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Isotope scattering and phonon thermal conductivity in light atom compounds: LiH and LiF
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Engineered isotope variation is a pathway toward modulating lattice thermal conductivity (κ) of a material
through changes in phonon-isotope scattering. The effects of isotope variation on intrinsic thermal resistance
is little explored, as varying isotopes have relatively small differences in mass and thus do not affect bulk
phonon dispersions. However, for light elements, isotope mass variation can be relatively large (e.g., hydrogen
and deuterium). Using a first principles Peierls-Boltzmann transport equation approach, the effects of isotope
variance on lattice thermal transport in ultra-low-mass compound materials LiH and LiF are characterized. The
isotope mass variance modifies the intrinsic thermal resistance via modulation of acoustic and optic phonon
frequencies, while phonon-isotope scattering from mass disorder plays only a minor role. This leads to some
unusual cases where κ values of isotopically pure systems (6LiH,7Li2H, and 6LiF) are lower than the values
from their counterparts with naturally occurring isotopes and phonon-isotope scattering. However, these κ

differences are relatively small. The effects of temperature-driven lattice expansion on phonon dispersions and
calculated κ are also discussed. This paper provides insight into lattice thermal conductivity modulation with mass
variation and the interplay of intrinsic phonon-phonon and phonon-isotope scattering in interesting light atom
systems.
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I. INTRODUCTION

Isotopes of various materials have played critical roles in the
development and advancement of scores of technologies that
we now take for granted. For example, isotopic enrichment of
Uranium (235U) and Plutonium (239Pu) was critical for devel-
oping nuclear fission technologies, various isotopes are used
as radioactive tracers to study physiological processes (e.g.,
123I), and radioisotopes (e.g., 241Am) are key ingredients in
millions of smoke detectors around the world. Typically, these
technologies rely on radioactive decay of meta-stable isotopes,
most often with large numbers of protons and neutrons. How-
ever, even light atoms can be useful radioisotopes: Positron
emission tomography (PET) cancer scans use 18F as a positron
emitter, and radioactive dating, typically examining 14C con-
centrations, is used to determine the age of materials important
for archaeologic studies and examining geologic history.

Varying isotopes can also be interesting and technologically
useful beyond radioactive decay. Of interest here are the
effects of isotopic variations on thermal conductivity (κ) in
semiconductors and insulators as they alter the transport of
thermal energy via lattice vibrations and phonons. These
phonons scatter from mass perturbations in the crystal such
as isotope variation. Thus, depending on the temperature
(T ) regime and relative strengths of other phonon scattering
mechanisms, isotopes can play a critical role in determining
thermal transport in a material. For example, a peak value
in κ as a function of temperature [κ(T )] occurs in Ge for
T ∼ 20 K where point defects such as isotope mass variance
are important. Isotopically purified crystals of Ge were shown
to have a threefold increase in κ at this temperature [1].
Even at room temperature, diamond [2,3], BN nanotubes [4],
and graphene [5] have large enhancements to κ with isotope
purification, and calculations predict large enhancements to κ

in some compound materials: GaN [6], BeSe, and GeC [7].
The focus of this paper is not just on the relative importance

of phonon-isotope scattering but also on the interplay of this

scattering with changes that mass variance gives to the intrinsic
phonon-phonon scattering via modulation of the phonon
dispersion. Phonon frequencies critically depend on the masses
of the constituent elements. In a multicomponent material,
optic phonon branches are generally governed by light atoms,
while acoustic branches are governed by the heaviest atoms.
Decreasing the mass of either drives the corresponding phonon
branches to higher frequencies, while the opposite is true for
increasing mass. Thus, isotope variation can be employed
to manipulate the phonon spectrum [8], though frequency
changes are typically small and likely have very little effect
on the intrinsic scattering. In fact, calculations of isotope
modulated κ typically model the effects of isotope variance
by simply introducing mass perturbation scattering [9–11],
without consideration of phonon frequency modulation. Here
we address the following questions. Can frequency changes
with isotope variation significantly manipulate intrinsic ther-
mal resistance? More specifically, can higher κ be achieved
in systems with more mass disorder? Can acoustic modes be
appreciably altered by isotope modification, e.g., modulated
sound velocities?

Such properties require systems for which the constituent
elements have small mass so that isotope variation can
give relatively large changes to the nuclear masses, e.g.,
ultra-small-mass rock salt compounds LiH and LiF, both
of which have a significant amount of measured data for
both dispersions and κ . Natural isotopic variance of Li is
7.6% 6Li and 92.4% 7Li, while H and F are virtually pure
1H and 19F. Isotopically modifying light atom materials
is fairly inexpensive, thus incorporating varying amounts
of 2H (deuterium), 6Li, and 7Li in these systems is not
unreasonable. LiH is often considered for energy storage
technologies and shielding in nuclear reactors [12]; an isotope
variant, 6Li2H, is used as fusion material in thermonuclear
weapons. LiF is used in radiation detection [13] and ultraviolet
optics [14], and LiF salts are used as solvents in nuclear
reactors [15].
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In this paper, we will examine κ and isotope variation of
κ by both phonon-mass defect scattering and modification of
the phonon dispersions. This paper is organized as follows.
Section II outlines the theoretical methods employed. Sec-
tion III gives the Results and Discussion: comparison with
measured data and physical analysis. Section IV gives the con-
clusions, and an Appendix gives further theoretical methods
and phonon dispersion data.

