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Transport properties in dilute UN(X) solid solutions (X = Xe, Kr)
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Uranium nitride (UN) is a candidate fuel for current GEN III fission reactors, for which it is investigated as an
accident-tolerant fuel, as well as for future GEN IV reactors. In this study, we investigate the kinetic properties
of gas fission products (Xe and Kr) in UN. Binding and migration energies are obtained using density functional
theory, with an added Hubbard correlation to model f electrons, and the occupation matrix control scheme to
avoid metastable states. These energies are then used as input for the self-consistent mean field method which
enables to determine transport coefficients for vacancy-mediated diffusion of Xe and Kr on the U sublattice. The
magnetic ordering of the UN structure is explicitly taken into account, for both energetic and transport properties.
Solute diffusivities are compared with experimental measurements and the effect of various parameters on the
theoretical model is carefully investigated. We find that kinetic correlations are very strong in this system, and
that despite atomic migration anisotropy, macroscopic solute diffusivities show limited anisotropy. Our model
indicates that the discrepancy between experimental measurements probably results from different irradiation
conditions, and hence different defect concentrations.
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I. INTRODUCTION

Uranium nitride (UN) has been proposed as an accident-
tolerant fuel for current GEN II and III nuclear reactors, as
well as for future GEN IV and space reactors. This fuel
presents various interesting properties such as high fissile
density, excellent thermal conductivity, and good tolerance
for minor actinide inclusion. However, experimental data on
nitride fuels is scarce since it suffers from several drawbacks:
it should optimally be enriched in 15N, it was believed not to
be compatible with water until a recent study in steam [1],
and the focus has historically been on oxide fuels. Modeling
has an important role to play in the characterization, choice
of experiments, and licensing process, especially because
experimental fuel testing is expensive and burdensome (need
for hot cells). Nevertheless, various past experiments have
been dedicated to the measure of Xe and Kr diffusion in
UN, and the data have been reviewed by Deforest [2]. The
results show discrepancies of several orders of magnitude at
usual operating temperatures (under 1000 K), which might be
attributed to different sample purity, measurement methods,
irradiation conditions, and samples being either monocrystals
or polycrystals. Among these values, modeling can bring some
insight in migration mechanisms and provides estimate values
for diffusion coefficients in various conditions.

Energetic properties (formation, binding, and migration
energies) in 5f materials are challenging to compute properly
due to the strong correlation between electrons that is not
taken into account correctly in conventional density functional
theory (DFT). Methods such as the dynamical mean field
theory are supposed to provide a much better description of
strongly correlated materials, but are still too computationally
demanding to model hundreds of atoms in a systematic
way, and so far, only bulk studies have been done [3,4].
A more suitable correction to DFT has been proposed, by
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adding an ad hoc correlation term, in a method known as
DFT + U [5]. A drawback of this method is that it has
been shown to introduce local minima known as metastable
states [6], that have to be dealt with. These states are
purely numerical and carry little physical meaning. Hence,
converging to one of them should be avoided. This can be
done using several schemes: ramping [6,7], quasiannealing [8],
controlled symmetry reduction [9], and occupation matrix
control (OMC) [10], for instance. Most of them have been
used to model UN systems [11–13]. In an extensive study of
the ground state and metastable states in bulk UN, the OMC
method has been shown to be adequate [12]. In this study,
the ground state at low temperature has been found to be
antiferromagnetic for an introduced correlation greater than
about 1.8 eV and the structure has been computed to be an
orthorhombic rocksalt. The OMC and geometry reported in
Ref. [12] have been used in this work.

Point defects in UN have been investigated with various
methods, using either generalized gradient approximation
(GGA) or GGA + U or interatomic potentials to compute the
formation energies of various vacancy, antisite, Frenkel and
Schottky defect configurations [14–16]. They were found to
be different depending on the studies and methods used, but in
the most comprehensive of them [15], the formation energy of
a U vacancy, an N vacancy, and a Schottky defect were found
to be, respectively, 6.89, 7.81, and 13.81 eV, using GGA + U

(Ueff = 1.85 eV) and the isolated atoms as reference states.
The incorporation energy of Xe in various defects has been
investigated in previous studies [12,17], showing that it is
most stable in a Schottky defect if these defects already exist.
Taking into account the formation energies reported above and
the incorporation energies of these studies, the lowest solution
energy was found to be for Xe in a uranium vacancy. In a
recent study, vacancy-mediated diffusion of Xe in UN was
studied, and a few migration paths were considered [18] using
the quasiannealing approach to deal with metastable states
introduced in the DFT + U scheme.
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The diffusion of xenon in other types of nuclear fuels has
also been studied. The work on silicide [19–22] or carbide [23]
is only starting, but the work on oxide fuels has already
received many contributions. It is outside the scope here to
mention all of them, but Xe has been studied in UO2 [24], other
actinide oxide fuels [25], and its diffusion following complex
paths has also been investigated [26], as well as the effect of
nonstoichiometry and irradiation conditions on its diffusion
properties [27]. However, krypton has never been considered
in such works either for UN, except when swelling was the
sole phenomenon being investigated [17]. Even in some fuel
performance codes, Xe and Kr are assumed to have the same
coefficient [28], an assumption that merits verification.

Historically, the modeling of diffusion in actinide com-
pounds considered simple Arrhenius laws or Le Claire’s
model [20,23]. However, the influence of the magnetic order-
ing has never been studied and the kinetic correlation effects
between the vacancy and the solute are only approximated in
Le Claire’s model. The large differences in migration barriers
in these systems prevent us from measuring diffusivities
out of atomic kinetic Monte Carlo simulations because of
kinetic trapping issues. The self-consistent mean field method
(SCMF) is a promising path to provide kinetic properties for
complicated systems. First developed for vacancy-mediated
diffusion in bcc lattices [29], it has since then been extended to
various structures [30–33] and migration mechanisms [34–36].
Basically, the SCMF method uses linear response theory to
compute the flux resulting from a uniform driving force, which
allows for identification of the Onsager matrix. It is based on a
microscopic master equation, and thus provides a general way
to link atomic-scale information (atomic jump frequencies)
to macroscopic transport coefficients. In the framework of
the thermodynamics of irreversible processes, transport coef-
ficients relate chemical species fluxes to chemical potential
gradients, which are the driving forces for diffusion. The
Onsager matrix containing the transport coefficients is an n2

matrix, where n is the number of species in the system. The
diagonal coefficients can be related to diffusion coefficients in
the dilute limit, while the off-diagonal coefficients dictate the
flux coupling phenomenon which is responsible for effects
such as radiation-induced segregation [37] and radiation-
induced precipitation [38,39].

In this paper, we combine two state-of-the-art methods
(DFT + U + OMC and SCMF) to get an accurate description
of the vacancy-mediated migration of Kr and Xe in UN. We
first introduce the aforementioned methods in Sec. II. Then, we
present the energetic calculations (incorporation, binding, and
migration) in Sec. III A, followed by a detailed study of solute
transport coefficients and migration mechanisms in Sec. III B.
A comparison with available experimental solute diffusivities
is provided in Sec. III C. Finally, Sec. IV shows the impact of
various model parameters on the computed kinetic properties.

