
PHYSICAL REVIEW B 94, 174306 (2016)

Phononic crystals of poroelastic spheres
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An extension of the layer-multiple-scattering method to phononic crystals of poroelastic spheres immersed in a
fluid medium is developed. The applicability of the method is demonstrated on specific examples of close-packed
fcc crystals of submerged water-saturated meso- and macroporous silica microspheres. It is shown that, by
varying the pore size and/or the porosity, the transmission, reflection, and absorption spectra of finite slabs of
these crystals are significantly altered. Strong absorption, driven by the slow waves in the poroelastic material and
enhanced by multiple scattering, leads to negligible transmittance over an extended frequency range, which might
be useful for practical applications in broadband acoustic shielding. The results are analyzed by reference to
relevant phononic dispersion diagrams in the viscous and inertial coupling limits, and a consistent interpretation
of the underlying physics is provided.
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I. INTRODUCTION

Phononic crystals are composite materials with elastic
coefficients (mass density and elastic moduli or, equivalently,
mass density and elastic wave velocities) that vary periodically
in space [1,2]. In three dimensions they can be realized,
e.g., by a periodic arrangement of solid or fluid inclusions
in an otherwise homogeneous host medium (solid or fluid) of
different elastic coefficients, although various other phononic
architectures have also been considered in one and two
dimensions. A most interesting aspect of these materials
arises from the possibility of frequency regions, known as
phononic band gaps, over which there can be no propagation
of elastic waves in the crystal [3–5], but appropriately designed
periodic or aperiodic phononic structures can exhibit a plethora
of other interesting physical phenomena, including filtering
[6], waveguiding [7–9], sensing [10], negative refraction,
and focusing [11], with most of these properties usually
occurring at wavelengths commensurate with the size of the
unit cell. Nowadays, modern self-assembly and other nanofab-
rication techniques allow for the realization of hypersonic
phononic crystals operating in the gigahertz range, with an
example being colloidal crystals of silica nanospheres in a
waterlike liquid. At these frequencies, however, Brillouin
light-scattering experiments provide evidence that porosity in
the silica particles cannot be neglected [12–14].

The acoustic properties of poroelastic materials at dif-
ferent length scales, such as rocks, soil, polymer networks,
colloidal particles, and biological tissues, attract considerable
interest from different scientific communities, ranging from
geophysics to chemistry, materials physics, and biomedical
sciences [15–17]. Phononic crystals comprising poroelastic
materials offer the possibility of additional degrees of freedom,
e.g., porosity, pore size, and fluid viscosity, to control the
propagation of elastic waves and could exhibit unprecedented
properties. However, to the best of our knowledge, apart from
one-dimensional layered structures [18], phononic crystals of
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poroelastic inclusions in a fluid host medium have not been
considered so far.

In the present paper we develop an extension of the layer-
multiple-scattering method [19,20] to phononic crystals of
poroelastic spheres immersed in a fluid medium. In Sec. II we
briefly survey Biot’s theory [21–24] for poroelastic materials.
In Sec. III we provide explicit expressions for the scattering
transition T matrix of a submerged fluid-saturated poroelastic
sphere in the specific basis of vector spherical waves employed
in our formalism. This matrix is the necessary ingredient in
the development of the layer-multiple-scattering method for
phononic crystals of poroelastic spheres that we describe in
Sec. IV. In the same section we demonstrate the applicability of
the method with specific examples of close-packed fcc crystals
of meso- and macroporous silica microspheres immersed in
water. In the last section we summarize the main findings of
our paper.

II. ACOUSTIC WAVES IN POROELASTIC MATERIALS

In the framework of Biot’s theory [21–24], a fluid-saturated
poroelastic material is considered a macroscopically homo-
geneous and isotropic two-component (solid-fluid) system,
which can be described in terms of average parameters. Its
skeletal frame is made of a solid material, characterized
by mass density ρs , bulk modulus Ks , and shear modulus
(Lamé constant) μs in its consolidated compact form, while
the bare skeletal frame has different elastic moduli, Kb and
μb. The fluid, of mass density ρf and bulk modulus Kf , fills
the whole volume of interconnected pores. It should be noted
that sealed pore space is considered part of the solid frame
and the (effective) porosity f is defined as the volume fraction
occupied by the fluid. Denoting the average macroscopic
displacement fields of the solid frame and the saturating fluid
in space-time (r,t) by u and U, respectively, the corresponding
effective stress tensors are given by

←→
T = μb

←→
I × ∇ × u + 2μb∇u

+←→
I (P − 2μb)∇ · u + ←→

I Q∇ · U,

←→
S = ←→

I Q∇ · u + ←→
I R∇ · U, (1)
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where

P = Ks

(1 − f )(1 − f − Kb/Ks) + f Kb/Kf

1 − f − Kb/Ks + f Ks/Kf

+ 4μb

3
,

Q = f Ks(1 − f − Kb/Ks)

1 − f − Kb/Ks + f Ks/Kf

, (2)

R = f 2Ks

1 − f − Kb/Ks + f Ks/Kf

.

