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Ab initio study of the phononic origin of negative thermal expansion
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Negative thermal expansion is an uncommon phenomenon of theoretical interest. Multiple hypotheses
regarding its microscopic origins have been suggested. In this paper, the thermal expansion of a representative
semiconductor, Si, and a representative metal, Ti, are calculated ab initio using density-functional perturbation
theory. The phonon modes’ contributions to the thermal expansion are analyzed and the negative thermal
expansion is shown to be dominated by negative mode Grüneisen parameters at specific points on the Brillouin
zone boundaries. Thus, the elastic (Debye) theory for negative thermal expansion is shown to be irrelevant for
these phenomena. The anomalous behavior of these modes in Ti is shown to be unaffected by an electronic
topological transition as previously suggested, instead it arises from complex interplay of atomic displacements
of the anomalous mode.
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I. INTRODUCTION

Thermal expansion is an anharmonic property of materials
that reflects the evolution of the phonon spectrum with volume
and temperature. For most materials, across a wide range
of conditions, the thermal expansion coefficient is positive.
Anisotropic thermal expansion reflects the anisotropic
anharmonic nature of certain crystals, i.e., mainly the change in
the phonon spectra as they undergo an anisotropic deformation
in response to temperature variations at constant pressure.

Negative values of the coefficient of thermal expansion
(both isotropic and anisotropic) have been measured in several
materials at low temperatures [1]. Focusing for simplicity on
elemental solids, the semiconductors silicon and germanium
exhibit negative thermal expansion at low temperatures [2,3] in
contrast to diamond which does not present such behavior [4].
Titanium has a negative coefficient of anisotropic thermal
expansion at low temperatures [5] although the bulk thermal
expansion remains positive. Pawar et al. [6] measured the
anisotropic thermal expansion of titanium in the hexagonal
closed-packed (hcp) α phase. They found that at room temper-
ature and above, the coefficient of thermal expansion along the
c axis of the hexagonal structure is smaller than the coefficient
of thermal expansion along the a axis. Nizhankovskii et al. [5]
measured the thermal expansion of single crystal titanium
along both axes, and they found that the thermal expansion
along the c axis is negative in the temperature range 0–165 K.

Several theories have been advanced for the origin of
negative thermal expansion [7–9]. In general, the thermal
expansion is dominated by lattice vibrations. Thus, negative
thermal expansion requires at least one vibrational mode that
has a negative Grüneisen coefficient, which is equivalent
to anomalous volume dependence of the mode frequency
(∂ω/∂V > 0). At low enough temperatures, the phonon
spectrum is dominated by acoustic modes and this anomaly
would be presented as an increase in the sound velocity
with volume [9]. It has also been suggested that the negative
thermal expansion originates in thermal fluctuations due to the
existence of a nearly degenerate metastable state [10].

Ab initio studies of negative thermal expansion have mostly
focused on analysis of the phonon spectra. Methods for
phonon calculations have been reviewed in Refs [11,12].

In particular, for the semiconductors silicon, germanium
and gallium arsenide, Dolling et al. [13] suggest that the
negative coefficient of thermal expansion is caused mainly by
the negative Grüneisen parameter of the transverse acoustic
modes. They calculated the Grüneisen parameter in two
symmetry directions: � (� → L) and � (L → K). Negative
Grüneisen parameters were found in specific directions and
branches but it was not shown that these modes form the main
contribution to the thermal expansion or that such negative
Grüneisen parameters are not present in other directions.
Similar results were obtained by Biernacki et al. [14].

In addition to the phonon contribution, thermal expansion
in metals can also be affected by thermal electronic excitations.
Lifshitz [15] discussed the effect of electronic topological
transitions (ETTs) on the electronic properties of materials,
and showed that an ETT leads to a discontinuity in the
pressure derivative of the thermal electronic properties of
materials, such as the electronic heat capacity. In this work the
properties of phonons were not investigated. Vaks et al. [16]
discuss the influence of van Hove singularities on the phonon
frequencies. They showed that the phonon frequencies change
significantly where the Fermi level is in the vicinity of a van
Hove singularity. Therefore, a singular point in the electronic
density of states can cause anomalies in both electronic and
phononic contributions to thermodynamic properties such as
free energy, entropy, heat capacity, and thermal expansion.