II. THEORY

We employ a full solution to the steady-state
Boltzmann-Peierls phonon transport equation (BPE), �v�qj ·
�∇T (∂n�qj /∂T ) = (∂n�qj /∂t)scatter, to determine the nonequi-
librium phonon distributions n�qj arising from an applied
temperature gradient �∇T [16–18] in a homogeneous system.
Here, �v�qj is the phonon velocity for phonon mode with wave
vector �q in branch j . We assume n�qj is the equilibrium Bose
distribution n0

�qj
plus a deviation linear in �∇T . This deviation

determines the transport lifetimes τ�qj,α in Cartesian direction
α coinciding with the direction of the temperature gradient.
These enter the equation for the lattice thermal conductivity:

καβ =
∑
�qj

C�qj v�qj,αv�qj,βτ�qj,α, (1)

with C�qj being the volume normalized mode specific heat
and v�qj,α being the αth component of the velocity. For the
rock salt structures considered here, the thermal conductivity
tensor can be described by a single component: κxx =
κyy = κzz = κ; off-diagonal terms are zero. For calculations
presented here, the scattering term on the right hand side
of the BPE is constructed from combinations of intrinsic
anharmonic three-phonon scattering [17,18] (lowest order in
perturbation theory), phonon-isotope scattering [9–11], and
phonon-boundary scattering [17,19]. Further details of the
scattering rate calculations have been described previously
[6,7,17,18]. The BPE is then solved self-consistently [20,21],
beyond the relaxation time approximation (RTA). Phonon-
boundary scattering rates (when included) were determined
by 1/τ

p−b

�qj
= |�v�qj |/L with L, system size, empirically chosen

to fit the ultra-low temperature κ data for each system.
We note that boundaries play a role only in determining κ

below temperature T ∼ 10−20 K, also below the conduc-
tivity peaks. Like the intrinsic three-phonon scattering, the
phonon-isotope scattering is derived from quantum mechan-
ical perturbation theory [9–11] and has no adjustable fitting
parameters.

Besides trivial terms such as atomic masses and isotope
concentrations, harmonic and third-order anharmonic inter-
atomic force constants (IFCs), or potential derivatives, are the
only required inputs for the calculations. The harmonic IFCs
are determined from density functional perturbation theory
[22] using the Quantum Espresso (QE) package [23,24] with
100 Ry energy cutoff for the wave functions, 12 × 12 × 12
q-point mesh for the electronic structure, and 8 × 8 × 8
k-point mesh for linear response calculations. The anharmonic
IFCs are calculated to fifth nearest neighbor of the unit cell
atoms via numerical derivatives determined from Hellman-
Feynman forces from perturbations of 216 atom supercells

using density functional theory [25,26], as implemented by the
QE package. The �-point only calculations were employed,
also with a 100 Ry energy cutoff for the wave functions.
For these calculations, the norm-conserving Troullier-Martins
pseudopotential method [27] was employed to characterize
the core electrons. The generalized gradient approximation
(GGA) and the local density approximation (LDA) were both
employed. Input files and calculated IFCs can be found in the
Supplemental Material [28].

As phonon dispersions play a critical role in deter-
mining thermal transport, some care was taken to de-
termine the best DFT formalism to describe LiH and
LiF systems. Each structure was relaxed by adjusting the
lattice constant (a) to find the lowest calculated elec-
tronic energy for both LDA and GGA. For all cases,
the calculated a values were smaller than experiment:
for LiH, aLDA = 3.894 Å, aGGA = 3.947 Å, aexp = 4.083 Å
[29] and for LiF, aLDA = 3.886 Å, aGGA = 4.005 Å, aexp =
4.02 Å [30]. Experimental lattice parameters were measured at
room temperature. For the GGA calculations this is surprising,
as they typically underbind atoms (LDA tends to overbind
atoms) [31]. For Li2H, the resulting GGA phonon dispersion
gives reasonable agreement with measured data for Li2H
(Fig. 10 in the Appendix), while the LDA does a poor job
describing the acoustic modes. For LiF, both the calculated
LDA and GGA dispersions fail to describe the longitudinal
acoustic and low frequency optic modes accurately (Fig. 11 in
the Appendix).

The measured a values and dispersions were taken at room
temperature, while DFT calculations are for ground state zero
temperature systems. We examined the effects of temperature
on a and the dispersions for the LDA calculations within the
quasiharmonic approximation using the following expression
for temperature dependent lattice parameter, a(T ) [32]:

a(T ) = a0

⎡
⎣1 + 1

3V0B

∑
�qj

γ�qj�ω�qj

(
n0

�qj + 1

2

)⎤
⎦. (2)

This includes zero-point motion of the atoms and thermal
shifts due to vibrational energy. a0 and V0 are calculated lattice
parameter and volume at equilibrium (T = 0 K), respectively;
B is the bulk modulus (B = 31.7 GPa for Li2H from Ref. [33]
and B = 67.1 GPa for LiF from Ref. [34]); ω�qj is phonon
frequency; and γ�qj is the mode dependent Grüneisen parameter
defined in the Appendix. We note that including lattice
expansion for the GGA calculations gives worse agreement
with measured phonon dispersion data, and thus only the LDA
is considered further. Figure 1 gives a(T )/a0 for LiH, Li2H,
and LiF versus temperature; this is also given for GaAs for
comparison. LiH and LiF have significant zero point motion
effects (curves do not go to one at T = 0) [32], and a(T )
varies substantially with T when compared with GaAs, a
typical zincblende material. Further, there is variation of the
LiH and Li2H curves as the phonon frequencies, and thus the
vibrational energies depend on the isotopic mass [32]. The
lattice expansion does not give a (300 K), in agreement with
measured data; however, using harmonic IFCs calculated for
a (300 K) gives better agreement with measured dispersions
for both Li2H (Fig. 10 in the Appendix) and LiF (Fig. 11 in the
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FIG. 1. Calculated LDA a(T )/a0 versus temperature of LiH
(solid black curve), Li2H (dashed black curve), LiF (red curve), and
GaAs (blue curve). The calculated equilibrium lattice parameters a0

