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Nondiffusive lattice thermal transport in Si-Ge alloy nanowires
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We present a calculation of the lattice thermal conductivity of Si-Ge nanowires (NWs), based on solving the
Boltzmann transport equation by the Monte Carlo method of sampling the phonon mean free paths. We augment
the previous work with the full phonon dispersion and a partially diffuse momentum-dependent specularity model
for boundary roughness scattering. We find that phonon flights are comprised of a mix of long free flights over
several μm interrupted by bursts of short flights, resulting in a heavy-tailed distribution of flight lengths, typically
encountered in Lévy walk dynamics. Consequently, phonon transport in Si-Ge NWs is neither entirely ballistic
nor diffusive; instead, it falls into an intermediate regime called superdiffusion where thermal conductivity
scales with the length of the NW as κ ∝ Lα with the exponent of length dependence α ≈ 0.33 over a broad
range of wire lengths 10 nm < L < 10 μm regardless of diameter and roughness. We conclude that thermal
conductivity in Si-Ge alloy NWs is length dependent up to 10 μm and therefore can be tuned for thermoelectric
applications.
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I. INTRODUCTION

Si-Ge alloys and their nanostructures have attracted atten-
tion for thermoelectric (TE) application due to their ability to
achieve high figure of merit (ZT) at temperatures much above
room temperature, as well as the possibility of integrating
such nanostructures in other Si-based technologies, such
as microelectronics. Semiconductor alloys often make good
thermoelectrics because they closely resemble the phonon
glass electron crystal (PGEC) concept [1]: they retain an
ordered crystal structure but introduce disorder through mass
variation. Mass disorder dramatically reduces lattice thermal
transport while affecting electrons to a much lesser degree.
The success of Si-Ge alloys for TE applications stemmed
primarily from the dramatic order-of-magnitude reduction of
the lattice thermal conductivity in bulk alloys due to strong
mass-difference scattering of phonons with the constituent
components of the alloy. Subsequently, similar increase in the
thermoelectric figure of merit was observed in thin silicon
wires [2]; the improvement was credited primarily to the
dramatic reduction of lattice thermal conductivity arising
from the strong scattering of phonons with roughness at the
boundaries of the wires [3].

Theoretical calculations predicted that if the reduction of
thermal conductivity due to alloy scattering could be combined
with the effect of boundary scattering, then Si-Ge-based
nanowires (SiGe NWs) could lead to even more dramatic
improvements of ZT [4]. Subsequent molecular dynamics
(MD) simulations showed that while the maximum reduction
of thermal conductivity in bulk Si-Ge alloys exceeds one
order of magnitude, the reduction in alloy nanowires (NWs)
is only a factor of 5 [5]. Several measurements of thermal
conductivity in thin SiGe NWs with rough boundaries were
performed [6–8] and confirmed the weak diameter dependence
of thermal conductivity in SiGe NWs, indicating that thermal
transport was dominated by alloy (mass-difference) scattering,
even at low Ge concentrations. Hsiao et al. studied length
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dependence in SiGe NWs and found a linear trend, attributed
to ballistic transport, with a clear transition to the diffusive
regime at lengths exceeding 8.3 μm [9]. In bulk SiGe alloys,
on the other hand, Vermeersch et al. [10] have argued that the
phonon transport, on time scales up to 2 ns, shows clear signs of
superdiffusion.

In this paper, we study length-dependent thermal transport
in SiGe NWs. In Sec. II, we present the details of our
model used to study thermal transport in SiGe NWs using
a full-band description of the phonon dispersion together with
a momentum-dependent specularity description of scattering
at the partially diffuse boundaries of the wire. We apply
the Monte Carlo (MC) technique to sample phonon mean
free paths in the Si-Ge NW in order to fully capture the
interaction between the strong alloy scattering inside the wire
and partially diffuse roughness scattering at its boundaries. In
Sec. III, we discuss our results and show that phonons exhibit a
mix of rare micron-long free flights, interspersed with diffuse
scattering due to alloy mass disorder and interactions with
the rough boundaries. Collectively, this leads to a heavy-tailed
distribution of phonon mean free paths (MFPs), typically found
in Lévy walks [11,12]. This feature fundamentally changes
transport in Si-Ge NWs and causes superdiffusion, which is
evidenced by a sublinear κ(L) ∝ L1/3 length scaling over a
broad range of wire lengths (10 nm < L < 10 μm) and a
complete absence of a direct ballistic-to-diffusive transition.
Similarly, we find the time evolution of mean-square energy
displacement to be superlinear [σ 2(t) ∝ tβ , with β = 1.34],
confirming superdiffusive transport of phonons in Si-Ge NWs.
Finally, in Sec. IV, we conclude with a brief summary and a
few final remarks.