It has been proposed that the negative anisotropic thermal
expansion in titanium arises due to an ETT which appears
under anisotropic deformation [5]. In this work it was
suggested that the contribution of electronic excitations to the
entropy is the reason for the anomaly in the anisotropic thermal
expansion. This anomalous behavior of the anisotropic thermal
expansion was also studied by Souvatzis et al. [9] who showed
that titanium has an ETT under compression of the c axis at
constant volume. In addition, they calculated the derivative of
the electronic density of states and showed that it has a different
sign with respect to εv ≡ d[ln(V )] and εc ≡ d[ln(c/a)] where
a and c are the lattice parameters and V is the volume. They
concluded that the anomaly in the thermal expansion is caused
by the ETT because it affects the elastic moduli, and thus
the Debye temperature. However, no analysis of the phonon
spectrum was performed and no direct relation between the
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proximity of the Fermi level to a van Hove singularity and
negative thermal expansion was demonstrated.

Very recently, the low-compressibility metal osmium was
compressed to multi-megabar pressures using both conven-
tional and double-stage diamond anvil cells [17]. X-ray
diffraction measurements of the c/a ratio of the hcp struc-
ture discovered a kink at 150 GPa. Theoretical calculations
identified two ETTs at 100 and 180 GPa. However, these zero
Kelvin calculations do not predict a kink in the c/a ratio.
The authors explain the differences between the calculations
and the experiment by the anisotropy in the thermal expansion
present in hcp metals. Their explanation is based on the phonon
modes at small wave vectors that are determined by the elastic
constants, as argued by Souvatzis et al. [9] for titanium.

Theoretical studies in ab initio methods predict that, with
increasing pressure, the thermal expansion in many materials
decreases and becomes negative, or more negative at higher
temperatures. For example, at pressures above 3.5 GPa, the
coefficient of thermal expansion of cesium is predicted to
be negative at all temperatures [18]. In silicon, the negative
coefficient of thermal expansion decreases with pressure and
the temperature range across which the coefficient is negative
increases [19]. Finally, the coefficient of thermal expansion
of diamond becomes negative at very high pressures [20].
The thermal expansion in titanium under hydrostatic pressure
has not yet been investigated either in experimental or in
theoretical studies to the best of our knowledge.

The aim of the present work is to explore the origins
of negative thermal expansion by ab initio calculations in
two elemental test systems, a semiconductor and a metal,
silicon and titanium, as a function of temperature and pressure.
The free energy is calculated ab initio and the phonon
contribution is analyzed in the entire Brillouin zone within
the quasiharmonic approximation. The thermal expansion as a
function of temperature and pressure is obtained. Our results
allow us to test the several hypotheses put forward for the
origin of the negative thermal expansion.

The rest of the paper is organized as follows: In Sec. II
we present the details of the electronic, phononic, and
thermodynamic calculations. In Sec. III we consider the
origins of the anomalous thermal expansion. In Sec. III A
we analyze silicon as an example of anharmonic effects in
an isotropic case. In Sec. III B we present an analysis of
the anharmonic effects leading to the negative coefficient of
anisotropic thermal expansion of titanium at zero pressure as
well as the effect of pressure. In Sec. IV we discuss the effect
of the negative Grüneisen parameter on the thermal expansion
and the effect of ETT on the phonon modes. Sec. V includes a
summary of our results and conclusions.

II. THEORY

A. Thermodynamics

1. Isotropic

The volume thermal expansion is proportional to the
derivative of the entropy with respect to the volume:

αV = 1

V

(
∂V

∂T

)
P

= 1

B

(
∂S

∂V

)
T

(1)

where V is the volume, T is the temperature, P is the pressure,
S is the entropy, and B is the bulk modulus. The linear thermal
expansion is defined as

αL = 1

L

(
∂L

∂T

)
P

= 1

3
αV , (2)

where L is the length of an isotropic material. The pressure
dependence of the thermal expansion is given by the thermo-
dynamic relation

−∂KT

∂T
= ∂αV

∂P
, (3)

where KT is the isothermal compressibility. This relation
implies that if the material becomes softer as temperature
increases then the thermal expansion decreases with pressure.

2. Anisotropic

To calculate the anisotropic coefficient of thermal expan-
sion, the thermodynamic quantities and their derivatives are
calculated as a function of the lattice parameters, two in the
hexagonal case.