II. METHODS

A. Density functional theory calculations

All DFT calculations in this paper have been performed
using the Vienna ab initio simulation package (VASP). To
handle correctly the strong correlation of the 5f electrons, the
Liechtenstein implementation of the Hubbard correlation [5]

is used, and the introduced metastable states, demonstrated to
exist in a previous study [12], are handled with the occupation
matrix control (OMC) scheme [10]. U and J were taken to be,
respectively, 2.0 and 0.1 eV [11,12,40]. Wave functions were
described using the projector augmented wave method [41].
The exchange-correlation functional chosen was the general
gradient approximation with the PBE parametrization [42].
The potentials were taken from VASP database, treating 14 and
5 electrons as valence for, respectively, uranium and nitrogen.
Xenon and krypton have 8 valence electrons. The cutoff energy
has been set to 600 eV, although this high value was not
needed for the elements studied here. This was done to have
calculations consistent with systems containing oxygen (which
requires a large cutoff energy) that are the focus of ongoing
work. To account for elastic interactions between periodic
images of the supercell, we use the correction introduced
by Varvenne et al. [43] in the calculation of incorporation
energies.

The supercell contains a rocksalt structure, which consists
of two interpenetrating face centered cubic (fcc) lattices, one
occupied by U atoms, and the other by N atoms. It has been
shown that this structure presents antiferromagnetic (AFM)
ordering and the exact structure used in our study was reported
in Ref. [12]. This magnetic ordering is stable up to 53 K [44].
The structure is depicted in Fig. 1.

To calculate the kinetic coefficients of solutes, one first
needs to know where these solutes are most likely to be located
in the crystal. Therefore, the first step is to look at the solution
energy of these solutes in different crystal positions. Here,
four positions are investigated, for both Xe and Kr solutes: as
substitutional atoms in the uranium and nitrogen sites, in the
center of a Schottky defect and as an interstitial atom. These
positions are shown in Fig. 2.

The solution energy of a solute is calculated as the sum
of the formation energy of a defect and of the incorporation
energy of the impurity in this defect:

Esol = Ef + Einc. (1)

FIG. 1. Uranium nitride in the antiferromagnetic rocksalt struc-
ture. White: uranium atoms, black: nitrogen atoms. Spin orientations
are represented by arrows.
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FIG. 2. Four possible positions for Xe and Kr solutes in UN:
substitutional position on a uranium site, substitutional position on a
nitrogen site, interstitial position, and center of Schottky defect.

Formation energies are not calculated in this study, but taken
from Ref. [15].

The incorporation energies of xenon and krypton, presented
in a previous paper [12], have been recalculated with a
higher k-point density to make sure the system was well
converged. For these simulations, the reference supercell for
the incorporation energy calculations contained 32 atoms of
each type. The k-point discretization has been increased from
2 × 2 × 2 to 5 × 5 × 5. The energies are converged to less
than 1 meV/atom with respect to the k-point density.

For the binding and migration energy simulations, the
reference cell was made larger, containing 108 atoms of
each type, in order to avoid boundary effects. The energy
convergence was set at 10 meV per atom. The k-point
discretization was chosen to be 2 × 2 × 2, to keep a k-point
density similar to the one used to calculate the incorporation
energies. The binding energy was calculated following Eq. (2),
yielding a positive value when there was attraction and a
negative value otherwise:

Eb = Edefect + Esolute − Edefect+solute − Eref, (2)

where Edefect+solute is the total energy of the system with
the defect and the solute which binding energy we are
investigating, Eref is the energy of the supercell without defect,
and Edefect and Esolute are the energy of the supercells with
either the defect or the solute.

Migration energies are computed using the nudged elastic
band [45] method as implemented in VASP with a spring

constant of 5 eV/Å
2
.

B. Self-consistent mean field method

The self-consistent mean field (SCMF) method uses linear
response theory to compute a flux of species in response
to a driving force, here a chemical potential gradient. It is
derived from a microscopic master equation and thus provides
a general way to obtain transport coefficients from a set of
atomic jump rates. In the framework of the thermodynamics
of irreversible processes, transport coefficients relate fluxes to

driving forces(
JV

JS

)
= −

(
LV V LV S

LSV LSS

)(∇μV

kBT

∇μS

kBT

)
, (3)

where JV and JS denote the flux of vacancies and solutes,
respectively, LV V ,LV S = LSV and LSS are the transport
coefficients, ∇μV and ∇μS are the chemical potential gradient
for each species, kB is the Boltzmann constant, and T is the
temperature. Note that all of these quantities are related to a
particular direction.

In this study we apply the SCMF to compute transport
coefficients for vacancy-mediated solute diffusion in antifer-
romagnetic rocksalt UN. Solutes Kr and Xe are more stable
on the U sublattice (fcc), it is thus assumed that they diffuse
on this sublattice only. Because of the AFM ordering, the
diffusion network has the same symmetry as a tetragonally
strained fcc cell. The SCMF equations have already been used
for such system [31] and are identical to the one derived for
isotropic systems. The difference resides in the application of
these equations, and the proper identification of jump rates
tangential to spin planes (T direction) and jump rates normal
to spin planes (N direction). Below we provide the SCMF
equations for the flux of vacancies in dilute alloys, and their
derivation can be found in previous references (e.g., [36]).
The flux of solute S is obtained by inverting V (vacancy)
and S and taking into account the fact that the exchange rate
between solute S and host atom h is always zero. The projected
microscopic flux between sites i and s along the chemical
potential gradient direction is

− JV
i→s =

〈
nV

i nα
s ωV α

is

�is · �∇(μV − μα)

kBT

〉(0)

+
〈
nV

i nα
s ωV α

is

∑
k

nS
k

ξV S
ik − ξV S

sk

kBT

〉(0)

, (4)

where α ∈ {S,h},nγ

i is a site occupation number, and is equal
to 1 if site i is occupied by species γ , and 0 if not. ωV α

is is the
jump rate corresponding to the exchange between V at site i

and species α at site s. ξV S
ik denotes the effective interaction

between V at site i and S at site k. These interactions account
for the deviation from the equilibrium system, and provide a
quantitative estimation of kinetic correlation effects. Steady-
state values for these interactions are obtained by solving a
linear system containing one of the following equations for
each effective interaction ξV S

ij :

−
〈
nV

i nS
j n

α
s ωV α

is

�is · �∇(μV − μα)

kBT

〉(0)

=
〈
nV

i nS
j n

α
s ωV α

is

∑
k

nS
k

ξV S
ik − ξV S

sk

kBT

〉(0)

. (5)

In both equations, 〈. . .〉(0) denotes the ensemble average over
all possible configurations of the system using the equilibrium
probability of each configuration as the weight function.