II. MODEL

Semiconductor NWs are typically grown using the vapor-
liquid-solid (VLS) procedure [13], producing a circular ge-
ometry which leads to the usual Casimir limit τ−1

B ∝ vs/D

in the case where boundary scattering is independent of
angle [14]. However, no closed-form solution to the Boltzmann
transport equation (BTE) can be found for the case where
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there are both partially specular boundary scattering and strong
internal (umklapp+alloy+defect) scattering present [15], and
Mathiessen’s rule is often used to combine the rates due
to boundary scattering with the intrinsic mechanisms [16].
The closed-form solution used in the planar (membrane or
thin-film) case [17,18] is not valid here because the distance
from each point on the interior of the circular wire to the
rough surface depends on both the angle (determined by the
phonon group-velocity vector) and the point of origin, in
contrast to the planar case. In addition, the specularity of the
boundary depends not only on the roughness, but also on the
angle of incidence between the phonon and the local boundary
normal [19,20].

To overcome these challenges, we turn to the phonon Monte
Carlo (pMC) technique, which has been widely used to solve
the phonon Boltzmann transport equation (pBTE) [21–27].
The pMC allows us to sample the phonon lifetimes [28]
and find the combined phonon lifetime in the presence of
both intrinsic scattering (from anharmonic phonon-phonon
and mass-difference interactions inside the wire) and partially
diffuse boundary scattering at the rough surface in circular
wires [3]. We capture the anisotropy of thermal transport
in Si-Ge NWs [29] due to phonon focusing effects [19], by
expanding the pMC algorithm to include the full phonon
dispersion [30,31]. We use Weber’s adiabatic bond charge
model [32] to efficiently compute the full phonon dispersion
of bulk silicon and germanium, and then combine them in
the virtual crystal approximation (VCA). This approach has
been shown to accurately capture the vibrational frequencies
and group velocities of phonons in the alloy [33], as well
as the thermal conductivity over a broad range of composi-
tions [34,35].

In the phonon Monte Carlo algorithm, an ensemble
of phonons is initialized according to the Bose-Einstein
distribution [28]. Then the free-flight time until scattering

of each phonon is determined by first selecting a random
number rint, uniformly distributed between 0 and 1, and
sampling the lifetime according to tint = −ln(rint)τint(�q) [36].
The phonon lifetime (τint �q) combines all the intrinsic scattering
mechanisms, including anharmonic three-phonon interactions,
impurity, isotope, and alloy mass-difference scattering (the
details of which can be found in the Appendix). Once the
phonon free-flight time is determined, each phonon travels
along the propagation direction given by its group velocity
�vg(�q), until scattering at the end of the “free flight” at tint or
until it encounters a boundary or contact, whichever occurs
first.