The expressions for ∂a/∂T and ∂c/∂T at the equilibrium
volume, where the partial derivatives of the free energy with
respect to the lattice parameters vanish, are [5,7,9]

(
∂a

∂T

)
P

=
Acc(T )

(
Sa(T ) − Aac(T )

Acc(T ) Sc(T )
)

A2
ac(T ) − Aaa(T )Acc(T )

, (4)

(
∂c

∂T

)
P

=
Aaa(T )

(
Sc(T ) − Aac(T )

Aaa (T )Sa(T )
)

A2
ac(T ) − Aaa(T )Acc(T )

, (5)

where the subscripts a or c denote partial derivatives with
respect to the lattice parameters. The coefficients of anisotropic
thermal expansion are defined by [9]

αa ≡ 1

a

(
∂a

∂T

)
P

, (6)

αc ≡ 1

c

(
∂c

∂T

)
P

. (7)

From expressions (4) and (5) it is clear that a negative
coefficient of anisotropic thermal expansion can appear in a
material even though the two directional derivatives of the
entropy, Sa and Sc, are positive. In such cases an anomaly may
occur solely due to the coupling between these directional
derivatives. This is in contrast to the isotropic case where the
volume derivative of the entropy must be negative for a thermal
expansion anomaly.

B. Quasi-harmonic approximation

The Helmholtz free energy A can be represented as a
sum of a temperature independent term, E, and a thermal
contribution, F . The thermal contribution to the free energy
F can be decomposed into a sum of electronic excitations and
phonon terms, Fel and Fph respectively. In the quasiharmonic
approximation both electronic and phononic densities of states
(DOS) are approximated by their values at zero Kelvin at the
appropriate volume; i.e., they are assumed to be independent
of temperature at constant volume.
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1. Isotropic

The vibrational contribution to the entropy of a harmonic
mode with frequency ω at temperature T is

s = −kB

[
ln

{
2 sinh

(
�ω

2kBT

)}
− �ω

2kBT
coth

(
�ω

2kBT

)]
(8)

and the total vibrational entropy is obtained by an integral
over all the modes of the crystal. The total contribution of
the phonons to the volume derivative of the entropy is the
derivative of this integral:

∂2Fph

∂V ∂T
=

(
∂Sph

∂V

)
T

= V

(2π )3

∑
i

∫
BZ

∂s

∂ωi

∂ωi

∂V
d �q, (9)

where the integral is taken over the entire Brillouin zone. The
Grüneisen parameter of a vibrational mode ωi(�q) is defined as

γi(�q) = − V

ωi(�q)

∂ωi(�q)

∂V
, (10)

where �q is a wave vector and i is the branch index. Since
∂s/∂ωi is always negative [as can be seen from Eq. (8)] some
of the modes must have a negative Grüneisen parameter if the
material is to have a negative volume thermal expansion, as
previously noted [21]. We can also consider the derivative
∂s/∂ωi as a temperature dependent weighting function of
the contribution of the derivatives ∂ωi/∂V to the thermal
expansion αV .

2. Anisotropic

The anisotropic derivative of the phonon entropy in the
quasiharmonic approximation is calculated as

Sa =
(

∂Sph

∂a

)
c,T

= V

(2π )3

∑
i

∫
BZ

∂s

∂ωi

∂ωi

∂a
d �q, (11)

Sc =
(

∂Sph

∂c

)
a,T

= V

(2π )3

∑
i

∫
BZ

∂s

∂ωi

∂ωi

∂c
d �q. (12)

In the anisotropic case the phonon spectrum at fixed lattice
parameters (a and c in our case) is assumed to be independent
of temperature; i.e., the curvature of the free energy surface is
to be assumed identical to that of the ground state energy. The
validity of this approximation is expected to decrease as the
temperature increases.

The quasiharmonic approximation (QHA) may be sufficient
to calculate thermodynamic properties of materials. However,
anharmonic effects are also important for transport properties.
In particular, lattice thermal conductivity of insulators are cal-
culated by anharmonic force constants within the framework
of the Boltzmann transport equation [22–24].