The macroscopic stress tensor ←→σ and the mean pore fluid
pressure p are given by

←→σ = ←→
T + ←→

S (3)

and
←→
S = −←→

I fp, (4)

respectively.
Elastic wave propagation in this medium is governed by the

following equations:

ρ11ü + ρ12Ü + b(u̇ − U̇) = ∇ · ←→
T ,

ρ12ü + ρ22Ü − b(u̇ − U̇) = ∇ · ←→
S , (5)

where the overdot denotes the partial time derivative and

ρ11 = (1 − f )ρs + (α − 1)fρf ,

ρ12 = −(α − 1)fρf , (6)

ρ22 = αfρf ,

with α (α > 1), the so-called tortuosity of the medium, being
an intrinsic geometrical property related to variations in pore
shapes and orientations [24–26]. The last term on the left-hand
sides of Eqs. (5) accounts for frictional dissipation associated
with relative motion between the fluid and solid components
of the medium, where b is a damping coefficient. Intrinsic
absorption of the solid frame and the infiltrated fluid can be
taken into account by considering complex elastic constants.

At low frequencies, assuming that the flow of the fluid
relative to the solid through the pores is of the Poiseuille
type, the coefficient b is related to Darcy’s coefficient of
permeability κD by b = f 2η/κD , where η is the fluid viscosity
[21]. The assumption of Poiseuille flow breaks down at high
frequencies, and b can be written in a general form, which
encompasses both the low- and high-frequency ranges, as
follows [22]:

b = f 2η

κD

iζ 2J ′
0(

√
iζ )

4
√

iζJ0(
√

iζ ) + 8J ′
0(

√
iζ )

, (7)

where J0 is the zero-order Bessel function of the first kind
[27] and the prime denotes the first derivative with respect to
the argument of the function. In the simple case of cylindrical
pores parallel to the direction of the flow, ζ = Rp

√
ωρf /η,

where Rp is the radius of the cylinder [22]. In the general case,
Rp can be considered a characteristic pore-size parameter that
takes into account the geometry of the pores. The expression
that multiplies the factor f 2η/κD on the right-hand side
of Eq. (7), considered a function of the real dimensionless
variable ζ , over the entire range 0 � ζ < ∞ behaves similarly
to the simple function

√
1 − i(ζ/4)2, with their absolute

relative difference being always less than 10%. Moreover, the
geometrical parameters f, α, κD, Rp, which characterize the
pores and are, in general, unrelated, for a set of nonintersecting
canted cylindrical pores are related to each other by the
equation f R2

p = 8ακD , which leads to the following simple
yet effective form for b [28]:

b = f 2η

κD

(
1 − i

ακDρf ω

2f η

)1/2

. (8)

We assume monochromatic time-harmonic solutions of
Eqs. (5), of angular frequency ω, in the forms u(r,t) =
Re[u(r) exp(−iωt)] and U(r,t) = Re[U(r) exp(−iωt)]. De-
composing the general displacement fields into longitudinal
(irrotational) and transverse (divergenceless) vector compo-
nents, denoted by a subscript l and t , respectively, Eqs. (1) and
(5) lead to two separate systems of linear equations. For the
longitudinal modes we obtain

P∇[∇ · ul(r)] + Q∇[∇ · Ul(r)]

+ ρ̃11ω
2ul(r) + ρ̃12ω

2Ul(r) = 0,

Q∇[∇ · ul(r)] + R∇[∇ · Ul(r)]

+ ρ̃12ω
2ul(r) + ρ̃22ω

2Ul(r) = 0, (9)

where ρ̃11 = ρ11 + ib/ω, ρ̃12 = ρ12 − ib/ω, and ρ̃22 = ρ22 +
ib/ω. Equations (9) accept plane-wave solutions of the forms
ul(r) = ul0 exp(iq · r) and Ul(r) = Ul0 exp(iq · r), where the
wave number q satisfies the biquadratic equation