In our approach, boundary roughness scattering is
characterized through a momentum-dependent specular-
ity [20] p(�q) = exp(−〈φ2〉), where φ(�q,�r) = 2�q · ŝz(�r) =
2qz(�r) cos �B is the phase difference between the incoming
wave and the outgoing specularly reflected wave at point
�r . The surface normal unit vector at this point �r is ŝ. We
assume that the surface height z(�r) is a random function of
position on the rough boundary �r with a Gaussian distribution,
so that 〈z〉 = 0 and 〈z2〉 = 	2, where 	 is the rms height
of the surface roughness [37]. When a phonon reaches the
rough boundary, another random number rspec, again uniformly
distributed between 0 and 1, is used to select between a specular
(mirrorlike reflection about the surface normal ŝ) and a diffuse
(direction after leaving surface is randomized) scattering. If
rspec < p(�q), then the boundary interaction is specular and
the phonon is simply reflected at the boundary by flipping its
momentum about the boundary normal, �qfinal = �qinit − 2�qinit ·
ŝ. Otherwise, the interaction is diffuse: the phonon path is
terminated and the boundary scattering time tB is recorded
as the time at which the diffuse scattering occurred and
the process is restarted. We also capture the quasiballistic
contribution arising from phonons which reach the contacts
(at time tC) before scattering internally or at the boundaries.

FIG. 1. Thermal conductivity vs temperature for different wire configurations: (a) Length 5.7 μm, diameter 56 nm, and 6% Ge; (b) length
6.3 μm, diameter 97 nm, and 8% Ge; (c) length 5.6 μm, diameter 45 nm, and 10% Ge; (d) length 5 μm, diameter 62 nm, and 19% Ge; (e)
length 11.6 μm, diameter 26 nm, and 26% Ge; (f) length 5.3 μm, diameter 26 nm, and 27% Ge; (g) length 5.2 μm, diameter 65 nm, and 41%
Ge; (h) length 6.2 μm, diameter 161 nm, and 86% Ge, showing a comparison of results computed based on our RTA (cyan line) and MC
(blue − ◦ −) model to experimental values (red •) reported in Ref. [8].
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When all of the phonon flights are terminated in either internal
or boundary scattering or at a contact, thermal conductivity is
computed from the average,

κ = 1

N�qNi

∑
�q,i

v2
g(�q) min{tint,tB,tC}C(T ,�q), (1)

where C(T ,�q) is the modal volumetric heat capacity [28]
and N�q , Ni are the number of phonons and itera-
tions in the simulation, respectively, both being typically
100 000.

III. RESULTS AND DISCUSSION

A. Comparison of our results to experimental data

Figure 1 shows a comparison of our calculated results to
the experimentally measured thermal conductivities reported
in Ref. [8] for wire diameters below 100 nm and alloy
composition ranging from 6% Ge [Fig. 1(a)] to 86% Ge
[Fig. 1(h)]. The Monte Carlo simulation results are shown
by dashed lines and symbols, while the solid lines represent
the thermal conductivity from the solution of the Boltzmann
transport equation (BTE) in the relaxation time approximation
(RTA) including boundary scattering. In Fig. 1, κe is the
electronic and κph is the phononic contribution to thermal
conductivity. The RTA model has been validated in our
previous work [17,34] and the RTA and MC models are in
close agreement. Also, our results reproduce the experimental
values closely across a wide range of temperatures, diameters,
and compositions, with some discrepancy at the highest Ge
composition, which may be attributed to the presence of
contact resistance, not included in our model.

B. Diameter and roughness dependence

Figure 2(a) depicts the thermal conductivity vs diameter
for NWs of different lengths and surface roughness 	. The
results were computed for NWs with 20% Ge concentration
at room temperature. The conductivity shows an almost linear
diameter dependence at intermediate diameter values for pure
Si [14], where boundary scattering is dominant. The deviation
from this linear dependence increases with alloying. The
alloy scattering rate follows a Rayleigh-like trend [τ−1

M ∝
ω4 because g(ω) ∝ ω2 in the long-wavelength regime] and
suppresses most of the higher-frequency phonons, whereas
the low-frequency (long-wavelength) phonons remain nearly
unaffected.