C. Computational methods

The electronic calculations were performed using a pseu-
dopotential plane-waves method [25]. Phonon spectra were
calculated using density functional perturbation theory [12].
All calculations were performed with the QUANTUM ESPRESSO

package [26]. The exchange-correlation functional was ap-
proximated by the Perdew-Burke-Ernzerhof (PBE) general
gradient approximation (GGA) [27]. For silicon, the kinetic

energy cutoff applied to the wave function expansions was
40 Ry. The cutoff for the charge density and potential
expansions was 200 Ry. The number of k points in each
direction of the reciprocal lattice vectors (Monkhorst-Pack
algorithm) was 18, centered at the � point. For titanium, the
corresponding energy cutoffs were 50 Ry for the kinetic energy
and 300 Ry for the charge density and potential expansion and a
16 k-point grid was applied. The Methfessel-Paxton smearing
scheme [28] with a Gaussian spreading of 0.01 Ry was used to
determine the occupation number. These numerical parameters
led to convergence of the total energy to 10−5 Ry/atom for both
titanium and silicon. The pseudopotentials employed were
si_pbe_v1.uspp.F.UPF, with 4 valence electrons, for silicon
and ti_pbe_v1.4.uspp.F.UPF, with 12 valence electrons, for
titanium, both from the GBRV (Garrity, Bennett, Rabe, and
Vanderbilt) pseudopotential database [29]. Phonon calcula-
tions were performed with four q points in each direction of
the reciprocal lattice vectors, after it was determined that this
choice produces convergence of the entropy to 10−2 J/mol K.

The electronic and phononic DOS were evaluated at
zero Kelvin within the quasiharmonic approximation (QHA)
where they depend explicitly only on the volume. In the
anisotropic case, the volume dependence is replaced by
explicit dependence on the lattice parameters of the hexagonal
structure (a,c). The values of these lattice parameters are
found by minimization of the free energy at fixed pressure
and temperature.

III. RESULTS

A. Silicon

1. Thermal expansion

In a semiconductor the electronic contribution to the
free energy and its derivatives is negligible. Therefore, only
the phonon contribution needs to be considered. Employing
Eqs. (1) and (9), the thermal expansion of silicon, in the
thermodynamically stable diamond structure, was calculated
in the GGA. The results are presented in Fig. 1. The major
features and magnitude of the thermal expansion observed

FIG. 1. Linear thermal expansion coefficient of silicon calculated
using GGA. The dots are experimental data from Refs. [2] (red
squares) and [3] (green circles).
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FIG. 2. Phonon spectra of silicon calculated at the volumes
corresponding to P = 0, ± 8 GPa at zero Kelvin.

experimentally are reproduced in both approximations. At low
temperatures, where negative thermal expansion is observed,
the GGA calculation fits well the experimental data. As
the temperature is increased, the calculation and experiment
deviate.

2. Volume dependence of the phonon spectrum

To explore the mode Grüneisen parameter across the
Brillouin zone, the phonon spectrum of silicon was calculated
at several volumes corresponding to positive, negative, and
no compression. The results are presented in Fig. 2, where
it can be seen that an anomaly in the phonon spectrum
(negative mode Grüneisen parameter) is present in the acoustic
transverse modes. The anomaly is most pronounced at the X,
K , and L symmetry points and is absent near the � point. A
weaker anomaly appears at the symmetry point W . It is thus
clear that the dominant anomalous contribution to the thermal
expansion arises on the boundaries of the Brillouin zone at
low temperatures, not on the acoustic area near the � point
which determines the elastic coefficients of the materials. Thus
application of the Debye model would not predict anomalous
thermal expansion in silicon.

3. Entropy of the modes

To investigate the contribution of specific phonon modes to
the thermal expansion we calculated the contribution of each
mode to the volume derivative of the entropy, which is the
integrand of the right-hand side of Eq. (9). The results of these
calculations at selected temperatures are presented in Fig. 3.
Negative values of this integrand are represented in blue and
positive ones in red. At 50 K the integrand is negative over most
of the irreducible Brillouin zone (IBZ), shown in Fig. 3(a),
and the total derivative of the entropy is negative. At higher
temperatures the derivative of the entropy becomes positive at
gradually expanding regions of the IBZ until the anomalous
contribution becomes concentrated at the X and L points
before disappearing completely. It is interesting to note that the

FIG. 3. The derivative of the entropy with respect to the volume,
∂s(ω(�q))/∂V , at each wave vector in the irreducible Brillouin zone
(sum over all branches) of silicon, blue for anomalous contributions
and red for normal contributions. The values (shown in the color
bar) are normalized to the maximum absolute value. This derivative
(the total contribution from the entire IBZ) has the same sign as the
coefficient of thermal expansion [see Eq. (1)].

