as

cos(qML) =
√

1 + Z2
M cos(kL − αM ), where tan(αM ) = ZM ,

from which the band edges can be determined by kL = mπ or

kL − 2αM = mπ (m = 1,2,3, . . .). Different from phononic
crystals in which the Bragg resonance is a sole reason for
band gaps, the metamaterial exhibits two types of band edges
resulting from different mechanisms: kL = mπ (type I) indi-
cates the band edges induced by the Bragg resonance, which
is solely determined by the unit length L and independent
of the parameters of the scatterers, while the band edges
characterized by kL − 2αM = mπ (type II) are determined
by the impedance of the side pipes. The local resonance
frequencies fr of the side pipes must locate in forbidden
bands, because at fr , we have XHA = 0 [23], which results
in ZM → ∞ and |cos(qML)| > 1. Then the passbands must
locate between local resonant frequencies of the side pipes
and do not contain fr . On the other hand, the antiresonance
frequencies fAr of the side pipes must locate in passbands since
ZM = 0 at fAr . Thus, as shown in Fig. 2(a), we classify the
passbands into two types; one does not cover an antiresonance
frequency fAr [PB1 and PB2], and the other, induced by the
antiresonance, contains fAr (PB3). For the former, if ZM < 0,
namely, αM ∈ (−π/2,0) (as PB1), the bottom edge is type I
and the top edge is type II. When ZM > 0 and αM ∈ (0,π/2)
(as PB2), the bottom edge is type II and the top edge is type I. In
the antiresonance induced passband (as PB3), we have ZM > 0
at the bottom edge and ZM < 0 at the top edge, and both edges
must be type II. Besides, the origin of the frequency axis f = 0
can also be considered to be an antiresonant frequency, and
thus the top edge of the first passband is type II.

Due to the occurrence of two types of band edges, the widths
of pass and/or forbidden bands in an acoustic metamaterial
can differ massively. Provided that L is sufficiently small and
no band edge of type I induced by Bragg scattering occurs
between adjacent fr and fAr , one achieves an extremely wide
passband with the Zak phase of π covering the majority of
the frequency range between two adjacent fr . Furthermore,
when an antiresonant frequency fAr of the side pipe is in
accordance with a Bragg-resonance frequency of the meta-
material, namely, ZM = 0 and kL = mπ are simultaneously
achieved at fAr , two passbands cross each other and the
forbidden band between them closes, as indicated in the middle
panel of Fig. 2(b). Then, by tuning the structural parameters
across the passband crossing point fAr , the Zak phases of
the passbands on both sides of fAr switch between 0 and π ,
which demonstrates that fAr is a topological transition point
(see Supplemental Material, Part II [24]). In addition, two
adjacent forbidden bands can also degenerate into one if a local
resonant frequency fr and a Bragg-resonance frequency are in
agreement with each other, and thus a simple band structure
can be obtained, as shown in the bottom panel in Fig. 2(b).