Equations (4) and (5) use an effective pair interaction
Hamiltonian. In this framework, the accuracy of the calculation
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is controlled by the range Rkin of effective pair interactions,
which is greater than the range of thermodynamic interactions.
Unless specified otherwise, all calculations in this paper
use Rkin = 2.5a, where a denotes the lattice parameter. The
convergence of the results with respect to this parameter is
discussed in Sec. IV.

We follow previous developments for dilute systems and
write transport coefficients as a sum of cluster transport co-
efficients weighted by cluster volumetric concentrations [36].
In a dilute system, it is assumed that when a vacancy meets
a solute atom to form a pair they will have time to reach
a local thermodynamic equilibrium between their various
microscopic configurations before another vacancy or solute
meets the pair. Hence, the kinetic properties of a V X pair
cluster are identical to those which would be obtained in an
infinitely dilute system and the Onsager matrix can be broken
into cluster contributions that are independent of one another.
In the dilute system under study, there are only three possible
clusters (higher-order clusters being neglected because the
probability that they form is small): the isolated vacancy,
the vacancy-solute pair, and the isolated solute. The latter
being immobile, it does not participate to transport coefficients.
Furthermore, each cluster transport coefficient is split into two
contributions: the mobility M , a scalar which is nothing but the
diffusivity of a cluster treated as an isolated indivisible object,
and the association/dissociation contribution AD, which con-
tains the contribution of cluster association and dissociation
to the global transport coefficients. Obviously, the isolated va-
cancy cannot dissociate so we are left with three contributions:
vacancy mobility M(V ), vacancy-solute pair mobility M(V S),
and vacancy-solute pair association/dissociation contribution
AD(V S):(

LV V LV S

LSV LSS

)
= [V ]M(V )

(
1 0
0 0

)
+ [V S]M(V S)

(
1 1
1 1

)

+ [V S]

(
AD(V S)V V AD(V S)V S

AD(V S)SV AD(V S)SS

)
.

(6)

[V ] and [V S] denote the volumetric concentrations of isolated
vacancies and vacancy-solute pairs, respectively. The main
advantage of writing things this way is that cluster transport
coefficients are intrinsic equilibrium properties of each cluster,
and it is not assumed beforehand that cluster populations obey
local equilibrium. Clusters with highly attractive binding ener-
gies do not dissociate often, which can lead to AD(V S)αβ �
M(V S)(α,β ∈ {V,S}). It is the case in our system (V Xe and
V Kr migration on the U sublattice of UN), so most of our
discussion will be focused on mobilities. Because there are
two nonequivalent directions in our system (T and N ), all of
the above cluster contributions will be calculated in each of
these directions. Note that in the dilute limit

lim
[S]→0

LSS = ([S] + [V S])D∗
S, (7)

where [S] is the volumetric concentration of isolated solutes,
and D∗

S is the solute tracer diffusion coefficient, simply
called solute diffusivity. Assuming AD(V S)αβ � M(V S),

then LSS 
 [V S]M(V S) such that

M(V S) 

(

1 + [S]

[V S]

)
D∗

S. (8)

It must be kept in mind that M(V S) is an intrinsic property of
V S clusters, while D∗

S is an averaged solute property which
depends on the relative proportions between isolated solutes
and V S pairs.

III. RESULTS

A. Energetics of the system

To access diffusion properties, a careful parametrization of
the energetics of the system has to be carried out. We evaluate
the incorporation energy of solutes in different defects and
compute the vacancy-solute binding energy, as well as vacancy
migration energies, either when it exchanges position with the
impurity or with a uranium atom in the vicinity of the impurity.

1. Solution energies

The solution energy of Xe and Kr in UN has been computed
in four different crystallographic positions, as shown in Fig. 2.
The gas atoms have been set in substitutional positions, either
located on a uranium or a nitrogen site. They have also been put
in a tetrahedral interstitial position and in a Schottky defect.
Due to the limited size of the supercell, a correction for elastic
interactions between periodic images has been applied [43].
One can notice that the results are only slightly different (less
than 2%) compared with those of our previous publication [12]
which is due to the fact that we increased the k-point density.

The results are reported in Table I and although both Xe
and Kr are found more stable in a Schottky defect if all types
of defects are already present, the formation energy of such
defect has been calculated to be very high [15], and for the
present diffusion study, we focus on the substitutional uranium
since the solution energy is the lowest for both solutes. One
can also notice that the interstitial position, that seemed very
unlikely from the incorporation energy, becomes more likely
than the substitutional N and the Schottky defect positions
when formation energies are taken into account.

2. Binding energies

To calculate the interaction range of the considered gas
atoms with a vacancy, the binding energy has been computed.

TABLE I. Incorporation and solution energies (eV) of fission
products in UN, without and with elastic correction [43]. Most stable
configurations are in bold font.

Position Subst. U Subst. N Schottky Interstit.

Einc(Kr) 2.87 6.26 2.17 11.54
Corrected value 2.75 5.91 2.08 10.59

Einc(Xe) 3.76 8.60 2.78 14.62
Corrected value 3.59 7.89 2.65 13.09

Ef defect [15] 6.89 7.81 13.81 0
Esol(Kr) 9.64 13.72 15.89 10.59
Esol(Xe) 10.48 15.70 16.46 13.09

174302-4



TRANSPORT PROPERTIES IN DILUTE UN(X) SOLID . . . PHYSICAL REVIEW B 94, 174302 (2016)

Here, several things have to be taken into account. For a
given distance, the symmetry is broken by the spin planes. For
instance, two atoms in third-nearest-neighbor (3NN) position
can have the same or an opposed spin. Even when the spins
are oriented in the same direction, there exist two 3NN
configurations that are not symmetrically equivalent. Another
example is the case of the second and fourth nearest neighbor
(4NN), which are always between sites with spins oriented in
the same directions. Thus, these configurations can be either
normal to the spin plane (N configuration) or tangential to the
spin plane (T configuration). To distinguish between these, we
will use subscripts T or N .

All the configurations up to the eighth nearest neighbor
(8NN) are represented in Fig. 3, and their binding energies are
reported in Table II. One can see that the AFM ordered fcc
lattice has the same symmetry as a tetragonal fcc cell. Unlike
previous studies [18], we take into account the symmetry
breaking due to the magnetic ordering, which produces
additional nonequivalent configurations and transitions among
them.

Due to the supercell size and boundary conditions, the 5NN
and the 7NN positions are in a plane median between two
solute atoms. The 8NN is the same as the 2NN. Therefore,
the binding energy results for 5NN and 7NN are to be taken
with caution because the imposed symmetry does not allow
for proper relaxation of the configuration. For this reason, the
normal and tangential positions have not been investigated for
neighbors beyond the 4NN configuration.

Binding energies are very low beyond the 2NN position
(less than 0.11 eV in absolute value), with the exception of the

FIG. 3. Nearest-neighbor (NN) positions with respect to the
solute (blue atom in the bottom left corner) in AFM-UN. “O”
stands for opposite spins, “S” stands for same spin. When these
subscripts are not sufficient to distinguish symmetrically inequivalent
configurations, we use superscripts N (stands for normal) and T

(stands for tangential) (see text).