X point is the center of the rectangle and L is the center of the
hexagon on the boundaries of the Brillouin zone [see Fig. 4(a)].
The contribution to the thermal expansion at low temperatures
at a particular wave vector �q is a competition between the
anomalous ∂ω/∂V of the lower frequency branches and the
normal contribution of the higher frequency branches. As
the temperature increases, the contribution of the higher
branches become dominant and the anomaly disappears.

B. Titanium

1. The anisotropic thermal expansion

The coefficients of anisotropic thermal expansion of the α

phase of titanium were calculated ab initio using Eqs. (6)

A
L

M

Γ

K

H

Γ

L

K
WX

U

(b)(a)

FIG. 4. The Brillouin zone of the fcc (a) and hexagonal (b)
lattices. The polyhedron indicated by the high symmetry points is
the irreducible Brillouin zone.
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FIG. 5. The coefficients of thermal expansion of α-titanium at
zero pressure along the a axis, αa , along the c axis, αc, and the linear
thermal expansion, αL, calculated from the anisotropic coefficients.
The experimental data are from Ref. [30].

and (7). It was verified that the contribution of electronic
excitations to these coefficients is negligible. The results are
presented in Fig. 5. In this calculation, the free energy was
minimized with respect to a and c at each temperature at
a constant hydrostatic pressure P = 0. An anomaly in the
thermal expansion along the c axis is observed, in contrast to
the thermal expansion along the a axis which is positive at
all temperatures. The bulk thermal expansion, αL, calculated
from these anisotropic coefficients, agrees very well with the
experimental data as can be seen in Fig. 5.

2. Thermodynamics analysis

Figure 6 shows the total energy of α-titanium in the
plane of lattice parameters a and c. The isoenergy lines are
ellipses slightly rotated with respect to the lattice parameter
axes. Thus, the second derivative Aac is nonzero, causing a
coupling between the directional derivatives of the entropy
along the two lattice parameters. The elliptical shape reflects
the anisotropy of the material where there exist both hard
and soft directions. The second derivative Aaa is therefore
much larger than Acc. The ratios Aac/Aaa and Aac/Acc are
dominated by the zero temperature energy and are almost
independent of temperature and hydrostatic pressure. The
numerators of Eqs. (4) and (5) determine the sign of the
anisotropic thermal expansion coefficients. Their components
are shown in Fig. 7(a) for αc and Fig. 7(b) for αa . In Fig. 7(a)
the two components intersect, thus the coefficient αc changes
sign, whereas the curves in Fig. 7(b) do not intersect so αa

remains positive at all temperatures. The derivative of the
entropy Sa is positive at all temperatures and pressures in
contrast to Sc which is negative below 45 K at zero pressure
as shown in Fig. 7(a). It should be noted that αc would have
been negative at low temperatures even if Sc was positive at all

5.4 5.5 5.6 5.7
8.6
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8.8

8.9

 

 

c 
(a

to
m

ic
 u

ni
ts

)

a (atomic units)

FIG. 6. Isocurves of the total energy of α-titanium (without
phonon contribution) in the plane of the lattice parameters around
the equilibrium point a = 5.55 atomic units and c = 8.78 atomic
units.

temperatures, provided it remained small enough to preserve
the curve intersection in Fig. 7(a).

From these results, we learn that there are two contributions
to the anomaly in the coefficient of thermal expansion along
the c axis. One is the negative entropy derivative with respect
to the lattice parameter c, Sc. This derivative is negative below
45 K at zero pressure. However, the anomaly in αc persist up
to approximately 100 K. This is due to the second contribution
arising from the coupling with Sa .