The high-frequency phonons tend to undergo a more diffuse
scattering at the boundaries, causing a stronger diameter
dependence seen in Si NWs, whereas the low-frequency
phonons undergo a more specular boundary scattering and
have smaller diameter dependencies, indicating that it is the
midrange phonons that cause the weak diameter dependence
in SiGe NWs. Surface-roughness dependence of thermal
conductivity is shown in Fig. 2(b). There is a steady decrease in
conductivity with an increase in surface roughness up to 1 nm
due to more diffuse boundary scattering, but further increase
in roughness does not further reduce the conductivity, which
saturates to a value much lower than in pure Si NWs. However,
the reduction in conductivity due to increased diffuse boundary
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FIG. 2. (a) Thermal conductivity is plotted as a function of the
wire diameter. The diameter dependence is weak due to strong
intrinsic scattering. Solid lines represent the BTE results and dashed
lines represent Monte Carlo results. (b) Thermal conductivity is
plotted as a function of surface roughness. For 	 values of 1 Å
or less, the conductivity is unaffected and it steadily decreases as
the roughness is increased, without any further significant decrease
beyond 1 nm.

scattering in SiGe NWs is not as effective as in pure Si NWs,
primarily in thin wires where boundary scattering is dominant,
due to the suppression of the high-frequency phonons by alloy
scattering. For a pure Si NW of 10 nm diameter and 100 nm
length, we calculated a 75% reduction in conductivity when
surface roughness was increased from 0 to 1 nm, whereas
the reduction is about 52% for a SiGe NW of the same
dimension.

C. Length dependence

Next, we study the dependence of thermal conductivity on
the length and composition of the NW. Figure 3(a) shows the
dependence of thermal conductivity from pMC simulations
on NW length. The dashed lines and symbols are the Monte
Carlo results, while solid lines are the deterministic solution
of the pBTE in the RTA, shown for comparison, and they
are in close agreement. We observe a gradual change in
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FIG. 3. (a) Thermal conductivity as a function of length. The
solid lines represent the relaxation time approximation (RTA) and
dashed lines represent the MC results. The conductivity exhibits a
L1/3 behavior and gradually transitions into the diffusive regime at
lengths exceeding 10 μm. (b) Exponent of length dependence α as a
function of length. In SiGe NWs, 0.3 < α < 0.4 over a broad range
of lengths, indicating nondiffusive transport.

thermal conductivity with length, as seen in Fig. 3(a), with
the crossover to purely diffusive transport only occurring at
lengths exceeding 10 μm, far in excess of the average phonon
MFP and in agreement with measurements [9]. Alloying
suppresses most of the high-frequency phonons, while the low-
frequency phonons possess very long MFPs, allowing them
to travel several microns without being scattered internally.
However, even at very small NW lengths, we do not observe
the linear trend in the length dependence that would be
characteristic of ballistic transport; instead, we find in Fig. 3(a)
that the conductivity scales as L1/3.

We plot the running exponent of our results, defined
as α(L) = d ln κ(L)/d ln L [43], in Fig. 3(b) and observe
that all SiGe NWs follow the same trend regardless of
diameter, with α < 0.4 even when L < 10 nm. In contrast,
short Si NWs reach the fully ballistic regime (characterized
by α = 1). The α ≈ 0.33 behavior has been observed in
many momentum-conserving systems [38], including one-
dimensional chains [39,40], alloy thin films [41], and, over
a much narrower range of lengths, even thin Si NWs [42].

However, the upper limit of length at which we still observe
exponent α ≈ 1/3 depends on boundary scattering: in a rough
wire (	 = 1 nm), the exponent reduces to the diffusive
α = 0 at a shorter length than in a smooth wire (where 	 =
0.2 nm). Diffuse boundary scattering limits the longest MFP
and thus results in a more uniform MFP distribution. Hence
boundary scattering affects the range of length over which
we observe α = 1/3, but not the length-scaling exponent α.
Alloy scattering, on the other hand, results in an intrinsically
different mode of transport having a broader range of MFPs
with very few purely ballistic phonons.