TABLE II. Binding energy (eV) of V with either Xe or Kr in
UN. A positive value indicates an attraction, and a negative one a
repulsion. The configurations are pictured in Fig. 3.

Configuration Name Eb (V Xe) Eb (V Kr)

1 NN same 1S 0.74 0.90
1 NN opposed 1O 0.95 1.04
2 NN same tangential 2T

S −0.39 −0.19

2 NN same normal 2N
S −0.46 −0.20

3 NN same 3S −0.03 0.04
3 NN opposed 3O 0.03 0.11

4 NN same tangential 4T
S −0.04 0.01

4 NN same normal 4N
S 0.02 0.06

5 NN same 5S 0.33 0.43

5 NN opposed tangential 5T
O 0.23 0.23

5 NN opposed normal 5N
O −0.03 0.00

6 NN same 6S −0.06 0.03
7 NN same 7S −0.11 0.09
7 NN opposed 7O 0.59 0.08

5NN and 7NN interactions that we discussed. There is also a
clear impact of the spin, that hints towards an anisotropy of the
diffusion process. The interaction, be it attraction or repulsion,
is stronger when the two atoms replaced by a vacancy and a
solute are not in the same spin plane.

For both Xe and Kr, the very strong attraction with the
vacancy when located in a 1NN configuration can be explained
by the fact that the gas atom relaxes strongly towards the
vacancy. Because of this movement of the solute towards
the vacancy, between 20% and 30% (depending on the spin
and the species) of the way to the saddle point is covered,
the stresses created by the incorporation of the gas atom in the
bulk system are greatly relaxed. For the 2NN configuration, the
gas atom relaxes away from the vacancy, whereas the uranium
atoms that are 2NN of the vacancy relax towards it. In particu-
lar, the uranium atoms in 1NN position with respect to the va-
cancy relax towards it by 3%–5% of the distance to the saddle
point, which breaks the symmetry around the gas atom, without
giving it much more space. The effect on nitrogen atoms is
also peculiar since the one between the vacancy and the solute
strongly relaxes towards the vacancy (about 8%), whereas the
other five N atoms around the vacancy move away, as in
the bulk system with only one vacancy on a uranium site.
The presence of the nitrogen atom in-between the vacancy
and a 2NN solute atom probably explains the negative binding
energies (repulsion) of the 2NN configurations.

3. Migration energies

In this study, we consider only vacancy-assisted migration.
As discussed earlier, our goal is to check the impact of both
the distance threshold chosen for the interaction between the
vacancy and the gas atom, and the effect of magnetic ordering
which might lead to anisotropic diffusion. To do that, the
migration energies of all the possible jumps involving the
solute and the 1NN and 2NN uranium atoms are computed.
The resulting jump network is represented in Fig. 4.

Migration energy values shown in Table III are for the
migration from the first to the second position, tracking the
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FIG. 4. Considered transitions. The lower script represents the
distances of the initial and final positions of the vacancy when
compared to the solute. The upper script represents the spin
orientation of the initial and final sites occupied by a vacancy, with
respect to the solute.

displacement of the vacancy. The values in parentheses have to
be added to get the migration energy from the second position
to the first one. Also reported in Table III are the saddle-
point energies. The highest saddle-point energy in a migration
path defines the rate-limiting step of this path. This point is
discussed further in the next section. With our binding energy
convention,

Esp = Em − Eb (9)

Vacancy-solute exchange energies are much lower than the
other ones, both for Xe and Kr. As discussed in the previous
section, the equilibrium position of gas solutes is strongly
relaxed towards the vacancy and 20% to 30% of the path to
the saddle-point position is already done, which is likely to be
the reason for such a low migration energy. As a consequence,
we expect this jump to occur very frequently, but since it
alone cannot produce long-range diffusion, it will most likely
be a highly correlated jump, and diffusion will be limited by
surrounding jumps. The migration energies of all these jumps
are much higher, and take values in a wide range of energies
(more than 1.5-eV difference). In particular, looking at the
possibilities for the vacancy to jump from a 1NN position to
another position, which is required for long-range diffusion,
the migration energies can be as low as 2.78 eV and as high
as 3.87 eV. With regards to the previous discussion on the
relaxation of the xenon and krypton atom towards the vacancy
when they are in a 1NN configuration, it is worth noting that at
the saddle point of the ω11 transitions, the solute atom is back
to the perfect lattice site. Indeed, at this point, the distance

TABLE III. Migration energy of Xe and Kr in UN, in eV. “Ini”
corresponds to the initial position of the vacancy and “Fin” to the
final one. The transitions are represented in Fig. 4. The transitions ω2

involve a displacement of the solute, and for this reason, the initial
and final positions of the vacancy for the transition ωSO

2 are the same,
although there is a change of spin plane. Saddle-point energies Esp

are computed in Eq. (9).

Ini Fin Trans Em (Xe) Em (Kr) Esp (Xe) Esp (Kr)

1S 1S ωSS
2 0.95 (+0.00) 0.55 (+0.00) 0.21 −0.35

1O 1O ωSO
2 0.83 (+0.00) 0.47 (+0.00) −0.12 −0.57

1O 1O ωOO
11 3.28 (+0.00) 3.18 (+0.00) 2.33 2.14

1S 1O ωSO
11 2.78 (+0.21) 2.74 (+0.14) 2.04 1.84

1S 2S ωSS
12 3.71 (−1.13) 3.67 (−1.09) 2.97 2.77

1O 2T
S ωOS

12T 3.87 (−1.34) 3.69 (−1.23) 2.92 2.65

1O 2N
S ωOS

12N 3.80 (−1.41) 3.53 (−1.24) 2.85 2.49

1S 3O ωSO
13 3.09 (−0.72) 3.14 (−0.79) 2.35 2.24

1O 3S ωOS
13 3.22 (−0.98) 3.16 (−1.01) 2.27 2.12

1O 3O ωOO
13 3.52 (−0.92) 3.29 (−0.93) 2.57 2.25

1S 4S ωSS
14 3.36 (−0.78) 3.39 (−0.89) 2.62 2.49

1O 4N
S ωOS

14N 2.91 (−0.93) 2.94 (−0.99) 1.96 1.90

2N
S 3S ωSS

2N 3
2.21 (+0.44) 2.59 (+0.24) 2.67 2.79

2T
S 3O ωSO

2T 3
2.39 (+0.41) 2.56 (+0.29) 2.78 2.75

2T
S 5S ωSS

2T 5
3.08 (+0.72) 3.10 (+0.62) 3.47 3.29

2T
S 5T

O ωSO

2T 5T 2.79 (+0.62) 2.82 (+0.42) 3.18 3.01

∞ ∞ ωSS
0 3.31 (+0.00) 3.31 (+0.00) 3.31 3.31

∞ ∞ ωSO
0 3.63 (+0.00) 3.63 (+0.00) 3.63 3.63

between the solute and the migrating uranium atom is the
shortest, and if the gas atom had stayed where it was, the
migration energy would be much higher. The high value of
the ω11 migration energies (compared to the ω2 migration
energies) is a consequence of the necessary destabilization of
the solute atom. These observations motivate the need for a
complete kinetic model able to perform the statistical average
of all possible jumps and identify the main migration path.
This will be the topic of Sec. III B.