3. Phonon analysis

Figure 8 displays the phonon spectra at 3 points in the (a,c)
plane: at equilibrium (a = 5.55 atomic units, c = 8.78 atomic
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FIG. 7. The derivatives of the entropy with respect to the lattice
parameters and their coupling terms in Eqs. (4) and (5). The
intersections in (a) of the two solid or dashed curves denote the
temperatures where the thermal expansion along the c axis changes
its sign. The absence of such intersections in (b) shows that the
expansion along the a axis is always positive.
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FIG. 8. Phonon spectra at several lattice parameters for α-
titanium around zero pressure. The curves denoted by �c and �a

represent compressions of 2% in the c and a directions, respectively.

units) and at compression of the unit-cell of both a and c lattice
parameters. We note that our results agree with and extend
recent calculations by Togo and Tanaka [22]. At the H point
on the edge of the Brillouin zone, shown in Fig. 4(b), there
is a soft transverse acoustic mode whose frequency decreases
under compression in the c direction. This anomaly in the
phonon spectrum does not appear under compression in the a

direction. Most of the spectrum exhibits normal behavior under
compression in both directions and the anomaly is observable
mainly at the H point and its neighborhood. We find that this
soft mode is associated with a mechanical structural instability
of the α phase under sufficient shear deformation, as shown in
Fig. 12(b) below.

In Figs. 9 and 10 we present the the integrands of Eqs. (11)
and (12). A positive contribution is represented by the red
color and a negative one is represented by blue. The main
contribution to the derivative of the entropy at very low
temperatures (around 30 K) comes from the vicinity of the
H point. It is positive in the a direction, Fig. 9, and negative in
the c direction, Fig. 10. A weaker negative contribution in the c

direction also appears around the � point. As the temperature
rises, more modes contribute to the thermal expansion. In
the a direction the contribution is positive over the entire
IBZ, whereas in the c direction it remains negative near the
H point, at the corner of the Brillouin zone [Fig. 4(b)]. At
high temperatures, the thermal expansion in the c direction
becomes positive due to the increased positive contributions
to Sc over most of the IBZ. The coefficients of thermal
expansion αa and αc both decrease as pressure increases for
temperatures above 50 K; see Fig. 11. The temperature range
in which αc is negative increases with pressure. This is due
to the increase in the frequencies of the optical branches
under pressure which reduces their relative contribution to the
entropy at low temperatures. Their contribution to the positive
thermal expansion thus becomes dominant at increasingly
higher temperatures as the pressure increases. At temperatures
below 50 K the compression reduces the negative anisotropic
coefficient αc.

FIG. 9. The integrand of Eq. (11), sa , over the IBZ of titanium at
different temperatures. The red color denotes sa > 0. The color bar
is the same as in Fig. 3.

FIG. 10. The integrand of Eq. (12), sc, over the IBZ at different
temperatures. The red and blue colors denote sc > 0 and sc < 0,
respectively. The color bar is the same as in Fig. 3.
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FIG. 11. The anisotropic thermal expansion coefficients and bulk
thermal expansion (inset) of α-titanium at different pressures. The
experimental data is taken from Ref. [30].

IV. DISCUSSION

The anomaly of the bulk thermal expansion in silicon was
studied by ab initio calculations in the QHA. The magnitude
and extent of this anomaly obtained are in good agreement
with experiments. The origin of the anomaly is clarified by
an analysis of the phonon spectra at different volumes and
temperatures. It is found that it is due to negative Grüneisen
parameter of the low frequency transverse acoustic modes over
most of the Brillouin zone. As the temperature is increased,
the normal high frequency longitudinal acoustic and optical
modes, that have positive Grüneisen parameters, become
dominant, thus leading to the disappearance of the anomaly.
At the vicinity of the � point the behavior is normal at all
temperatures, thus the anomalous thermal expansion is not
reflected by an anomalous behavior of the elastic constants.

The anisotropic thermal expansion of titanium in the α

phase is obtained by similar quasiharmonic calculations. A
quantitative comparison to experimental data is complicated
by large differences between different experimental studies in
the literature even at higher temperatures. Pawar et al. [6]
reported the values αa = 9.5 × 10−6 K−1 and αc = 5.6 ×
10−6 K−1 in the temperature range of 28–155◦ C. The values
reported by McHargue et al. [31] are αa = 11 × 10−6 K−1 and
αc = 8.8 × 10−6 K−1 at T = 25–255◦ C. These coefficients
were measured also by Nizhankovskii et al. [5], who reported
a value of 18 × 10−6 K−1 for αa at room temperature,
which is very different from other experimental studies. In
addition, they reported the value 10 × 10−6 K−1 for αc.
There is also a large variation between the calculated values
of the thermal expansion coefficients. At room temperature,
Souvatzis et al. [9] reported values of αa = 12 × 10−6 K−1 and
αc = 2 × 10−6 K−1. Their value for αc at room temperature is
smaller than the value calculated in the present contribution. It

should be noted that their calculation was constrained by the
use of a relatively small supercell.