D. Ballistic and diffusive contributions

In order to shed further light on the origin of the κ(L) ∝
L1/3 length dependence, we first compare it to the ballistic-
to-diffusive transition picture suggested by the linear trend in
the experimental data [9]: we take the total resistance in the
wire as a sum of the ballistic (G−1

bal ) and diffusive (L/κdiff)

FIG. 4. (a) Thermal conductance G as a function of length in Si
and alloy NWs of varying diameter, roughness, and composition. (b)
Cumulative thermal conductivity as a function of the phonon mean
free path for the three acoustic branches and their sum in bulk Si
(dashed lines) and Si0.5Ge0.5 alloy (solid lines), showing the broad
range of MFPs in the SiGe alloy. Alloys have a broad distribution of
MFPs contributing to thermal conduction, with phonons having MFPs
in excess of 1 μm contributing approximately half of the thermal
conductivity.
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resistances [44], which results in

κ(L) =
(

1

LGbal
+ 1

κdiff

)−1

, (2)

where κ(L) is the length-dependent conductivity, L is the
length of the NW, and κdiff is the conductivity in the diffusive
(L → ∞) limit. Since κ(L) and κdiff are known [Fig. 3(a)],
we can rearrange Eq. (2) to calculate the ballistic conductance
Gbal for different NW lengths. The ballistic conductance Gbal

of Si is equal to 109 Wm−1 K−1 [36]. As seen in Fig. 4(a),
when the wire length is below 10 nm (much smaller than
the MFP in bulk Si), the ballistic conductance of Si NWs
plateaus at 109 Wm−1 K−1, matching the theoretical value;
in contrast, the conductance in ultrashort SiGe NWs is only
≈ 2 × 108 Wm−1 K−1, about 20% of the ballistic conductance.
We also observe that no more than a small fraction of the
ballistic conductance is present in SiGe NWs at any length,
regardless of diameter and roughness. Hence, transport in alloy
NWs is never predominantly ballistic, indicating that the direct
ballistic-to-diffusive crossover picture is incomplete. The
fraction of ballistic conductance reduces as length increases,
but about 1% is still present at lengths exceeding 10 μm.

The aforementioned properties of alloy nanostructures can
be partly analyzed through the prism of the conductivity vs
MFP λ plot, shown in Fig. 4(b). We observe a much broader
range of MFPs contributing to transport in alloys than in pure
Si. There is a large relative contribution to thermal conductivity
made by phonons having large MFPs, primarily found in

the low-energy range of the acoustic phonon branches where
both mass disorder (alloy) and anharmonic scattering rates are
low, while the boundary scattering is more specular, owing
to the large wavelength (small q) of phonons in this range.
We conclude that in the Si-Ge alloy, most phonons have very
short MFPs and consequently they make a relatively small
contribution to thermal conductivity, while fewer phonons
have very long MFPs exceeding one micrometer, but they
make a substantial contribution to thermal transport. The
50% accumulation point where one-half of the total thermal
conductivity is reached corresponds to MFPs of around one
micrometer, implying that half of the heat is carried by phonons
with MFPs exceeding a micron; in contrast, such phonons only
contribute around 20% in pure Si.

E. Phonon flight length

Next, we plot the distance along the NW traveled by one
simulated phonon through a sequence of free flights interrupted
by scattering events. Each flight number in the plot corresponds
to a single free flight between successive scattering events for
both Si [Fig. 5(a)] and Si0.8Ge0.2 [Fig. 5(c)]. We focus on a Ge
composition of 0.2 as that is typically found to be optimal for
TE applications [45]. One phonon is chosen from the ensemble
at random as a representative and plotted, having found
all of the simulated phonons to exhibit qualitatively similar
behavior. The scattering is predominantly elastic, arising in
both cases from boundary roughness, while in alloy NWs
there is a strong additional component due to mass disorder. It
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FIG. 5. The distance traveled by one simulated phonon between successive scattering events (blue dotted line), and the cumulative distance
(red line) vs flight number is plotted for (a) a pure Si nanowire and (b) a Si0.8Ge0.2 nanowire. Also, the time between scattering events (blue
dotted line) and the cumulative time (red line) is plotted vs the flight number in (c) pure Si NW and (d) Si0.8Ge0.2 NW.
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is interspersed by less frequent inelastic (anharmonic phonon-
phonon) events which mix the phonon modes. We find Si NWs
to have a more continuous distribution of distances due to the
series of relatively uniform flights characteristic of diffusive
transport, leading to a white-noise-like appearance, seen in
Fig. 5(a), which is readily associated with Brownian motion
and predominantly diffusive transport.