B. Transport coefficients

In this section, we combine the DFT values of migration
and binding energies (Sec. III A) with the SCMF method to
compute vacancy-solute (V S, S ∈ {Xe,Kr}) pair transport co-
efficients. These cluster transport coefficients provide insight
into the migration mechanism of V S pairs at the atomic scale.
Binding energies are considered up to the 6NN, and all jump
frequencies that were computed are used in the calculations
(Table III). Of course, this DFT-computed set of migration
barriers is not exhaustive, and all missing migration barriers
needed as input in the SCMF formalism (mainly dissociation
frequencies) are obtained via the commonly used kinetically
resolved activation (KRA) barrier approximation [46,47]

Em(1 → 2) = Eb(1) − Eb(2)

2
+ Q, (10)
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FIG. 5. Uncorrelated mobilities M0 (dashed lines) and correlated mobilities M (solid lines) for V Xe pairs (left plot) and V Kr pairs (right
plot). On both of these plots, blue lines correspond to diffusion in the N direction while black lines correspond to diffusion in any T direction.

where Em(1 → 2) is the migration energy between states 1 and
2, Eb(k) is the binding energy of state k, and Q is a constant
value chosen as the bulk vacancy migration energy. Note that
in our systems, there are two possible Q values depending
on whether the jump is along the T or N direction. All
jump attempt frequencies are set to the Debye frequency ν0 =
23.8 THz [48]. Because all attempt frequencies are iden-
tical in our calculation, cluster transport coefficients are
proportional to ν0. The effect of considering various attempt
frequencies for various jump rates will be addressed in
Sec. IV.

Figure 5 shows V S pair mobilities (S ∈ {Xe,Kr}) as a
function of the inverse temperature. These mobilities were
computed in both T and N directions. For both V S pairs, the
difference between T and N diffusion is small [M(V S)N 

2M(V S)T ] and does not vary much with temperature. The
fact that mobilities M(V S) show an Arrhenius behavior over
the whole temperature range demonstrates that there exists
one energetically favored migration path. Moreover, the small
diffusion anisotropy indicates that the energy landscape of
the main migration path is similar in all directions. Figure 5
also shows the uncorrelated mobilities M0(V S). When kinetic
correlations are ignored [all effective interactions set to zero
in Eq. (4)], the computation of transport coefficients reduces
to a thermodynamic average of all possible jump rates in
the system. For Kr and Xe diffusion in UN, the exchange
between vacancy and solutes has a much lower migration
energy than any other barrier in the system (cf. Table III).
Thus, the corresponding rate will dominate the thermodynamic
average of jump rates, and the resulting estimation of transport
coefficients will be high (dashed lines in Fig. 5). But, these
exchange jumps alone do not provide long-range diffusion.
For that to happen, the vacancy also needs to be able to
migrate around the solute in-between two exchange jumps.
The exchange jump rate being orders of magnitude higher
than these vacancy jumps around the solutes, there will be
many exchange jumps before a single jump of the vacancy
around the solute. These successive exchange jumps do
not produce any net diffusion of the V S pair, hence, the
important difference between correlated and uncorrelated
transport coefficients in Fig. 5 (about 12 orders of magnitude at

T = 1000 K). Generally speaking, these plots demonstrate the
importance of computing correlation effects to evaluate solute
diffusivities.

Usually, high binding energy between vacancies and solute
is associated with vacancy trapping and immobile vacancy-
solute pairs [49–52]. If one assumes the saddle-point energy
as nearly independent of local atomic configurations, then
high V S binding will produce a deep well from which it is
difficult to escape. The reality is that saddle-point energies
do depend on local atomic configurations. It is thus highly
speculative to predict beforehand what will be the effect of a
solute on the average vacancy diffusivity. In our system, the
1NN V -S binding is very high (between 0.74 and 1.04 eV,
cf. Table II), so one could expect solutes to trap vacancies.
But, it turns out that solutes also locally lower the vacancy
saddle-point energies: careful inspection of Table III reveals
that for any computed vacancy jump in the neighborhood of the
solute, saddle-point energies are lower than bulk saddle-point
energies. To summarize, solutes will indeed trap vacancies in
the sense that vacancies will hardly dissociate from solutes, but
the resulting V S pairs are far from immobile, and Fig. 6 shows
that V S are indeed more mobile than isolated vacancies. Thus,
for a given vacancy concentration, increasing the concentration
of Xe and Kr in UN leads to an increased vacancy diffusivity.
From a qualitative point of view, it is interesting to note that V S

pairs diffuse faster in the N direction than in the T direction,
whereas it is the opposite for isolated vacancies. Also, the
diffusion anisotropy is more important for isolated vacancies
than it is for V S pairs, especially at low temperature. All
curves in Fig. 6 have been fitted with an Arrhenius expres-
sion M(α) = D0 exp (−Em/kBT ), where D0 is a diffusion
prefactor, and Em the effective migration energy associated
with the migration of cluster α. Fitted parameters are given in
Table IV.

The fact that the Arrhenius fit is valid across the whole tem-
perature range indicates that for each cluster there is a single
migration mechanism responsible for the long-range diffusion
of this cluster, which is explained in Fig. 7. The effective
migration barrier corresponding to a given jump sequence can
be estimated from the “highest barrier approximation” [53]. In
this framework, the effective migration barrier of the diffusion

174302-7



CLAISSE, SCHULER, LOPES, AND OLSSON PHYSICAL REVIEW B 94, 174302 (2016)

0.6 0.8 1 1.2 1.4 1.6 1.8 2
1000/Temperature [/K]

10
-40

10
-36

10
-32

10
-28

10
-24

10
-20

10
-16

10
-12

M
ob

ili
ty

 c
oe

ffi
ci

en
ts

 [m
2 /s

]

M(VKr) T-direction
M(VKr) N-direction
M(VXe) T-direction
M(VXe) N-direction
M(V)     T-direction
M(V)     N-direction

FIG. 6. Cluster mobilities M as a function of the inverse tem-
perature for three clusters: isolated vacancy (black lines), V Xe pairs
(red lines), and V Kr pairs (blue lines). For each of these clusters,
two mobilities are shown, one associated with diffusion in the N

direction (dashed lines) and the other associated with diffusion in the
T direction (solid lines).

path is the energy difference between the highest saddle-point
configuration of the path and the most stable configuration.
In both cases under study, the most stable configuration of
the V S pair is the 1NN opposite configuration (cf. Table II),
with a binding energy of 0.95 and 1.04 eV for Xe and Kr,
respectively. Then, we are looking for a jump sequence that
translates the initial V S configuration, either in the T or N

direction. Among these jump sequences, the most probable
one will be the one with the lowest saddle-point energy, where
the saddle-point energy of a jump sequence is defined as
the highest saddle-point energy among each of the individual
jumps in the jump sequence. Applying this method, we identify
the most probable long-range diffusion mechanisms for V S

pairs (which are similar for each solute) in both nonequivalent
directions (Fig. 7). The idea is to perform out-of-plane jumps
only because they have smaller saddle-point energies than
in-plane jumps (it is the opposite for an isolated vacancy). The
solute-vacancy exchange has a low saddle-point energy so they
will not be the rate-limiting step of this migration mechanism,
which is the ωOS

11 jump for both cases (T and N diffusion),
which explains the low anisotropy of V S pair mobility. It is
interesting to point out that for diffusion in the T direction,
it is more efficient to perform out-of-plane jumps. From a
quantitative point of view, the effective migration energy of
these jumps can be estimated with the highest approximation
barrier and we find Eeff

m (V Xe) = 0.95 + 2.04 = 2.99 eV and

TABLE IV. Arrhenius fit of cluster mobilities plotted in Fig. 6.