(PR − Q2)q4 − (ρ̃11R + ρ̃22P − 2ρ̃12Q)ω2q2

+ (
ρ̃11ρ̃22 − ρ̃2

12

)
ω4 = 0. (10)

The two positive roots of Eq. (10), q1 and q2, which are
physically acceptable, correspond to the so-called fast and
slow longitudinal waves, respectively. The corresponding
displacement fields are related through Uν = Aνuν , where

Aν = − ρ̃11ω
2 − Pq2

ν

ρ̃12ω2 − Qq2
ν

= − ρ̃12ω
2 − Qq2

ν

ρ̃22ω2 − Rq2
ν

, ν = 1,2. (11)

On the other hand, the transverse modes satisfy the equations

μb∇ × ∇ × ut (r) − ρ̃11ω
2ut (r) − ρ̃12ω

2Ut (r) = 0,

ρ̃12ut (r) + ρ̃22Ut (r) = 0, (12)

which accept plane-wave solutions of the forms ut (r) =
ut0 exp(iq3 · r) and Ut (r) = Ut0 exp(iq3 · r) with wave num-
ber

q3 = ω

[
ρ̃11

μb

(
1 − ρ̃2

12

ρ̃11ρ̃22

)]1/2

. (13)

As follows directly from the second of Eqs. (12), Ut =
−(ρ̃12/ρ̃22)ut ≡ A3ut .

The elastic field in a fluid-saturated poroelastic medium
at a given frequency can be expanded into longitudinal and
transverse vector spherical waves of the appropriate wave
number as follows [19,20]:

u(r) =
∑

m

{
a1L
m

1

q1
∇[j
(q1r)Y
m(̂r)]

+ a2L
m

1

q2
∇[j
(q2r)Y
m(̂r)]
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+ aM
mj
(q3r)X
m(̂r)

+ aN
m

i

q3
∇ × [j
(q3r)X
m(̂r)]

}
, (14)

where j
 are the spherical Bessel functions, which are finite
at the origin, Y
m are the ordinary spherical harmonics, and
X
m (̂r) = −ir × ∇Y
m(̂r)/

√

(
 + 1) are the vector spherical

harmonics (X00 = 0). The first term in Eq. (14) describes fast
longitudinal waves; the second describes slow longitudinal
waves, which are unique to poroelastic media, and the last two
terms correspond to transverse waves. A similar expression
holds for U(r) with expansion coefficients A1a1L
m, A2a2L
m,
A3aM
m, and A3aN
m instead of a1L
m, a2L
m, aM
m, and aN
m,
respectively.

In the present paper, we shall consider water-saturated
porous silica as the poroelestic material, in which
case the values of the relevant parameters are ρs =
2200 kg m−3, csl = √

(Ks + 4μs/3)/ρs = 5970 m s−1, and
cst = √

μs/ρs = 3760 m s−1 for silica and ρf = 1000 kg m−3,
cf = √

Kf /ρf = 1480 m s−1, and η = 10−3Pa s for water.
The elastic moduli of the bare skeletal frame, Kb and μb, can
be experimentally measured independently. However, since
there are no experimental data available, following Kargl and
Lim [29], we evaluate them using Berryman’s self-consistent
effective-medium theory for a silica-void elastic composite,
assuming that the pores are modeled by randomly distributed
needles, which is appropriate for the low-porosity limit that
will concern us here [30]. For f = 10% we find Kb =
28.9 GPa and μb = 23.8 GPa. Accordingly, the tortuosity is
given by α = f −2/3 for a random array of needles [31].

III. SCATTERING BY A POROELASTIC SPHERE

We now consider a fluid-saturated poroelastic sphere of
radius S, centered at the origin of coordinates, immersed in
a fluid host medium characterized by mass density ρh and
bulk modulus Kh. A plane acoustic wave of angular frequency
ω incident on that sphere gives rise to a scattered wave, and
the total displacement field outside the sphere, expanded into
longitudinal spherical waves, has the form [19,20]

Uh(r) =
∑

m

{
a0

L
m

1

qh

∇[j
(qhr)Y
m(̂r)]

+ a+
L
m

1

qh

∇[h+

 (qhr)Y
m(̂r)]

}
, (15)

where a0
L
m and a+

L
m are the amplitudes of the spherical-
wave components of the incident and scattered fields, re-
spectively, qh = ω