The eigenstates of band edges obtained at the inversion
center are related to the local resonance of the scatterers. At the
origin x = 0 of the coordinates, which is an inversion center in
space, the acoustic pressure in the negative-modulus metama-
terial can be expressed to be p0 = TM12 + (ejqML − TM11), and
meanwhile, at band edges, we have ejqML − TM11 = ±TM12.
Thus the amplitude of acoustic pressure |PA| at x = 0 only has
two values, zero or the maximum, corresponding to the edge
states of antisymmetry and symmetry, respectively. Similar
results can be obtained in the particle velocity, in which the
antisymmetrical and symmetrical states are opposite to those
of the acoustic pressure.
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FIG. 2. (a) Classification of the bands and band edges between two adjacent resonant frequencies fr1 and fr2 of the side pipes. (b) The
reactance XHA of the side pipes (upper panel) calculated with ls = 6 cm and rs = 1 cm, and the band structures with L = 9 cm (middle panel)
and L = 12 cm (bottom panel). The cross-sectional radius of the main waveguides is a = 2.5 cm. It can be observed that with L = 12 cm,
both the passbands and forbidden bands degenerate, which produces a simple band structure. (c) Symmetrical characteristics of the band edges
at the inversion center obtained in three passbands between fr1 and fr2 indicated in the middle panel of (b). In the PB1-type passband between
3822 Hz (m = 2) and 4272 Hz(m′ = 3), the edge states for the top and bottom edges obtained at x = 0 are both zero and exhibit antisymmetrical
characteristics. In the PB2-type passband between 1462 Hz (m = 0) and 1911 Hz (m′ = 1), both edge states reach the maximum and show
symmetrical properties. In the PB3-type passband between 2035 Hz (m = 1) and 3697 Hz (m = 1), the eigenstate at the bottom edge is zero
and that at the top edge reaches the maximum, which demonstrate different symmetrical characteristics.
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FIG. 3. (a) The reactance XMA of the membranes calculated with the following parameters: a mass of mM = 0.35 g, a thickness of
t = 125 μm, a radius of a = 2.5 cm, a Young’s modulus E = 2.66 × 1011 N/m2, and a Poisson’s ratio of υ = 0.34. (b) Band structure of the
negative-density metamaterial with L = 9.7 cm. (c) Symmetrical characteristics of the band edges in the first three passbands shown in (b)
obtained at the inversion center. For the passband between 1102 and 1429 Hz, which is a resonance induced passband covering a resonant
frequency of the membrane and exhibits the Zak phase of π , both band edges are type II and show different eigenstates. For the passbands of
1773 − 2113 Hz and 3546 − 3651 Hz, with the Zak phases of 0, the bottom edges are type I and the top edges are type II, which exhibit the
same eigenstates.

For a PB1-type passband (ZM < 0), the bottom and top
edges are, respectively, determined by kL = mπ and kL −
2αM = m′π , with m′ = m + 1. When m is even, |PA| at
bottom and top edges are both zero, and when m is odd, they
reach the maximum, which indicate that the edge states for the
top and bottom edges are the same. For a PB2-type passband
(ZM > 0), both edge states are also the same. However, in
an antiresonance induced passband like PB3, regardless of
m, the amplitudes of acoustic pressures |PA| are different at
the bottom and top edges. Thus it is demonstrated that the
edge states for both edges are opposite to each other in an
isolated passband with the Zak phase of π , while they are
the same in a passband with the Zak phase of 0. The detailed
explications are presented in the Supplemental Material, Part
III [24]. Furthermore, the calculated space distributions of the

acoustic pressures at the band edges are shown in Fig. 2(c),
which demonstrate the symmetrical characteristics of the band
edges previously predicted based on the classification of band
edges.

The characteristics for the band structure and eigenstates
in the negative-density metamaterial are shown in Fig. 3.
Comparing Figs. 2 and 3 shows that although the reactances
XHA and XMA are similar in both types of scatterers, the
band structures in the metamaterials are different. For the
negative-density metamaterial, the membranes, exhibiting
high impedance at low frequencies, are established in series
along the main waveguide, which causes intensive impedance
mismatch and creates a forbidden band in the low-frequency
range. While in the negative-modulus metamaterial, the side
pipes, which also exhibit high impedances at low frequencies,
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FIG. 4. Input reactances, transmissions, and space distributions of the acoustic pressures in three types of composite structures.
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are established in parallel and laterally along the main
waveguide. Thus, in the low-frequency range, the side pipes
exert a marginal impact on the acoustic transmission, which
result in a passband. Due to the high impedance of the
membrane at the antiresonant frequencies, the passbands in
the negative-density metamaterial locate between antiresonant
frequencies and do not contain them. As shown in Fig. 3,
the classification of band edges and symmetrical properties
of edge states are similar to those in the negative-modulus
metamaterial, and details can be found in the Supplemental
Material, Part III [24].