are 3.894 Å, 3.894 Å, 3.886 Å, and 5.546 Å for LiH, Li2H, LiF, and
GaAs, respectively. Room temperature measured lattice constants
scaled by the calculated a0 values are given for LiH (black circle)
[29], Li2H (black square) [29], LiF (red circle) [30], and GaAs (blue
circle) [35]. Note that the curves do not approach one at T = 0 due
to zero point motion of the atoms [32].

Appendix). For the rest of this paper, we employ harmonic and
anharmonic IFCs determined from LDA calculations using a

(300 K) values for LiH (4.004 Å) and LiF (3.951 Å).

III. RESULTS AND DISCUSSION

A. Comparison with experiment

First, we examine the phonon dispersions of LiH and LiF
with different isotope concentrations, given by Fig. 2 and
Fig. 3, respectively. When the mass number is not given
here the natural isotope averaged mass is used. Typically,
small variations in mass (m) given by different isotopes in
a material have very little effect on the phonon frequencies,
though they may play a role in phonon scattering from mass
disorder. However, for these light atom systems, isotope mass
differences alter the dispersions significantly as the relative
mass changes are fairly large: m(2H)/m(1H) = 2.00 and
m(Li)/m(6Li) = 1.15.

The most dramatic frequency changes occur for the optic
modes of LiH when replacing 1H (black curves) with 2H (red
curves), as seen in Fig. 2. The black curves are difficult to
distinguish as they nearly coincide with the blue curves (6LiH)
for the optic frequencies and with the red curves (Li2H) for
the acoustic frequencies. The optic phonon frequencies of
LiH are 33–41% higher than those of Li2H. Note that lighter
atoms shift phonons to higher frequencies, while heavier atoms
shift phonons to lower frequencies. The optic modes are
predominantly governed by motion of the light atoms and
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FIG. 2. Calculated phonon dispersions in high symmetry direc-
tions for LiH (black curves) and Li2H (red curves) with natural isotope
averaged Li mass and for 6LiH (blue curves). 2H is also known as
deuterium. Red circles give measured Li2H data [36]. Calculations
were done with LDA and a (300 K), as described in the text. The
black curves are difficult to distinguish as they nearly coincide with
the blue curves (6LiH) for the optic frequencies and with the red
curves (Li2H) for the acoustic frequencies.

acoustic modes by motion of the heavy atoms. Thus, very
little change is observed for the acoustic branches in LiH and
Li2H. However, when comparing the acoustic modes of LiH
(black curves) with those of 6LiH (blue curves), there are
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FIG. 3. Calculated phonon dispersions in high symmetry direc-
tions for LiF (black curves) and 6LiF (red curves). Black circles give
measured data for LiF [37]. Calculations were done with LDA and a

(300 K), as described in the text.
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TABLE I. Calculated thermal conductivity κ , Debye temperature
θD, and optic bandwidth given by (ωo

max − ωo
min)/ωa

max for each
LiH and LiF system. Here, ωo

max, ωo
min, and ωa

max are calculated
maximum optic, minimum optic, and maximum acoustic frequencies,
respectively. All calculations are done using LDA and a (300 K), as
described in the text. The unit cell mass (Mcell) of each system is also
given.

θD(K) Mcell(amu) Scaled optic bandwidth κ (W/m-K)

LiH 1202 7.95 0.94 23.00
7LiH 1197 8.02 0.95 24.15
6LiH 1279 7.02 0.88 22.88
Li2H 1133 8.96 0.70 13.44
7Li2H 1129 9.03 0.71 12.82
6Li2H 1197 8.03 0.67 14.54
LiF 802 25.94 1.06 14.58
7LiF 801 26.01 1.06 14.92
6LiF 817 25.01 1.08 13.49

appreciable differences, 6–7% for all of the acoustic modes.
These differences can also be found in the Debye temperatures
θD (see Table I), which are calculated from the acoustic sound
velocities (see Appendix). This is unusual, again, because the
acoustic modes are governed by the heavy atoms, which have
less relative isotope mass variation than lighter atoms in typical
systems. Comparing the phonon dispersions of LiF with those
of 6LiF in Fig. 3, the acoustic modes are unchanged as Li is the
lighter atom in this system, while the optic modes are shifted
higher by 5–7%. Again, phonon lifetimes and conductivity
depend critically on features of the dispersion. One might
expect that 6LiH will have higher calculated κ than LiH given
that the heat-carrying acoustic phonons have higher velocities
and that there is no mass disorder scattering in 6LiH; however,
this is not the case (see Table I) due to changes in the intrinsic
phonon scattering rates, as explained later.