In contrast, phonon flights in SiGe NWs are comprised of
sequences of many short flights interrupted by rare long leaps,
as evidenced by the micron-sized jumps in the distance traveled
by the phonon, shown in Fig. 5(c). This behavior in the alloy is a
consequence of the strong mass disorder scattering, which has
a Rayleigh-like dependence on phonon frequency (τ−1

M ∝ ω4)
and affects the upper portion of the phonon spectrum far more
than the low-frequency modes. Viewing the whole phonon
ensemble collectively, the result is a heavy-tailed distribution
of free-flight lengths, shown in Fig. 6(a). The difference is
especially prominent when we compare alloy NWs to pure Si
NWs, in which the tail of the phonon flight distribution decays

FIG. 6. (a) Histogram of the individual free-flight lengths in Si
(red line) and Si0.8Ge0.2 NWs (blue line). SiGe NWs show a larger
proportion of long leaps, which leads to a heavy-tailed distribution.
(b) Diffusion coefficient vs time. In SiGeNWs, we observe a broad
intermediate regime in which the exponent of the diffusion coefficient
is ≈ 0.33 over several orders of magnitude in time, whereas in SiNWs,
we observe α = 1 in the ballistic regime followed by a smooth
transition into the diffusive (α = 0) regime.

faster. Phonons making long jumps exceeding 1 μm are more
than twice as frequent in SiGe NWs as they are in Si NWs,
as seen in the distribution of flight lengths 	x as measured
in the direction of heat flow along the NW. The difference
between the alloy and nonalloy steadily increases for longer
leaps, in spite of alloy scattering causing phonons in SiGe to
have MFPs more than an order of magnitude shorter on average
than pure Si. The heavy-tailed behavior is characteristic of
Lévy walk dynamics [46,47], which has already been linked
to superdiffusive phonon transport in low-dimensional [48]
and alloy systems [10].

F. Diffusion coefficient

We further study the nondiffusive behavior of phonons in
alloy NWs by examining the time-dependent phonon transport
calculated from our pMC simulations. The time dependence of
the mean-square energy displacement (MSD) [49] is calculated
from σ 2(t) = 〈	x2(t)〉 and related to an exponent σ 2(t) ∝
tβ . Consequently, the diffusion coefficient σ 2(t)/2t ∝ tβ−1.
The exponent of length dependence α, shown previously
in Fig. 3(b), has also been related to the MSD through
α = β − 1 [50]. In normal diffusion, where Fourier’s law
remains valid, phonons undergo Brownian motion resulting
in β = 1 [as σ 2(t) ∝ t] [51], which also means the exponent
of length dependence α = 0 and the conductivity is constant,
independent of length. In contrast, when the system size is
smaller than the mean free path, phonon flights are uninter-
rupted by scattering and their distance from origin grows in
proportion with time; hence, ballistic MSD is quadratic in time
(β = 2), implying that α = 1 and the conductivity is linearly
proportional to length [52].

Our observed α = 1/3 scaling is attributed to an interme-
diate regime of superdiffusion: when 1 < β < 2 transport is
neither entirely ballistic nor diffusive. Instead, it is collectively
characterized by a mix of long quasiballistic leaps, interrupted
by bursts of short, diffusive steps. Consequently, the diffusion
coefficient σ 2(t)/2t ∝ tα should also imply a length exponent
0 < α < 1 in the superdiffusive regime. We plot the diffusion
coefficient σ 2(t)/2t as a function of simulation time in
Fig. 6(b), and observe that α = 1/3 (and β = 4/3) over a
wide range of time scales in SiGeNWs. In bulk SiGe alloys
and SiGe thin films in the cross-plane direction, Vermeersch
et al. [10,41] have shown that β = 1.34, in close agreement
with our findings, confirming that our length scaling is a
consequence of superdiffusion.