√
ρh/Kh is the wave number in the fluid

host at the given frequency, and h+

 are the spherical Hankel

functions appropriate for outgoing spherical waves: h+

 (x) �

(−i)
 exp(ix)/(ix) as x → ∞. The associated (diagonal)
stress tensor

←→σ h = ←→
I Kh∇ · Uh ≡ −←→

I ph (16)

defines the pressure ph in the fluid host.
The expansion coefficients in Eqs. (14) and (15) are

determined from those of the incident wave a0
L
m uniquely

from the following boundary conditions at the surface of the
sphere [32]: (a) continuity of the radial, azimuthal, and polar

components of the surface traction

←→σ r̂ = ←→σ hr̂, (17)

(b) continuity of the normal component of the filtration
velocity

f (U̇r − u̇r ) = U̇h
r − u̇r , (18)

which ensures conservation of fluid mass, and (c) consistency
of the fluid pressure drop and the normal component of the
filtration velocity (Darcy’s law)

f (U̇r − u̇r ) = −κs(ph − p), (19)

where κs is a parameter that measures interface permeability.
For a sealed interface, κs = 0, and for an open interface,
κs = ∞.

From the continuity of the radial component of the surface
traction we obtain

d12a1L
m + d13a2L
m + d14aN
m = b1a
0
L
m − d11a

+
L
m, (20)

where

d11 = −xhh
+

 (xh),

d12 = {
j
(x1)

[
x2

1 (λ1 + 2μb)/Kh − 2
(
 + 1)(μb/Kh)
]

+ 4x1j
′

(x1)(μb/Kh)

}/
x1,

d13 = {
j
(x2)

[
x2

2 (λ2 + 2μb)/Kh − 2
(
 + 1)(μb/Kh)
]

+ 4x2j
′

(x2)(μb/Kh)

}/
x2,

d14 = 2
√


(
 + 1)[x3j
′

(x3) − j
(x3)](μb/Kh)/x3,

b1 = xhj
(xh), (21)

with xν = qνS, ν = 1,2,3, xh = qhS, and λν = P − 2μb +
Q + Aν(Q + R),ν = 1,2. Continuity of the tangential com-
ponents of the surface traction yields

[x3j
′

(x3) − j
(x3)]aM
m = 0 (22)

and

d22a1L
m + d23a2L
m + d24aN
m = 0, (23)

where

d22 =
√


(
 + 1)[x1j
′

(x1) − j
(x1)]/x1,

d23 =
√


(
 + 1)[x2j
′

(x2) − j
(x2)]/x2, (24)

d24 = {[
1 + x2

3/2 − 
(
 + 1)
]
j
(x3) + x3j

′

(x3)

}/
x3.

From Eq. (18) we obtain

d32a1L
m + d33a2L
m + d34aN
m = b3a
0
L
m − d31a

+
L
m, (25)

where

d31 = −h+′

 (xh),

d32 = j ′

(x1)[1 + f (A1 − 1)],

d33 = j ′

(x2)[1 + f (A2 − 1)], (26)

d34 = −
√


(
 + 1)j
(x3)[1 + f (A3 − 1)]/x3,

b3 = j ′

(xh).
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Finally, Eq. (19), in the case of an open interface (κs = ∞ ⇒
p = ph) that will concern us here, gives

d42a1L
m + d43a2L
m = b4a
0
L
m − d41a

+
L
m, (27)

where

d41 = −xhh
+

 (xh),

d42 = x1j
(x1)[1 − Kb/Ks + f (A1 − 1)]R/(f 2Kh),

d43 = x2j
(x2)[1 − Kb/Ks + f (A2 − 1)]R/(f 2Kh),

b4 = xhj
(xh). (28)

Alternatively, for a finite value of κs , from Eq. (19) we obtain

d42a1L
m + d43a2L
m + d44aN
m = b4a
0
L
m − d41a

+
L
m, (29)

where

d41 = κsxhh
+

 (xh),

d42 = ixhj
′

(x1)f (1 − A1) − κsx1j
(x1)

× [1 − Kb/Ks + f (A1 − 1)]R/(f 2Kh),

d43 = ixhj
′

(x2)f (1 − A2) − κsx2j
(x2)