Next, we present a comparison of calculated coefficients
of linear thermal expansion (α) with measured values as a
function of temperature in Fig. 4 for LiH (black curve), Li2H
(red curve), and LiF (green curve). α is defined by Eq. (A1)
in the Appendix and is a function of both the harmonic and
anharmonic IFCs. Thus, the general agreement between the
calculated and measured α gives confidence that the IFCs give
a good representation of the anharmonicity of these systems, as
the agreement of the calculated and measured phonon disper-
sions gives confidence in the harmonic properties. The cause
for the relatively worse agreement for measured and calculated
α of LiF compared to those of the LiH systems is unknown.

Figures 5 and 6 give the calculated κ values for various
isotope concentrations of LiH and LiF, respectively, over a
wide range of temperature compared to measured data. The
low T data (T < 20 K) is not fully first principles, as the
calculated κ was fit to match experiment at 3 K in each case by
adjusting L (system size) in the empirical phonon-boundary
scattering term described previously. The L values for LiH
systems are the following: LiH: 0.175 mm; Li2H: 0.150 mm
(black and red curves in Fig. 5, respectively). The L values
for LiF systems are the following: 99.99% 7Li : 10 mm;
97.2% 7Li : 8 mm; 92.41% 7Li : 7 mm; 50.8% 7Li : 7 mm;
and 9.6% 7Li : 5 mm (black, red, green, purple, and orange
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FIG. 4. Calculated coefficient of linear thermal expansion [40]
versus temperature for LiH (black curve), Li2H (red curve), and LiF
(green curve) compared with experimental measurements (note that
error bars for the measurements are not shown). Measured data for
LiH (black circles [39], black triangles [29]) and Li2H (red circles
[39], red squares [29], and red triangle [41]) from references in
Ref. [38] and for LiF from Ref. [42] (green circles) and references
therein (green triangles [43], green squares [44], green diamonds [45],
green Xs [46], and green crosses [47]).

curves in Fig. 6, respectively). For the LiF systems, these
sizes are larger than that of the samples from experiment
(5–7 mm) [52,53], though in reasonable agreement given
the crudeness of the phonon-boundary scattering model. For
LiH, L is remarkably smaller than the sample dimensions,
∼2.5 mm [48]. This will be discussed in more detail below.
The κ calculations for T < 10 K included only phonon-
boundary and phonon-isotope scattering, as convergence with
integration grid density was prohibitively costly with inclusion
of the intrinsic scattering as more sampling of the lower
frequency acoustic phonons is required. For T > 10 K, the κ

calculations converged with much lower integration grids, and
thus all scattering mechanisms were included. The curves in
the intermediate temperature regime around 10 K overlapped
reasonably well, as can be seen by the lack of discontinuity of
the calculated curves in Figs. 5 and 6. The intrinsic scattering
rates were separately calculated for each isotope variation
as this gives significant differences in phonon dispersions.
Again, this is typically ignored in calculations of isotopically
modified κ , though it is considered in some calculations of κ

in alloyed material (mixing of elements with differing proton
number) within the virtual crystal approximation [56,57]. We
note that changes in the calculated IFCs are not considered
with variation of neutron number.

All calculated curves show the same general and expected
κ(T ) trends (as does the measured data for the most part):

Boundary scattering regime. At low T (< 10 K),κ(T ) is
dominated by phonon-boundary scattering and κ(T ) ∼ T 3
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FIG. 5. Calculated κ versus temperature for LiH (black curve)
and Li2H (red curve) with naturally occurring Li abundances.
Phonon-boundary, phonon-isotope, and phonon-boundary scattering
are included for T > 10 K, while only phonon-boundary and
phonon-isotope scattering are considered for T < 10 K. The system
size, L, for the phonon-boundary scattering was 0.175 mm and
0.150 mm for LiH and Li2H, respectively. Low T measured κ data
for LiH are given by black circles and are from unpublished data
in Ref. [48]. High T measured κ data are given by green squares
[49], blue triangles [50], and purple diamonds [51], also obtained
from Ref. [48]. The red and black curves are nearly identical for
T < 100 K, as the only differences in κ arise from acoustic-optic
phonon scatterings, which become “frozen out” with decreasing T .

with increasing T , behavior dictated by the phonon specific
heat [58,59]. However, even at the lowest temperatures, the
LiF systems (excluding the isotopically purified 99.99% 7Li
system) show signs that phonon-isotope scattering is playing
a role, as the power law exponent is subcubic, κ(T ) ∼
T 2.50 − T 2.85 depending on the isotope variance. The measured
data also give subcubic temperature dependence, even for the
highest purity sample. The low T measured data for LiH is
quite unusual, nonlinear on log-log scales with fits to the data
giving κ(T ) ∼ T 2 behavior. Unfortunately, little information
is given about the sample and measurements in Ref. [48]. Thus,
it is hard to draw definitive conclusions as to the discrepancy
between the model L (0.175 mm) used here to fit the κ(T ) data
and the reported sample size (∼2.5 mm) [48].