The input impedances Zin in forbidden bands of the acoustic
metamaterials are also related to the local resonance and the
Zak phases. Assuming a plane acoustic wave is normally
incident to the negative-modulus metamaterial at x = 0, the
relationship between the reflection coefficient R = |R|ejϕR

and the input impedance Zin is

1 + R

1 − R
= Zin = ρ0c0

ξ+ − j

ξ− + j
, (5)

in which ζ± = [Im(TM12) ± Im(ejqML − TM11)]/[(−1)n+12
sinh(κ)]. In a forbidden band, we have ejqML = ±e−κ , with
κ > 0 indicating the decay in acoustic transmission. n indi-
cates the number of times that the value of the dispersion
equation cos(qML) changes between cos(qML) < −1 and
cos(qML) > −1. After some derivations (see Supplemental
Material, Part IV [24]), the sign of the reflection phase in the
zth forbidden band can be obtained as sgn[(1 + R)/(1 − R)] =
sgn(ϕR) = sgn(Xin) = (−1)z+s+s ′+1, where s is the number
of the antiresonant frequency fAr which is not a topological
transition point and s ′ is the number of forbidden-band
degeneration points below the zth forbidden band. It can be
observed that if two forbidden bands degenerate, the reflection
phase exhibits opposite signs on both sides of the degeneration
point inside the degenerated forbidden band.

Moreover, in the negative-density metamaterial, the signs
of the reflection phase and input reactance are opposite to those
in the negative-modulus metamaterial with the same z, s, and
s ′ (see Supplemental Material, Part IV [24]).

Then, according to the reflection phase and input
impedance, an interface state can be created on the basis
of structures composed of two metamaterials, as indicated
in Fig. 4. When the input reactances XAL and XAR of the
metamaterials on the left and right sides satisfy the relation of
XAL + XAR = 0 [10,15], an interface state can be achieved at
x = 0. Therefore, if the forbidden bands in the metamaterials
on both sides overlap and the input reactances or reflection
phases are opposite in sign, it provides a possibility to form
an interface state. The left panel in Fig. 4(a) shows the input
reactances in the forbidden bands of two negative-modulus
metamaterials obtained with the impedance transfer theory,

which indicate that the condition XAL + XAR = 0 is obtained
at 1379 Hz. Moreover, the frequency-domain response and
spatial distribution of the acoustic pressure in the composed
structure are calculated using the theory describing the acoustic
transmission in periodic structures. From the transmission
shown in Fig. 4(a), we can observe a peak at 1379 Hz,
although this frequency locates in the forbidden bands of
both metamaterials. Meanwhile, the space distribution of the
acoustic pressure at 1379 Hz is displayed in the right panel,
which exhibits a peak at the interface x = 0, indicating an
interface state; although in a forbidden band, the acoustic
pressure should decay along the structure from the input at the
left terminal to the right end. To verify the results obtained with
the analytic theory, COMSOL MULTIPHYSICS is used to carry out
full-wave simulations. As shown in Fig. 4(a), the results of
the full-wave simulations are in accordance to those obtained
with the analytic theory. Furthermore, interface states are also
created in the structures composed of two negative-density
metamaterials and even different types of metamaterials, as
indicated in Figs. 4(b) and 4(c), respectively, which demon-
strates that an interface state can be achieved provided that the
condition ZAL + ZAR = 0 is satisfied, regardless of the types
of the metamaterials composing the structure. Additionally,
it has been proven that the damping in a system exerts no
influences on the band structure [25,26], and thus the Zak phase
in the metamaterials is independent of the damping. However,
the loss dissipates the acoustic energy in the metamaterial,
which can decrease the amplitudes of the interface states [15].

In conclusion, it is demonstrated that the Zak phase in
an isolated passband of an acoustic metamaterial is primarily
determined by the local resonance. Meanwhile, due to the
local resonance, the band edges in acoustic metamaterials are
classified into two types induced by different mechanisms.
Additionally, the local resonance in the metamaterials also
determines the topological transition points, forbidden-band
degeneration points, band-edge states, input impedances, and
reflections in forbidden bands. Therefore, on the basis of
the relationship between the Zak phases and the signs of
the input impedances, an interface state can be created in a
structure composed of two metamaterials. Furthermore, based
on the analogy between acoustic, optic, and electromagnetic
metamaterials, the research in this work can also be spread
into optic or electromagnetic metamaterials.
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