× [1 − Kb/Ks + f (A2 − 1)]R/(f 2Kh),

d44 = −i
√


(
 + 1)xhj
(x3)f (1 − A3)/x3,

b4 = −κsxhj
(xh), (30)

with κs = κs

√
Khρh = κsρhch being a dimensionless interface

permeability parameter.
In general, in a linear scattering problem, the partial wave

amplitudes of the scattered field and of the field inside the
scatterer depend linearly on the corresponding amplitudes of
the incident field

a+
P
m =

∑
P ′
′m′

TP
m;P ′
′m′a0
P ′
′m′ ,

aP
m =
∑

P ′
′m′
RP
m;P ′
′m′a0

P ′
′m′ , (31)

where P, P ′ denote polarization modes. For a spherically
symmetric scatterer, the T and R matrices defined through
Eq. (31) are diagonal and independent of m. Indeed, as
can be readily seen from Eqs. (20), (22), (23), (25), (27),
and (29), the matrix elements which are relevant here
have the form TL
m;L
′m′ = TLL;
δ

′δmm′ and RP
m;L
′m′ =
RPL;
δ

′δmm′ . Moreover, Eq. (22), which involves only trans-
verse M modes, is decoupled from the other equations and
provides the so-called torsional eigenmodes [33]. These modes
are localized in the sphere and cannot be excited by an
externally incident acoustic wave. The remaining equations
constitute a linear system for the unknowns TLL;
, R1LL;
,
R2LL;
, and RNL;
, which can be written as⎛

⎜⎝
d11 d12 d13 d14

d21 d22 d23 d24

d31 d32 d33 d34

d41 d42 d43 d44

⎞
⎟⎠

⎛
⎜⎝

TLL;


R1LL;


R2LL;


RNL;


⎞
⎟⎠ =

⎛
⎜⎝

b1

b2

b3

b4

⎞
⎟⎠, (32)

where the various nonzero coefficients are given by Eqs. (21),
(24), (26), and (28) or (30). Similar formulas for the scattering
T matrix of the submerged fluid-saturated poroelastic sphere
have also been reported by others [29,34,35]; however, the

explicit expressions derived here correspond to the specific
basis of vector spherical waves used in our layer-multiple-
scattering method [19,20].

With the help of the T matrix one can directly calculate the
change in the number of states of the acoustic field, up to an
angular frequency ω, induced by a single poroelastic sphere in
an infinite host medium from [36]

N (ω) = 1

π

∑



(2
 + 1)Im ln[1 + TLL;
(ω)]. (33)

Of more interest is the corresponding change in the density
of states induced by the sphere and given by n(ω) =
dN (ω)/dω. On the other hand, the total scattering and
extinction cross sections of the sphere, normalized to the
geometric cross section πS2, can also be expressed in terms
of the T matrix as follows [37]:

σsc(ω) = 4

x2
h

∑



(2
 + 1)|TLL;
(ω)|2 (34)

and

σext(ω) = − 4

x2
h

∑



(2
 + 1)Re[TLL;
(ω)], (35)

respectively, while the corresponding absorption cross section
is given by σabs = σext − σsc.

IV. CLOSE-PACKED PERIODIC STRUCTURES
OF SUBMERGED WATER-SATURATED POROUS

SILICA SPHERES

We now consider an fcc structure, with lattice constant a, of
close-packed porous silica spheres immersed in water and view
the crystal structure as a sequence of (111) crystallographic
planes. In each plane, the spheres are arranged on a hexagonal
lattice with lattice constant a0 = a

√
2/2, while consecutive

planes are separated by a distance d = a0

√
6/3. We assume

that the spheres have a radius S = a0/2 = 2.5 μm. Such
mesoporous and macroporous microspheres can be easily
synthesized in the laboratory and are promising candidates for
diverse applications in many areas ranging from chromatog-
raphy and catalysis to biology, drug delivery, and medicine
[38–46].