The range of lengths over which we observe superdiffusion
(α ≈ 1/3 over 10 nm < L < 10 μm) far exceeds the average
phonon MFP in the system; instead, it maps directly to the wide
range of time scales over which superdiffusion is observed
here in SiGe NWs [2 ps < t < 2 ns in Fig. 6(b)] using
the simple cutoff ts ≈ L/vs for superdiffusion in finite sys-
tems [39,50], with vs being the speed of sound (vs ≈ 5000
m/s in SiGe, depending on alloy composition). We observe
that diameter and roughness do not alter the exponent of
the diffusion coefficient; instead, they affect only the onset
of the transition from superdiffusion (0 < α < 1) into a
purely diffusive regime (α = 0), thus reducing the resulting
conductivity in the steady state analogously to its length
dependence in Fig. 3(a).
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IV. CONCLUSION

We employ the phonon Monte Carlo method to study
thermal transport in SiGe NWs. We find that thermal con-
ductivity scales as L1/3 over a broad range of lengths and
conclude that in SiGe NWs, the direct ballistic-to-diffusive
crossover picture is incomplete and should be augmented
by superdiffusion in the broad intermediate range of NW
length from 10 nm to 10 μm. Our study shows that alloy
nanostructures exhibit nondiffusive heat dynamics and can
be used as a fundamental platform to study the breakdown
of Fourier’s law. The superdiffusive transport is brought on
by Lévy-like heavy-tailed distribution of phonon flights, and
causes a length-dependent thermal conductivity with κ ∝ L1/3

over a broad range of lengths extending from 10 nm all the way
to 10 μm, far exceeding phonon MFP or NW diameter. Thus,
lattice conductivity is length tunable even in NWs several
microns long, with potential applications to reducing thermal
conductivity and thus increasing thermoelectric figure of merit
in alloy NWs with sub-ten-micron lengths.

APPENDIX : PHONON SCATTERING RATES

We find the combined lifetime with both intrinsic scatter-
ing (from anharmonic phonon-phonon and mass-difference
interactions inside the wire) and partially diffuse boundary
scattering at the rough boundary in circular wires. The
phonon lifetime τint(�q) combines all the intrinsic scattering
mechanisms, including anharmonic three-phonon interactions,
impurity, isotope, and alloy mass-difference scattering. The
resistive umklapp phonon-phonon scattering rate is calculated
in the general approximation for dielectric crystals [34,53],

τ−1
λ,U (�q) = �γ 2

λ

M�λῡ
2
λ

ω2
λ(�q)T e−�λ/3T , (A1)

where the speed of sound ῡλ of each branch λ is determined
from the average slope of its dispersion curve near the �

point [54,55], and M is the average atomic mass. The exponen-
tial term e−�λ/3T in the temperature dependence controls the
onset of resistive umklapp scattering for each phonon branch
through the branch-specific Debye temperatures �λ, which
were obtained from [56]

�2
λ = 5�

2

3k2
B

∫
ω2gλ(ω)dω∫
gλ(ω)dω

, (A2)

where the vibrational density of states (vDOS) function
gλ(ω) = ∑

�q δ[ω − ωλ(�q)] was calculated for each phonon
branch λ from the full dispersion.

Scattering from mass differences due to the presence of
mass variation in the alloy can be represented by an energy-
dependent rate,

τ−1
M (ω) = π

6
�0�ω2g(ω), (A3)

with the total vDOS function given by a sum over all branches
g(ω) = ∑

λ gλ(ω) [57]. The mass-difference constant � is
given by the sum over all the participating elements weighted
by their mass Mi relative to the average mass M [58],

� = ∑
i fi(1 − Mi/M)

2
.

Boundary roughness scattering is characterized through
a momentum-dependent specularity parameter [20] p(�q) =
exp(−〈φ2〉), where φ(�q,�r) = 2�q · ŝz(�r) = 2qz(�r) cos �B is
the phase difference between the incoming wave and the
outgoing specularly reflected wave at point �r where the
surface normal unit vector is ŝ. We assume that the surface
height z(�r) is a random function of position on the rough
boundary �r with a Gaussian distribution, so that 〈z〉 = 0
and 〈z2〉 = 	2, where 	 is the rms height of the surface
roughness [37].
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