Isotope scattering regime. At intermediate T (10 K <

T < 75 K) phonon-isotope scattering becomes the dominant
resistance, and intrinsic anharmonic scattering becomes more
important. The interplay of these mechanisms determines the
κ(T ) peak magnitudes and positions; stronger phonon-isotope
scattering relative to the intrinsic phonon-phonon scattering
suppresses the peak values and shifts the κ(T ) peaks to lower
T . Both LiH systems have κ(T ) peaks at T ∼ 35 K, while
the LiF systems have peaks at T ∼ 15 K − 20 K. For the LiF
systems, the calculated κ(T ) curves are in agreement with
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FIG. 6. Calculated κ versus temperature for LiF with differing
Li concentrations: 99.99% 7Li (black curve), 97.2% 7Li (red curve),
92.41% 7Li (green curve), 50.80% 7Li (purple curve), and 9.6% 7Li
(orange curve). Measured data for the same isotope concentra-
tions have the same corresponding colors (circles [52], squares
[53], and diamonds [54]). Phonon-boundary, phonon-isotope, and
phonon-boundary scattering are included for T > 10 K, while only
phonon-boundary and phonon-isotope scattering are considered for
T < 10 K. The system size, L, for the phonon-boundary scattering
was 10 mm (black curve), 8 mm (red curve), 7 mm (green curve),
7 mm (purple curve), and 5 mm (orange curve).

measured values except for the case with 99.99% 7Li (black
curve) with a larger calculated peak value shifted to slightly
higher T . This is indicative of the presence of other extrinsic
scattering mechanisms present in the sample (e.g., point
defects such as vacancies and site substitutions). The κ(T )
magnitude at the peak position is highly sensitive to extrinsic
scattering, as the intrinsic anharmonic scattering is still
relatively weak. Note that this calculated peak κ(T ) drops an
order of magnitude when including just 3.8% 6Li (red curve).

Anharmonic scattering regime. At high T (>75 K), includ-
ing room temperature, anharmonic scattering is dominant
with phonon-isotope scattering playing a lesser role; phonon-
boundary scattering is negligible. In Fig. 7, we give calculated
κ(T ) LiH (black curves), Li2H (green curves), and LiF
(red curves) with varying Li isotope concentrations: natural
isotope abundance (solid curves), pure 7Li (dashed curves),
and pure 6Li (dotted curves). The calculated curves give
κ(T ) ∼ T −1.0 − T −1.1 when fitting power law curves to the
data for 300 K < T < 1000 K. The κ(T ) ∼ T −1 behavior
is expected when three-phonon scattering is the dominant
resistance. Some of the measured κ(T ) values give κ(T ) ∼
T −1.15 − T −1.2, suggesting that some other phonon scattering
might be playing a role in the experiments. At high T (above
the Debye temperature, near the melting point), higher order
phonon scattering processes and/or further lattice expansion
might play a role in determining κ [17,18,60]. Again, LDA a
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FIG. 7. Calculated κ versus temperature for LiH (black curves),
Li2H (green curves), and LiF (red curves) with different Li isotope
concentrations: natural isotope abundances (solid curves), pure 7Li
(dashed curves), and pure 6Li (dotted curves). The dashed and dotted
curves include only intrinsic phonon-phonon scattering, while the
solid curves include phonon-phonon and phonon-isotope scattering.
Measured κ data for LiH given by black diamonds [50], black squares
[49], and black circles [51] and for LiF given by red diamonds [52],
red squares [52], red Xs [52], red triangles [52], red plusses [53], and
red circles [55].

(300 K) values were used to determine the IFCs and κ for these
calculations. The melting points of LiH and LiF are reported
as ∼950 K and ∼1100 K, respectively. The calculated and
measured κ data for LiF agree reasonably well; however, those
for LiH do not. This is surprising given the good agreement
with measured phonon dispersion data for Li2H (harmonic)
and thermal expansion data for LiH (anharmonic), especially
in light of previous first principles calculations that found good
agreement with experiment without adjustable parameters
[6,56,61,62]. Around room temperature, the calculated κ of
LiH is nearly two times larger than measured. This disagree-
ment is indicative of either relatively poor sample qualities or
the importance of including higher order anharmonic effects,
as described above. Further, it was previously noted that the
Born-Oppenheimer approximation fails in HF dimers [63]; this
might also give discrepancies in the calculated properties of the
ultralight LiH system here. It is interesting that the calculated
κ(T ) for Li2H is in better agreement with the measured values.
Unfortunately, information of the experimental samples and
techniques are difficult to obtain as most of the data is from
technical government reports from decades ago [48–51].

Including higher order scattering terms (beyond three-
phonon interactions) in the calculation of the intrinsic κ is
beyond the scope of this paper; however, here we briefly
comment on the role of thermal expansion within the quasi-
harmonic approximation in determining κ . From Fig. 1, it is
apparent that LiH and LiF lattice constants are more sensitive
to temperature than the GaAs counter example shown, and

inclusion of this lattice expansion is necessary for better
agreement of calculated phonon dispersions with measured
values. The same is true of κ: Using LDA IFCs generated with
a0 (lattice constant from energy minimization) gives generally
higher κ(T ) than that for a (300 K), even higher than measured
values. Table II gives a comparison of calculated κ values
for LiH and LiF using IFCs generated with a0, a (300 K)
and a (600 K). Calculated lattice constants for LiH are a0 =
3.894 Å, a(300 K) = 4.004 Å, and a(600 K) = 4.048 Å; for
LiF, the constants are a0 = 3.886 Å, a(300 K) = 3.951 Å,
and a(600 K) = 3.999 Å. Generally, κ decreases with increas-
ing lattice parameter as the phonon modes soften for each
system. Further, including the effects of lattice expansion
within this quasiharmonic approximation also gives relatively
better agreement of calculated and measured κ values. For
example, using a (0 K) and a (300 K) IFCs gives 22.42
and 14.59 W/m-K, respectively, for LiF at room temperature
compared with the measured value 14.09 W/m-K [55].