Analysis of the phonon spectrum and the derivative of the
entropy reveals that an anomaly in a soft transverse acoustic
mode at the H point is the main contribution to the anomaly in
the derivative of the entropy (Figs. 9 and 10). This again shows
that the � point is not the dominant region in determining
the thermal response even at very low temperatures. Instead,
we show that a high symmetry point on the boundary of
the Brillouin zone provides the main contribution to the
derivative of the entropy that is the origin of the negative
thermal expansion along the c axis. This analysis precludes
explanations of the negative thermal expansion in terms of
the simple Debye model, contrary to suggestions in previous
work [9]. In both titanium and silicon, the modes near the
� point are weakly dependent on compression, compared
to points on the boundary of the Brillouin zone. Their
contribution to the thermal expansion is thus negligible.

It should be noted that the measured phonon spectra
of titanium [32] does not include the H point. Thus, the
present conclusion could not be obtained by these experimental
studies.

Equations (4) and (5) show that the anomaly in the
anisotropic thermal expansion can arise from two sources:
first, the derivatives of the entropy with respect to the lattice
parameters, ∂S/∂a and ∂S/∂c, might be negative, and second,
the coupling coefficients Aac/Acc and Aac/Aaa might be large
enough to give a negative thermal expansion even when both
directional derivatives of the entropy are positive. This is
in contrast to the isotropic case, Eq. (1), where a negative
derivative of the entropy is a necessary condition for negative
thermal expansion. The first source is determined mostly by
the phonons and the second one is determined mostly by
the second derivative, with respect to the lattice parameters,
of the total energy. In other words, it is determined by the
c/a anisotropy and tilt of the total energy surface. Generally
speaking, it turns out that negative thermal expansion along
one of the axes should be observed in anisotropic materials
where Sa > Sc and the coupling coefficient is positive and not
too small.

Nizhankovskii et al. [5] and Souvatzis et al. [9] found
an electronic topological transition (ETT) in titanium under
anisotropic deformation near zero pressure. Souvatzis et al.
showed that this ETT occurs on a point between � and A

on the edge of the IBZ. We find the locus of this ETT, on
the same point in the Brillouin zone, in the (a,c) plane, as
shown by black solid lines in Fig. 12. The band structure at
two representative points in the two different zones is shown in
Fig. 13. Figure 12 shows that the ETT affects the frequencies
between � and A, as expected because these modes are in the
same direction as the ETT. In contrast, the frequencies at the
H point do not exhibit the same effect. Thus the ETT present
in α-titanium between the � and A points is not related to the
anomaly in the anisotropic thermal expansion.

The low frequency degenerate acoustic normal mode at the
H symmetry point dominates the anomalous thermodynamic
behavior and can be further understood by considering the
motion of the atoms in this mode. Based on the phonon
polarizations obtained in our calculations we determined the
nature of this mode, which is neither pure transverse nor
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FIG. 12. Isofrequency curves at (a) a point on the acoustic branch
between � and A on the surface of the IBZ of titanium and (b)
at the H point. The solid black lines are the loci of the electronic
topological transition. The points (1) and (2) in (a) correspond to the
band structures shown in Fig. 13. The negative values in (b) show
that the structure loses its mechanical stability under large enough
compression along the c axis or expansion along the a axis.

pure longitudinal but is a mixed mode. The periodicity of
this mode, on the corner of the Brillouin zone, requires a 36
atom supercell, spanning 3 unit cells along the two equivalent
hexagonal directions and 2 unit cells along the z axis. Figure 14
presents a snapshot of the atomic motion in this mode. In the
Supplemental Material [33] we present a movie of the complex
vibrational motion in this mode. The hcp lattice consists of a
two-atom basis, each of which forms a set of (001) planes.
In the vibrational mode considered one plane of atoms (e.g.,
atoms 1 and 2 in Fig. 14) has only vertical (c-axis) motion and
the other plane of atoms move only on the plane, contracting