We study the acoustic response and phononic eigenmodes
of this crystal by means of full elastodynamic calculations
using the layer-multiple-scattering method [19,20], which is
ideally suited for the case under consideration. Besides the
complex phononic band structure of the infinite crystal, the
method allows one to calculate also the transmittance T ,
reflectance R, and absorbance A = 1 − T − R of a finite
slab of the crystal at any angle, and in this respect, it can
describe an actual acoustic transmission experiment. Another
advantage of the method is that it solves the elastodynamic
equations in the frequency domain and, therefore, it can
treat dispersion and viscous losses, which naturally occur
in poroelastic materials, in a straightforward manner. The
properties of the individual scatterers enter only through the
corresponding T matrix. In the first step, in-plane multiple
scattering is evaluated in the spherical-wave basis, introduced
in the previous section, using proper propagator functions.
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Subsequently, interlayer scattering is calculated in a plane-
wave basis through appropriate transmission and reflection
matrices by including all propagating and evanescent com-
ponents of the wave field necessary to obtain convergence.
Therefore, interaction between the scatterers is fully taken
into account. The scattering S matrix of a multilayer slab,
which transforms the incoming into the outgoing wave field,
is obtained by combining the transmission and reflection
matrices of the component layers. The ratio of the transmitted
or reflected energy flux to the energy flux associated with
the incident wave defines the transmittance or reflectance
of the slab, respectively, while the absorbance is deduced
from the requirement of energy conservation. On the other
hand, for a three-dimensional crystal consisting of an infinite
periodic sequence of layers, stacked along the z direction,
applying the Bloch condition for the wave field in the region
between two consecutive unit slabs leads to an eigenvalue
equation, which gives the z component of the Bloch wave
vector kz, for the given angular frequency ω and in-plane
wave-vector component reduced within the surface Brillouin
zone k‖, which are conserved quantities in the scattering
process as a result of time and two-dimensional translation
invariance, respectively. The eigenvalues kz(ω,k‖), looked
upon as functions of real ω, define, for each k‖, lines in the
complex kz plane. Taken together, they constitute the complex
band structure of the infinite crystal associated with the given
crystallographic plane. A line of given k‖ may be real (in the
sense that kz is real) over certain frequency regions and may
be complex (in the sense that kz is complex) for ω outside
these regions. It turns out that, for given ω and k‖, out of
the eigenvalues kz(ω,k‖) none or, at best, a few of them are
real, and the corresponding eigenvectors represent propagating
modes of the acoustic field in the given infinite crystal.
The remaining eigenvalues kz(ω,k‖) are complex, and the
corresponding eigenvectors represent evanescent waves. These
have an amplitude that increases exponentially in the positive
or negative z direction and, unlike the propagating waves, do
not exist as physical entities in the infinite crystal. However,
they are an essential part of the physical solutions of the
acoustic field in a slab of finite thickness. A region of frequency
where propagating waves do not exist, for given k‖, constitutes
a frequency gap of the acoustic field for this k‖. If over a
frequency region no propagating wave exists whatever the
value of k‖, then this region constitutes an absolute frequency
gap. In order to ensure good convergence in our calculations,
it is sufficient to truncate the spherical-wave expansions at

max = 8 and take into account 37 two-dimensional reciprocal
lattice vectors in the relevant plane-wave expansions [20] in
all cases we examine here.

In Fig. 1, we display the calculated transmission and
absorption spectra of an eight-layer-thick (111) slab of the
crystal under consideration at normal incidence for given
porosity f = 10% but different pore sizes. In the small-
pore-size limit with respect to the viscous skin depth δ =√

2η/(ωρf ) [see Fig. 1(a)], within the considered range of
frequencies, Poiseuille flow occurs. Locking of fluid and
solid motion arises from the fluid viscosity and results in
propagation of a fast wave, while the out-of-phase relative
motion of the solid frame and infiltrated liquid, required
for slow wave propagation, cannot be efficiently realized. In

FIG. 1. Transmittance and absorbance of an acoustic plane wave
incident normally on a slab consisting of eight fcc (111) planes
of submerged water-saturated close-packed porous silica spheres of
radius S = 2.5 μm, with porosity f = 10%, for different pore sizes:
(a) Rp = 10 nm, (b) Rp = 30 nm, (c) Rp = 100 nm, and (d) Rp =
500 nm. The dotted lines in (a) and (d) display the corresponding
transmission spectra for crystals made of homogeneous spheres
with elastic parameters calculated using self-consistent effective-
medium theory for (lossless) composite elastic media [30] and of
water-saturated porous spheres neglecting viscous losses (η = 0),
respectively.