B. Physical analysis

Thermal conductivity depends critically on details of the
phonon dispersions via phonon velocities, mode specific
heats, and on changes of the phase space for phonon-phonon
scatterings, as dictated by conservation conditions: crystal
momentum and energy. Thus, details of phonon branch shifts
due to isotope modification may play a significant role in
altering the intrinsic κ of these materials. First, we focus on
sound velocities by examining changes in the calculated Debye
temperatures constructed from these (see Eq. (A2) in the
Appendix). That is, larger θD indicates larger acoustic veloci-
ties and, thus, typically larger κ (see velocity dependence of κ

in Eq. (1)). Calculated θD for LiH and LiF systems are listed in
Table I with their corresponding room temperature κ values.
The θD values generally reflect the low frequency behavior of
the acoustic modes in Figs. 1 and 2. From this alone, we expect
the LiH systems to have higher κ than the LiF systems, which
is indeed the case for LiH; however, the LiF calculated room
temperature κ values are higher than the Li2H values. Further,
all of the calculated θD values here are higher than those
previously calculated for Si, Ge, and BAs (707 K, 415 K, and
716 K) [64], with corresponding calculated room temperature
κ values significantly higher (145 W/m-K, 60 W/m-K, and
2240 W/m-K, respectively) than the LiH and LiF systems
here. This suggests that the dominant feature governing lattice
thermal transport is phonon scattering resistance.

Phonon-isotope scattering via mass perturbation of the
varying Li isotopes was included only in the calculation of κ

values in Fig. 6 and Table I for LiH, Li2H, and LiF; 6Li and
7Li were considered isotopically pure. As expected, the lack
of mass disorder scattering in 7LiF,7LiH, and 6Li2H gives
κ values higher than the corresponding naturally occurring
Li systems (see Table I). However, the isotopically pure
6LiF,6LiH, and 7Li2H cases have lower κ values despite
lacking this phonon-isotope scattering. This suggests that
changes in the three-phonon scattering phase space with
Li isotope enrichment induces more intrinsic resistance in
these systems than the mass disorder scattering in the natural
materials.
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TABLE II. Calculated thermal conductivities (κ) for LiH and LiF at T = 300 K and T = 600 K for IFCs determined using different
LDA lattice constants. a0 is the calculated equilibrium lattice constant, and a (300 K) and a (600 K) include the effects of lattice expansion,
as determined from Eq. (2) for their respective temperatures. For comparison, measured data are also shown. Bold numbers designate κ

values for which the temperature used in the calculation matches the lattice parameter temperature. Calculated lattice constants for LiH are
a0 = 3.894 Å, a(300 K) = 4.004 Å and a(600 K) = 4.048 Å; for LiF, they are a0 = 3.886 Å, a(300 K) = 3.951 Å, and a(600 K) = 3.999 Å.

κ [a0] (W/m-K) κ [a(300 K)] (W/m-K) κ [a(600 K)] (W/m-K) κ [measured] (W/m-K)

LiH T = 300 K 25.51 23.00 20.29 12.47a

LiH T = 600 K 11.72 10.73 9.35 6.24b

LiF T = 300 K 22.42 14.59 10.55 14.09c

LiF T = 600 K 10.63 6.94 5.07 6.19c

aReference [49]. The measurement was taken at 327 K.
bReference [49].
cReference [55].

To understand the intrinsic resistance from three-phonon
interactions, we characterize scattering processes into four
types: aaa, aao, aoo, and ooo, where aaa involves three
acoustic phonons, aao involves two acoustic, and one optic
phonon, etc. These scatterings can be generally correlated to
features of the phonon dispersions by considering the effects of
the conservation conditions, energy conservation in particular,
on the phase space and thus the phonon lifetimes: (i) proximity
of the acoustic branches (bunching) dictates possible aaa
processes [64]; (ii) a frequency gap between acoustic and
optic branches (a-o gap) dictates possible aao processes [6];
(iii) optic bandwidth (relative to overall acoustic frequency
scale) and dispersion dictates possible aoo processes [65,66];
and (iv) energy conservation forbids ooo processes in most
systems, including LiH and LiF here.

Despite having significant mass differences between the
constituent atoms, these systems have little or no a-o gaps,
characteristic of the ionic rock salt bonding structure. Thus,
aao scattering is expected to be appreciable in these systems,
as it is in other small a-o gap materials [6,67]. The acoustic
branches of each system are bunched together throughout
much of the Brillouin zone, so aaa scattering is expected to
be relatively weak. To characterize this bunching, we calcu-
late (ωLA(X) − ωTA(X))/ωLA(X) composed of the transverse
acoustic (TA) and longitudinal acoustic (LA) frequencies
calculated at the X point. This gives values of 0.23 and 0.25 for
all LiH and LiF systems, respectively. For comparison, Si has
a value of 0.67 (with appreciable aaa scattering), and BAs has
a value of 0.40 (with a small aaa scattering phase space) [64].
All systems have very large longitudinal optical–transverse
optical (LO-TO) splittings and significant optic bandwidth
with branch dispersion throughout this bandwidth. These
features are also characteristics of ionic rock salt structures and
were recently shown to contribute to strong aoo scattering and
reduced κ contributions from acoustic modes in rock salt Pb
X [65] and antifluorite Li2X [66] (X = S, Se, Te). In contrast,
for zincblende structures, aoo scattering is not important for
determining κ . In Table I, we characterize the optic bandwidth
of LiH and LiF systems. Note that small values mean only low
frequency acoustic phonons can participate in aoo scatterings,
as dictated by conservation of energy, and values �1 mean all
acoustic phonons can scatter in such processes. Nearly all of
the acoustic modes of LiH and LiF systems can participate in

aoo scattering processes, and ∼70% of the acoustic modes in
Li2H are allowed. For comparison, only the lowest 40% and
35% of acoustic modes in Si and BAs, respectively, are allowed
in aoo processes [66]. We note that this characterization does
not include the additional restriction of crystal momentum
conservation.