FIG. 13. α-titanium band structure at points (1) and (2) marked
in Fig. 12(a). The green line marks the Fermi level.
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FIG. 14. Illustration of the acoustic mode with the lowest fre-
quency at the H symmetry point. The blue and red dots represent
the ideal atomic positions without vibrations at alternating basal
planes. The blue arrows denote the direction of the instantaneous
displacements of the atoms in this mode and the black arrows show
the direction of the velocity of atoms 1 and 2, which are at their
equilibrium position at the same instant. The blue atoms have a
circular polarization in the basal plane with orbits denoted by green
circles. The red atoms have a linear polarization in the z direction
(perpendicular to the basal plane). (a) One primitive unit cell with
one atom outside of it (atom 1). (b) Two parallel basal planes with
red atoms shown. The green lines are a guide to the eye. (c) Top
view of two adjacent basal planes denoted by red and blue atoms. At
the instant depicted, triplets of blue atoms such as 6–8 are at their
maximal contraction, and atoms 1 and 2 are in their ideal atomic
positions [as are all the atoms on the basal diagonal in (b)].

(atoms 6–8) or expanding (atoms 3–5) locally. In this mode,
atoms (such as 1 and 2) that vibrate only perpendicular to the
basal plane move towards lower density regions as the triangle
formed by atoms 3–5 is expanding. In contrast, the triangle
formed by atoms 6–8 is contracting and atom 2 is moving
away from it.

The mode with the highest frequency at the H point is
very similar to the mode with the lowest frequency shown in
Fig. 14, but atoms of type 1 and 2 move in the opposite phase.
The consequence of this phase shift is that the red atoms move
in the opposite direction to that shown in Fig. 14, towards
positions with high density. The frequency of this mode is
higher by approximately a factor of 4 from the low frequency
mode due to the excess repulsion from the contraction in the
neighboring plane.

The geometry of this mode can also explain the anomaly
of the anisotropic Grüneisen parameter in the z direction.
Considering only the planes of atoms having vertical motion
in this mode, shown in Fig. 14(b), we see that this is a shearing
(bond-bending) mode. As the c lattice parameter decreases,
the interactions between nearest neighbors in this plane are
screened by the atoms in the alternate hcp planes, weakening
the interaction and reducing the frequency, thus leading to the
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anisotropic Grüneisen parameter anomaly. In addition, as the
c lattice parameter decreases, the component of the motion in
the direction perpendicular to the chemical bond of the atoms
denoted by 2 in Fig. 14 becomes larger, which signifies bond
bending. We note that bond-bending geometrical explanations
of negative thermal expansion are present in the literature, e.g.,
for silicon [21], which has a cubic structure.

V. SUMMARY

In the present work we show, by a detailed analysis of
the phonon spectra, that the negative Grüneisen parameter
of specific phonon modes located on the boundaries of the
Brillouin zone is the origin of the negative thermal expansion
in both titanium and silicon. In silicon, the negative Grüneisen
parameters appear at low frequencies in the transverse acoustic
modes over most of the Brillouin zone, except in the vicinity
of the � point, and gradually turn positive with increasing
temperature. In contrast, in titanium, the negative Grüneisen
parameters are localized in the vicinity of the H point, the
farthest point from � on the boundary of the Brillouin zone.
In both materials it is thus found that the elastic modes
do not contribute to the thermal anomalies even at low
temperatures.

The phonon spectra of titanium have not yet been measured
in the vicinity of the H point and verifying our prediction
would thus be an interesting experimental challenge. Ac-
cording to this prediction, the negative anisotropic thermal
expansion in titanium is unrelated to the ETT in the � → A

direction, as previously conjectured, since this transition does
not affect the phonon spectrum in the region of negative
Grüneisen parameters near the H point.

The anisotropic negative thermal expansion in the c

direction in titanium extends beyond the temperature range
of the negative directional derivative of the entropy due
to the thermoelastic coupling between the two directional
derivatives of the entropy. This coupling may give rise to a
negative thermal expansion along one of the principal axes
even when none of the directional derivatives of the entropy is
negative. Such conditions may be easily fulfilled in anisotropic
materials. This raises the prospect that anisotropic negative
thermal expansion is not a rare phenomenon in anisotropic
materials at low temperatures. The scarcity of reports of such
behavior may therefore simply reflect gaps in the experimental
studies on these materials.
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