this regime, the porous material behaves as a homogeneous
medium with effective elastic parameters that can be calculated
using the self-consistent effective-medium theory of Berryman
for elastic composites [30]. Nevertheless, also in this case, the
absorptive losses are associated with the slow wave modes
and cannot be accounted for by effective-medium theory, even
retaining the energy dissipation mechanism by attributing a
shear modulus μf = −iωη to the fluid component. Since
there is no significant difference in the final results of the
effective-medium calculations with and without losses in
the frequency range studied, we neglect for convenience the
viscosity of water, so all effective material parameters are
dispersionless and real valued. We obtain ρ = 2080 kg m−3,
cl = 5449 m s−1, and ct = 3389 m s−1. It is interesting to note
that frictional dissipation due to the slow waves is in this case
much larger than in the corresponding single sphere (σabs is
very small) due to multiple-scattering effects. As the pore size
increases, the out-of-phase relative motion of the solid and
fluid is not impeded by viscous drag, so the slow wave can
propagate, giving rise to enhanced absorptive losses and a
consequent drastic drop in the transmittance [see Figs. 1(b)
and 1(c)]. On the other hand, for very large pores, if the
viscous skin depth is negligible with respect to the pore size,
the three density parameters in Eqs. (10) and (13) become
real, and all three bulk modes become nondispersive and
attenuation free, as one would have in the absence of viscous
losses (η = 0). This trend can be clearly seen in Fig. 1(d).
In this regime Poiseuille flow is not established, and fast
wave propagation is driven by inertial coupling, which locks
the solid and fluid components together. It becomes clear
from the above that porous silica nanoparticles, immersed
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FIG. 2. The same as in Fig. 1(d) for spheres of porosity f = 10%
but radius S = 2.5 mm and pore radius Rp = 500 μm.

in a waterlike liquid, at hypersonic (gigahertz) frequencies
are in the viscous coupling regime. This explains why,
treating such particles as effectively homogeneous with elastic
parameters smaller than those of pure solid silica, one can
successfully explain Brillouin light-scattering experiments on
corresponding colloidal crystals [14].

We can approach more closely the inertial coupling limit if
we increase all characteristic length parameters of the system
by a factor of ξ , i.e., Rp → ξRp, S → ξS, a → ξa, in which
case the viscous-length-to-porous-size ratio decreases by a
factor of

√
ξ ( δ

Rp
→ 1√

ξ

δ
Rp

) in the same region of reduced
frequency ωa0/ch. For example, it can be seen in Fig. 2
that for submerged water-saturated close-packed porous silica
spheres of radius S = 2.5 mm, porosity f = 10%, and pore
radius Rp = 500 μm, the transmission spectrum is very similar
to that of the corresponding lossless case (η = 0), while
the absorbance is overall strongly suppressed and exhibits
sharp peaks only at the resonances where the wave field is
predominantly localized at the spheres.

The transmission spectra of the reference lossless structures
in the viscous and inertial coupling regimes, shown by dotted
lines in Figs. 1(a) and 1(d) and replotted in Figs. 3(c) and
4(c), can be interpreted in conjunction with relevant dispersion
diagrams for the corresponding infinite crystals, depicted in
Figs. 3(b) and 4(b), respectively. It can be seen that the
transmittance exhibits Fabry-Pérot oscillations in regions of
acoustically active bands due to multiple reflections at the sur-
faces of the slab and drops down to small values outside these
regions. The phononic band structure of these crystals can
be understood as follows. An extended acoustic band, which
would be in a corresponding effective homogeneous medium,
is folded within the first Brillouin zone as a result of structure
periodicity, and Bragg gaps open up at the zone boundaries.
In addition, there are narrow bands originating from localized
modes of the individual spheres, weakly interacting between
them. These modes are manifested as resonance peaks in the
corresponding density of states, as shown in Figs. 3(a) and
4(a). When bands of the same symmetry cross each other,

FIG. 3. (a) Change in the density of states of the acoustic field
induced by a submerged water-saturated porous silica sphere with
porosity f = 10%, treated as a lossless homogeneous sphere with
elastic parameters calculated using self-consistent effective-medium
theory for composite elastic media [30]. (b) The phononic band
structure of an fcc crystal of such close-packed homogeneous spheres,
in water, along the [111] direction. Solid (dotted) lines refer to
nondegenerate (doubly degenerate) bands of �1 (�3) symmetry. The
shaded areas mark the Bragg (B) and hybridization (H) gaps. (c)
Transmittance of an acoustic plane wave incident normally on a (111)
slab of this crystal, eight layers thick.

a band gap, the so-called hybridization gap, opens up about
the crossing point due to level repulsion. The bands along
the fcc [111] direction have the symmetry of the irreducible
representations of the C3v point group [47]. Therefore, they are
either nondegenerate if they have the �1 or the �2 symmetry
or doubly degenerate if they have the �3 symmetry. Only
the �1 bands are acoustically active in the sense that they
can be excited by an acoustic plane wave with appropriate