To further analyze the relationship of scattering rates and
κ in these systems, Fig. 8 (LiH) and Fig. 9 (LiF) give the
relative room temperature scattering rates for the TA and LA
modes. The scattering rates for each phonon mode are scaled
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FIG. 8. Scaled acoustic mode scattering rates for LiH systems
versus scaled wave vector magnitude at room temperature. The wave
vectors are scaled by 2π /a, while the scattering rates are scaled by the
intrinsic phonon-phonon scattering rates calculated for isotopically
pure 6LiH. Solid symbols denote transverse acoustic (TA) modes,
and hollow symbols denote longitudinal acoustic (LA) modes. Blue
triangles give scaled isotope scattering, black circles give scaled
intrinsic scattering for LiH, and red circles give scaled intrinsic
scattering for Li2H. All values above (below) one indicate scattering
is stronger (weaker) than the intrinsic scattering of 6LiH.
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FIG. 9. Scaled acoustic mode scattering rates for LiF systems
versus scaled wave vector magnitude at room temperature. The
wave vectors are scaled by 2π /a, while the scattering rates are
scaled by the intrinsic phonon-phonon scattering rates calculated
for isotopically pure 6LiF. Solid symbols denote transverse acoustic
(TA) modes, and hollow symbols denote longitudinal acoustic (LA)
modes. Blue triangles give scaled isotope scattering, and black circles
give scaled intrinsic scattering for LiF. All values above (below) one
indicate scattering is stronger (weaker) than the intrinsic scattering
of 6LiF.

by the corresponding intrinsic phonon-phonon scattering rate
for 6LiH (Fig. 8) and 6LiF (Fig. 9). Note that scaled values
greater than one designate scattering rates that are greater than
the intrinsic rates of the 6Li systems (larger thermal resistance),
and values less than one designate smaller scattering rates
(smaller thermal resistance). First, phonon-isotope scattering
is generally weaker than the intrinsic scattering in these
systems at room temperature, especially for TA modes in the
LiF systems. Thus, the additional mass disorder scattering is
not playing a large role in determining κ . As temperature is
decreased, the intrinsic phonon-phonon scattering becomes
weaker, while the phonon-isotope scattering is unchanged
thus giving the isotope-driven differences in peak κ in Fig. 6
for LiF. Next, the intrinsic scattering for LiH and LiF is
generally weaker (though nominally so) than in 6LiH and
6LiF, respectively. More specifically, the acoustic modes of
6LiH are higher than those in LiH, while the optic modes are
unaltered (Fig. 2). This allows for increased coupling of the
heat-carrying acoustic phonons with the optic phonons due to a
smaller a-o gap in 6LiH and, thus, reduction of their lifetimes.
The weaker intrinsic scattering in 6LiH and 6LiF coupled with
weak phonon-isotope scattering leads to the unusual behavior
of lower κ in the isotopically pure 6Li systems compared
to their natural counterparts, despite having increased Debye
temperatures (see Table I). For Li2H, the intrinsic scattering of

the TA modes is significantly larger than that of 6LiH due to
increased interactions of these phonons with the much lower
frequency optic modes present in Li2H, ultimately giving lower
κ in the Li2H system.

Finally, Slack [48] explained the low κ of LiH, despite
being a simple material composed of light atoms, in terms of
a relatively large value for its average Grüneisen parameter
γ̄ (defined in the Appendix), which gives a measure of
lattice anharmonicity. Indeed, the calculated γ̄ for the LiH
systems is 1.1, larger than typical zincblende material values
of ∼0.7 [48]. The LiF systems have significantly larger γ̄

with values of 1.83. Though γ̄ has a reasonable correlation
with the lower κ values for these systems when compared
with typical zincblende materials, we note that this measure of
the anharmonicity does not account for the important effects of
fundamental conservations conditions toward limiting intrinsic
phonon-phonon scattering.

IV. SUMMARY AND CONCLUSIONS

Using a first principles BPE approach, we characterized
the effects of isotope variance on lattice thermal transport in
ultra-low-mass compound materials LiH and LiF. In such light
element systems, mass fluctuation not only modifies thermal
conductivity via phonon-isotope scattering but also modulates
the intrinsic κ via changes in the phonon dispersions of the
optic branches (for H variance in LiH and Li variance in LiF
systems) and to the acoustic branches (for Li variance in
LiH systems). Isotope variation gives significant differences in
optic phonon frequencies when comparing LiH and Li2H and
moderate differences in acoustic frequencies when comparing
LiF and 6LiF. These changes in the phonon dispersion give
increased phase space for scattering of acoustic phonons
by optic modes and lead to the unusual case of lower
κ values in isotopically pure 6LiH, 7Li2H, and 6LiF than
in their counterparts with natural isotope abundances and
mass disorder scattering. Good agreement of calculated and
measured κ was obtained over a wide temperature range
for LiF, however, not so for LiH. Phonon dispersions and
scattering rates were compared, and the relatively important
effect of lattice expansion with temperature on the calculated
dispersions and thermal conductivities of these systems was
discussed. Variation of intrinsic thermal resistance with isotope
engineering is possible in these light atom systems, though the
relative differences are small.
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APPENDIX