M(α)T M(α)N

D0 (m2/s) Em (eV) D0 (m2/s) Em (eV)

α = V Xe 3.83e−7 2.99 6.08e−7 2.98
α = V Kr 3.50e−7 2.88 5.80e−7 2.87
α = V 3.18e−6 3.31 5.83e−6 3.63

FIG. 7. Long-range diffusion mechanism for V S pairs. Left-hand
(resp. right-hand) side shows diffusion in the N (resp. T ) direction.
The initial positions of S and V are depicted as a yellow sphere and
white square, respectively. Black spheres show the AFM-fcc lattice of
U atoms. Blue double-headed arrows denote a S-V exchange, while
red single-headed arrows denote a U-V exchange. The number beside
each arrow corresponds to the order in which these jumps proceed.
The final position of S is obtained by following double-headed arrows,
while the final position of V is at the sixth arrow head. Final and initial
positions are thus equivalent.

Eeff
m (V Kr) = 1.04 + 1.84 = 2.88 eV, in good agreement with

the fits in Table IV.
In short, the AFM ordering breaks the symmetry of the fcc

sublattice, which creates anisotropic binding and migration
energies. Because of this anisotropy, the V S pair does not
diffuse with the same migration mechanism in both T and N

directions. But, both migration paths go through the exact same
metastable and saddle-point states. Thus, there is essentially
no macroscopic diffusion anisotropy for V S pairs.

Finally, it is interesting to look at cluster flux coupling
coefficients for two reasons: First, these coefficients are very
sensitive to the details of atomic migration, much more than
the mobilities. Second, as long as these coefficients are close
to unity, it means that AD(V S) � M(V S), and that the
diffusion properties of the system depend mainly on cluster
mobilities. If it is not the case, then we also have to consider
the association/dissociation terms (two coefficients) which are
more complicated to discuss (see Ref. [36]). The cluster flux
coupling ratios are defined as

LV S(V S)

LSS(V S)
= M(V S) + ADV S(V S)

M(V S) + ADSS(V S)
, (11)

LSV (V S)

LV V (V S)
= M(V S) + ADSV (V S)

M(V S) + ADV V (V S)
. (12)

The first flux coupling coefficient is commonly denoted as
the drag ratio (it does not depend on the respective value of
V and V S concentrations) and allows to predict radiation-
induced segregation behavior (e.g., [33,54]). Both coefficients
are shown for each solute and each direction in Fig. 8. Indeed,
the flux coupling anisotropy (difference between solid and
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FIG. 8. V S pairs flux coupling coefficients as a function of
temperature. A color is related to one type of cluster flux coupling
coefficient [LV S(V S)/LSS(V S) or LSV (V S)/LV V (V S)] in one par-
ticular direction (N or T ), hence, the four different colors. Solid lines
correspond to S = Kr and dashed lines correspond to S = Xe.

dashed curve of a given color) is more pronounced than for
the mobility coefficients. All of these coefficients are exactly
equal to unity below T = 1000 K, so at these temperatures
diffusion of solutes is governed by the long-range migration
of practically indivisible V S pairs. At higher temperature, the
dissociation of these clusters starts to play a role, but still a
minor role because the cluster flux coupling coefficient stays
close to unity. Figure 8 also shows that flux coupling is always
higher in the N direction than in the T direction.

If one knows the concentrations of isolated vacancies
and vacancy-solute pairs, the second cluster flux coupling
coefficient [Eq. (12)] can be turned into macroscopic flux
coupling coefficients (which are commonly used in the
framework of the thermodynamics of irreversible processes
to study radiation-induced segregation) using Eq. (6):

LSV

LV V

= M(V S) + AD(V S)SV

M(V S) + AD(V S)V V + [V ]
[V S]M(V S)

. (13)

Note that the denominator of Eq. (13) is always positive,
such that the pair flux coupling ratio [Eq. (12)] dictates the
qualitative nature of the flux coupling phenomenon (either
positive or negative).

C. Comparison with experimental data

It is difficult to make a relevant comparison of the solute
diffusion coefficient with experimental data because solute
diffusivity is proportional to the vacancy concentration in
the system. Experimental measurements (gathered by Defor-
est [2]) are indirect measurements performed under irradiation
where the vacancy concentration is unknown. Nevertheless,
we are able to compute the equilibrium solute diffusivity
using the thermal vacancy concentration. The solute diffusion
coefficient D∗

S is expressed as

D∗
S = [V ]ZM(V S), (14)
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FIG. 9. Comparison between experimental measurements (as
gathered in Ref. [2] for Xe and Kr) and our estimate of solute diffu-
sivities for various vacancy concentrations. The diffusion anisotropy
being small for both V Xe and V Kr pairs, we only show the diffusivity
in the T direction. Melehan [57], Biddle 1 and 2 [58], Oi [59],
Ritzmann [60], Blank [61], and Weinstein 1 and 2 [55,56]

where [V ] is the vacancy concentration, Z is the pair partition
function (binding energy term), and M(V S) is the mobility
of the vacancy-solute pair. Under equilibrium conditions, the
vacancy concentration reads as

[V ]eq = exp

(
−Ef (V )

kBT

)
, (15)

where Ef (V ) is the vacancy formation energy (cf. Table I).
Using Eqs. (14) and (15), we can plot four diffusion

coefficients as each solute (Xe, Kr) have anisotropic diffusivity
(T or N directions). As diffusion anisotropy is almost
negligible in this system (see Fig. 6), we will only plot
the diffusivity in the T direction for the sake of clarity in
Fig. 9. The experimental data gathered in Ref. [2] are plotted
as blue dashed lines. Most experimental measurements are
orders of magnitude higher than our theoretical predictions at
equilibrium (black lines). This is most likely a consequence of
the fact that these measurements were performed on irradiated
samples, for which the vacancy concentration is unknown,
but probably orders of magnitude higher than the equilibrium
vacancy concentration. It is interesting to note that there is one
experimental result that gives very low values of diffusivity,
in qualitative agreement with our theoretical prediction [55].
This measurement might be closer to equilibrium than the
other ones, but it is most likely to be related to a modeling
issue: the bubble contribution was not taken into account
and a complete interconnection of the grain boundaries was
assumed in Ref. [55], but in a subsequent study considering
the action of the bubble, a diffusion coefficient closer to the
other experiments was found [56].