FIG. 4. The same as Fig. 3 but for submerged water-saturated
porous silica spheres described by Biot’s theory, ignoring viscous
losses (η = 0). The peaks in (a) correspond to resonances of given
multipole order 
 denoted in the diagram.
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FIG. 5. Transmittance, absorbance, and reflectance of an acoustic
plane wave incident normally on a slab consisting of eight fcc
(111) planes of submerged water-saturated close-packed porous silica
spheres of radius S = 2.5 μm versus the porosity f for different pore
sizes. Pore radius (from top to bottom): Rp = 10, 30, and 100 nm.

frequency incident normally on a (111) slab of the crystal
because they have the proper symmetry [48]. It is expected
that strong absorption will appear in band regions with a large
admixture of modes localized in and about the spheres when
the dissipation mechanism triggered by the slow waves in the
porous material is switched on. It can be seen that this is
the case, for example, in the flat band regions originating from
the multipole resonances of the spheres (see Fig. 4), where
high absorption is attained, as shown in Fig. 1(d).

The above porous-based phononic crystal exhibits inter-
esting absorptive properties and can be used as an efficient
filter through an appropriate selection not only of the pore
size but also of the porosity level. In Fig. 5 we show the
transmittance, absorbance, and reflectance of an acoustic plane
wave incident normally on a slab of this crystal, consisting
of eight fcc (111) layers, for different pore sizes Rp as a
function of the porosity f . Broadband high-level absorbance
can be attained for rather intermediate Rp/δ (Rp = 100 nm)

FIG. 6. Transmittance, absorbance, and reflectance of an acoustic
plane wave incident on a slab consisting of eight fcc (111) planes of
submerged water-saturated close-packed porous silica spheres (S =
2.5 μm, f = 10%, and Rp = 100 nm) with k‖ along high-symmetry
lines of the fcc (111) surface Brillouin zone, shown in the inset. �:
k‖ = 2π

a0
(0,0), K: k‖ = 2π

a0
( 2

3 ,0), M: k‖ = 2π

a0
( 1

2 ,
√

3
6 ).

and relatively low porosity values, varying from f = 10% to
25%. The porosity f , as an additional degree of freedom, can
be chosen to achieve for rather moderate Rp/δ the appearance
of regions of frequency where both the transmittance and
reflectance practically vanish, leading to A � 1.

It is interesting to note that broadband acoustic isolation
occurs for waves not only incident normally but also at an
angle on a slab of the material. This is shown in Fig. 6, which
displays the variation of the transmission spectra of an eight-
layer-thick fcc (111) slab of submerged water-saturated close-
packed porous silica spheres, with S = 2.5 μm, f = 10%, and
Rp = 100 nm for different k‖ along high symmetry lines of the
fcc (111) surface Brillouin zone. The direction of incidence is
specified by the corresponding polar and azimuthal angles, θ =
arccos (

√
1 − c2

hk
2
‖/ω2) and φ = arctan(ky/kx), respectively.

Obviously, at given k‖, propagating incident waves exist above
an angular frequency threshold ωinf = ch|k‖| (delimiting the
hatched area in Fig. 6). It can be seen (and we verified it
for other arbitrary points k‖ within the surface Brillouin zone
as well) that, above ωa0/ch � 2, the transmittance practically
vanishes, whatever the direction of incidence.
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V. CONCLUSIONS

In summary, we generalized the layer-multiple-scattering
method to phononic crystals of poroelastic spheres immersed
in a fluid medium and presented specific applications of the
method to close-packed fcc crystals of submerged water-
saturated meso- and macroporous silica microspheres, en-
compassing the viscous and inertial coupling regimes. It is
worth noting that the formalism presented in the present
paper remains invariant under a transformation ω → ξω and
Rp → Rp/ξ , S → S/ξ , a → a/ξ , η → η/ξ , where ξ is
an arbitrary constant factor. Therefore, our results apply to
different regions of frequency of the acoustic field, provided
that all size parameters as well as the viscosity coefficient
are scaled accordingly. Our results are analyzed by reference
to phononic dispersion diagrams, which are appropriate for
the viscous and inertial coupling limits, in conjunction with
corresponding transmission spectra, providing a consistent
interpretation of the underlying physics. For intermediate

pore sizes, it is shown that, with increasing porosity, strong
absorption leads to negligible transmission over an extended
frequency range, which might be useful for broadband acoustic
shielding applications. Our work paves the way towards a
new class of phononic structures that exhibit unprecedented
properties driven by the slow longitudinal waves, which are
unique to poroelastic materials, and multiple-scattering effects.
These structures cannot be described by treating the poroelastic
material as an effective homogeneous medium, and rigorous
methods based on Biot’s theory, such as that developed in the
present paper, are required.
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