1. Calculation details

The coefficient of linear thermal expansion (α) is deter-
mined from [40]:

α = 1

3B

∑
�qj

C�qj γ�qj , (A1)

where B is the bulk modulus, C�qj = �ω�qj (∂n0
�qj

/∂T )/V is the

volume normalized mode heat capacity, n0
�qj

is the equilibrium
Bose distribution, ω�qj is the frequency for phonon with wave
vector �q in branch j , and V is the crystal volume. γ�qj are the
mode Grüneisen parameters given as [40]

γ�qj = − V

ω�qj

dω�qj

dV

= − 1

6ω2
�qj

∑
k,l′k′,l′′k′′

∑
αβγ

�αβγ (0k,l′k′,l′′k′′)

× ε
j �q∗
αk ε

j �q
βk′√

mkmk′
ei �q· �Rl′ rl′′k′′γ , (A2)

where lk designates the kth atom in the lth unit cell, ε
j �q
αk is

the αth component of the phonon eigenvector, �Rl is the lattice
vector of the lth unit cell, rlkα is the αth component of the
vector locating the kth atom in the lth unit cell, mk is the mass
of the kth atom, and �αβγ (lk,l′k′,l′′k′′) are the third order
anharmonic IFCs. The measured values of the bulk moduli for
LiH [33] and LiF [34] were used in Eq. (A1). The average
Grüneisen parameters are calculated as

γ̄ =
∑
�qj

C�qj γ�qj

/∑
�qj

C�qj . (A3)

The Debye temperature, θD , is given by

θD = �

kB

vD
3

√
6π2N

V
(A4)

v−3
D = 1

3
v−3

LA + 2

3
v−3

TA , (A5)

where kB and � are the Boltzmann and reduced Planck
constants, N is the number of atoms, and vLA and vTA are
the longitudinal and transverse sound velocities in the � → X

direction.

2. Supplemental phonon dispersions
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FIG. 10. Calculated phonon dispersions in high symmetry direc-
tions for Li2H with energy minimized lattice constants (T = 0 K)
for GGA (green curves, a = 3.947 Å), for LDA (black curves,
a = 3.894 Å), and for LDA at T = 300 K (red curves, a = 4.004 Å)
compared to measured data (blue circles, aexp = 4.083 Å) [36].
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rections for LiF with energy minimized lattice constants (T = 0 K)
for GGA (green curves, a = 4.005 Å), for LDA (black curves,
a = 3.886 Å), and for LDA at T = 300 K (red curves, a = 3.951 Å)
compared to measured data (blue circles, aexp = 4.027 Å) [37].
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[15] J. Uhlı́ř, J. Nuc. Mat. 360, 6 (2007).
[16] R. E. Peierls, Quantum Theory of Solids (Oxford University

Press, London, 1955).
[17] J. M. Ziman, Electrons and Phonons (Oxford University Press,

London, 1960).
[18] G. P. Srivastava, The Physics of Phonons (Taylor and Francis

Group LLC, New York, 1990).
[19] H. B. G. Casimir, Physica 5, 495 (1938).
[20] M. Omini and A. Sparavigna, Phys. Rev. B 53, 9064 (1996).
[21] M. Omini and A. Sparavigna, Nuovo Cimento Soc. Ital. Fis., D

19, 1537 (1997).
[22] S. Baroni, S. Gironcoli, A. D. Corso, and P. Giannozzi, Rev.

Mod. Phys. 73, 515 (2001).
[23] http://www.quantum-espresso.org.
[24] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C.

Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo,
A. D. Corso, S. Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U.
Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-
Samo et al., J. Phys.: Condens. Matter 21, 395502 (2009).

[25] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[26] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[27] N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).
[28] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.94.174304 for GGA and LDA input files
and calculated IFCs.

[29] J. L. Anderson, J. Nasise, K. Philipson, and F. E. Pretzel, J. Phys.
Chem. Sol. 31, 613 (1970).

[30] C. A. Hutchison and H. L. Johnston, J. Am. Chem. Soc. 62,
3165 (1940).

[31] P. Haas, F. Tran, and P. Blaha, Phys. Rev. B 79, 085104
(2009).

[32] P. B. Allen, Phil. Mag. B 70, 527 (1994).

[33] J. M. Besson, G. Weill, G. Hamel, R. J. Nelmes, J. S. Loveday,
and S. Hull, Phys. Rev. B 45, 2613 (1992).

[34] M. P. Tosi, Sol. St. Phys. 16, 1 (1964).
[35] H. Kuwamoto and D. E. Holmes, J. App. Phys. 59, 656 (1986).
[36] J. L. Verble, J. L. Warren, and J. L. Yarnell, Phys. Rev. 168, 980

(1968).
[37] G. Dolling, H. G. Smith, R. M. Nicklow, P. R. Vijayaraghavan,

and M. K. Wilkinson, Phys. Rev. 168, 970 (1968).
[38] H. Jex, J. Phys. Chem. Sol. 35, 1221 (1974).
[39] W. Brückner, K. Kleinstück, and G. R. E. Schulze, Phys. Status

Solidi 14, 297 (1966).
[40] J. Fabian and P. B. Allen, Phys. Rev. Lett. 79, 1885 (1997).
[41] B. Müller, Goethe University Frankfurt, 1973.
[42] J. E. Rapp and H. D. Merchant, J. Appl. Phys. 44, 3919 (1973).
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