Using Eq. (14), we computed solute diffusivity for two
high-vacancy concentrations (independent of temperature):
10−3 and 10−8. It seems that the calculations [V ] = 10−3

give the upper limit for experimental measurements, while the
theoretical prediction for [V ] = 10−8 seems to be in-between
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various measurements. To go further, a more detailed descrip-
tion of these experiments would be needed, as well as a model
of point-defect evolution under irradiation to estimate the
vacancy concentration in the systems. The difference between
experimental measurements and theoretical predictions of
solute diffusivity can also stem from several other reasons:

(i) Only vacancy-mediated diffusion has been considered
here. It is possible that the diffusion of gas atoms in UN
happens following other more efficient diffusion mechanisms.

(ii) The experimental measurements are indirect (fission
gas release rate) which requires a number of modeling
assumption, which are not always the same [62,63], and the
stoichiometry of the sample is not guaranteed.

(iii) Most of these measurements are performed at high
temperature (where there is no AFM ordering of the UN struc-
ture) and then extrapolated to lower temperatures. Migration
properties might thus be different at these temperatures, which
questions the validity of the extrapolation.

IV. DISCUSSION: COMPARISON BETWEEN VARIOUS
KINETIC MODELS

In this section, we will discuss various approximations of
the kinetic model to test the robustness of the conclusions
drawn from the previous section.

First, we look at the impact of the range of effective
interactions Rkin on the drag ratio, chosen here because it
is the most sensitive quantity to compute. Figure 10 shows
the drag ratio obtained for the V Xe pair (similar results are
obtained for V Kr pairs) for 2a � Rkin � 4a, where a is the
lattice parameter of the fcc cell. The range of thermodynamic
interactions is

√
3a (6NN) so it would not be consistent to set

Rkin below this value. Figure 10 clearly shows that the drag
ratio converges with increasing values of Rkin. Taking the drag
ratio obtained for Rkin = 4a as the reference value, the drag
ratio is already converged up to a 0.3% error at T = 2000 K
when Rkin = 2.5a. Thus, we chose this Rkin value as a good
compromise between accuracy and computational time. All
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FIG. 10. Drag ratio for V Xe pairs computed using the SCMF
method with varying range of effective interactions (Rkin). The dashed
line (Rkin = 2.5a) corresponds to the value chosen for the calculations
in this study.
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FIG. 11. The thick lines of this plot are exactly the same as those
in Fig. 8. Thin lines are obtained using the 4NN thermodynamic
model [meaning that 5NN and 6NN binding are set to zero, and
migration barriers from or to this configuration are obtained using the
KRA approximation, cf. Eq. (10)].

results in this paper, unless otherwise specified, are obtained
with Rkin = 2.5a.

Next, we investigate the impact of 5NN and 6NN bindings
on the transport coefficients. The reason is that, as explained in
Sec. III A, the 5NN configuration is geometrically constrained
by the size of the supercell used for DFT calculations.
Hence, it is possible that the relaxation of these configurations
is not complete, and the associated vacancy-solute binding
energy inaccurate. Thus, we performed the SCMF calculations
assuming that 5NN and 6NN configurations have a binding
energy of zero, which we call the “4NN” thermodynamic
model, whereas the full calculation is denoted as the “6NN”
thermodynamic model. Migration barriers for jumps to and
from these configurations are estimated using the KRA
approximation [Eq. (10)]. These changes have a negligible
impact on V S pair mobilities, which is expected as we have
shown that the mobility of these clusters is fully controlled by
1NN configurations (Fig. 7). Thus, Fig. 11 compares 4NN and
6NN thermodynamic model on the pair flux coupling ratios,
which is much more sensitive quantity than the mobilities.
Thick lines correspond to the 6NN model (exact same results
as in Fig. 8), while thin lines correspond to the 4NN model.
Pair flux coupling coefficients are always higher in the latter
thermodynamic model, but the difference is overall quite small,
so it can be safely stated that 5NN and 6NN configurations do
not affect the results of the previous section, and that the kinetic
properties of V Kr and V Xe pairs are mostly insensitive to
potential inaccuracies in the computed 5NN and 6NN binding
energies.

In Fig. 7, we have shown that long-range migration of
V Xe and V Kr pairs occurs via successive jumps in the
1NN shell. Now, we want to investigate the effect of the
second to 6NN configurations (all taken into account in our
calculations) on the overall mobility of the pair. For this
purpose, we compute the mobility of V S pairs for a simplified
model where the range of both thermodynamic and effective
interactions are set to the 1NN distance

√
2a. The escape jump
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TABLE V. Results of Arrhenius fits [diffusion prefactors D0 in
(107 m2/s) and migration energies Em in (eV)] to V S mobilities
for various kinetic models. Data for the first two lines are obtained
using the SCMF method with different thermodynamic and kinetic
approximations (see text). Previous approximations of the diffusivity
are used for comparison: Le Claire’s model does not take into account
the migration anisotropy in AFM fcc UN and Andersson’s model does
not compute kinetic correlations.

M(V Xe)T M(V Xe)N M(V Kr)T M(V Kr)N

D0 Em D0 Em D0 Em D0 Em

Rkin = 2.5a 3.83 2.99 6.08 2.98 3.50 2.88 5.80 2.87
Rkin = √

2a 3.62 2.99 6.31 2.97 3.32 2.88 5.85 2.87
Le Claire [65] 7.17 3.09 19.9 2.92 4.80 3.05 19.1 2.91
Andersson [66] 5.71 3.28 5.71 2.99 5.71 3.18 5.71 2.88

rates from 1NN configurations are estimated with the KRA
approximation [Eq. (10)]. The analytical expressions for such
a model (also valid for a tetragonal fcc cell) are provided in
the Appendix section. Table V shows the comparison between
Arrhenius fits of V S mobilities in both N and T directions.
The first line (Rkin = 2.5a) corresponds to the full model
(with thermodynamic interaction up to the 6NN) while the
second line (Rkin = √

2a) is the 1NN only model we just
described. These two models are in very good agreement,
both for migration energies and diffusion prefactors, which
again stresses the fact that only 1NN jumps are responsible
for the long-range migration of the vacancy-solute pair, and
that other configurations do not play a significant role. This is
because the binding energy is much smaller (less attractive)
than 1NN configurations, and most of the saddle-point energies
of transitions between the second to 6NN states are high, which
makes these jumps unlikely to occur.

We also compared these results to another model (third
line of Table V) which is basically a Le Claire five-frequency
model for fcc alloys [64,65], which does not take into account
the diffusion anisotropy. In this model, thermodynamic and
effective interaction are also limited to 1NN shells. For
mobilities in the T direction, we used in-plane binding and
migration energies as inputs to this model, while for mobilities
in the N direction we used out-of-plane binding and migration
energies. In both cases, the agreement is not as good as
the 1NN SCMF (Rkin = √

2a) model. Diffusion prefactors
and migration energies are higher with a Le Claire model
compared to the SCMF reference, except for M(V Xe)N where
the effective migration energy is a little bit smaller. Because of
the jump-rate anisotropy, out-of-plane are much more probable
than in-plane jumps, which changes the topology of the
diffusion network compared to an isotropic fcc cell. Because
this feature is not taken into account in the Le Claire approach,
kinetic correlations are not evaluated properly, hence, the
deviation observed in Table V. Compared to Le Claire’s
model, Andersson’s model [66] does not account for kinetic
correlations. The agreement with the full SCMF calculation is
quite good for N direction, which is not surprising as we have
explained that vacancy-mediated diffusion of Xe and Kr in
UN basically reduces to one rate-limiting step, the jump of V

around the solute, which is the core assumption of Andersson’s
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FIG. 12. Mobility of the V Kr pair in the N direction plotted
for various values of the attempt frequency of the ωSO

11 jump (ν∗).
All other jump rates have an attempt frequency set to ν0. When
ν∗ = 0.001ν0 (black squares), M(V Kr)N is not a straight line
anymore, but it can be fitted by two Arrhenius expressions, one at
low temperature (blue dashed line) and the other at high temperature
(red dashed line). The crossover temperature between these indicates
a change in the migration mechanism of the V Kr pair.

model. Nevertheless, nothing guarantees the general validity
of this assumption. In the T direction, migration energies
are not well estimated with Andersson’s model because the
mechanism that is considered is not the most probable one.

Finally, we investigate the effect of jump prefactors on
the mobility of V S pairs. Let us remind that up to now,
all jump rates have the same attempt frequency, denoted
as ν0. According to transition state theory, the attempt
frequency is a function of the mass of the jumping atom [67].
Hence, the expected first-order effect would be that the
attempt frequency for vacancy-solute exchange should be
different from the attempt frequency for vacancy-uranium
atom exchange. Looking at Fig. 7, there are two jumps
controlling the migration mechanism: V -S exchange ωOO

2
and V -U exchange ωOS

11 (related to ωSO
11 by detailed balance).

The relative probability between these jumps is given by
the saddle-point energy difference �Esp, which is 2.16 eV
for V Xe pairs and 2.41 eV for V Kr pairs (cf. Table III),
and the V -U exchange is obviously the limiting step. Even
at T = 2000 K, exp (�Esp/kBT ) 
 106. The V -S exchange
jump is so much faster than the V -U exchange jump that
changing the attempt frequency of solute-vacancy exchange
by less than six orders of magnitude (which is not reasonable)
will not have much effect on the mobilities. Knowing that,
we investigated the effect of the attempt frequency of the
rate-limiting step ωOS

11 . This attempt frequency is denoted ν∗
in the discussion. Figure 12 shows the mobility coefficient of
a V Kr pair in the N direction. When ν∗ is set three orders of
magnitude higher than all other attempt frequencies (ν0), the
mobility simply increases by the same quantity which is not
surprising: the rate-limiting step becomes faster, so the whole
mobility increases, but it is still not high enough to observe
a change in the rate-limiting step. On the other hand, when
ν∗ decreases with respect to ν0, other diffusion pathways can
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TABLE VI. Effective migration energies obtained from changing
the attempt frequency of ωSO

11 to ν∗ while all other jumps have an
attempt frequency equal to ν0. When two migration energies Em

(in eV) are indicated, the first one is obtained from an Arrhenius fit
of the mobility at low temperatures, while the second one is obtained
from an Arrhenius fit of the mobility at high temperature. In these
cases, we indicate the crossover temperature T (in K) where both
Arrhenius fits intersect, indicating a change in the most probable
migration mechanism.

ν∗ M(V Xe)T M(V Xe)N M(V Kr)T M(V Kr)N

ν0 Em 2.99 2.98 2.88 2.87
ν0
10 Em 2.99/3.14 2.99 2.88/3.03 2.88

T 807 853
ν0

100 Em 3.01/3.22 2.99/3.24 2.89/3.14 2.88/3.13
T 599 1054 648 973

ν0
1000 Em 3.05/3.23 2.99/3.42 2.94/3.15 2.88/3.25

T 438 841 502 734

occur (e.g., in plane trajectories). This is clearly seen in Fig. 12
where the mobility for the case ν∗ = 0.001ν0 (black squares)
cannot be fitted by a single Arrhenius expression. The change
of slope between high- and low-temperature mobilities denotes
a change of the rate-limiting step.

More insight is achieved by looking at the actual effective
migration energies obtained at high and low temperature for
V Kr and V Xe pairs, in both T and N direction, and for
different values of ν∗. These results are shown in Table VI. As
ν∗ decreases, the crossover temperature decreases as well,
meaning that the high-temperature migration mechanisms
becomes more and more probable with respect to the low-
temperature one. Looking at saddle-point energies in Table III
and at the diffusion network, various jumps with similar
saddle-point energies could provide the high-temperature
diffusion mechanism, and it is likely that they all contribute:
for instance, ωOO

11 , ωSO
13 , ωOS

13 , and ωOO
13 jumps for V Kr pairs

(these jumps could result in effective migration energies
between 3.16 and 3.29 eV); ωOO

11 , ωSO
13 , and ωOS

13 jumps for
V Xe pairs (these jumps could result in effective migration
energies between 3.22 and 3.28 eV). These rough estimates
are consistent with results from Table VI, even though not
exact, because if multiple diffusion mechanisms have similar
probabilities, then the kinetic correlation might significantly
affect the overall diffusivity in a way that is hardly predictable
beforehand. In the end, this paragraph provides orders of
magnitude of attempt frequencies and temperatures where
previous results might be affected.

V. CONCLUSIONS

In this study, we reported the incorporation energies of Xe
and Kr in AFM UN. These solutes are found to be most stable
in a Schottky defect, but due to the high formation energy
of such defect, solutes are most likely to be in a uranium
vacancy at equilibrium. The attraction, or repulsion, between
a vacancy and these solutes was estimated by calculating the
binding energy, showing a strong attraction in 1NN position, a
repulsion in 2NN position, and no strong interaction for farther
away configurations. Migration energies were then computed

between these various configurations. The range of migration
energies spreads over more than 1.5 eV for U atom jumps
around a solute, but the exchange rates between a solute and
a vacancy have a much higher probability than the other jump
rates. For both binding and migration energy, the anisotropy
created by the AFM ordering is taken into account.

These binding and migration energies were then used
within the SCMF framework to obtain transport coefficients
which characterize the kinetic properties of the system at the
macroscopic scale. The low-migration energy for Xe and Kr
exchange with a vacancy does not result in a high-diffusion
coefficient because of very strong kinetic correlation effects.
The energy needed for the vacancy to jump around the solute
and produce long-range diffusion is the rate-limiting step. V Kr
and V Xe pairs are strongly bound together and migrate mostly
as a whole with a low probability of dissociation, which is
given by flux coupling coefficients that are close to unity.
Moreover, the pair migration process is efficient, more so than
the migration of isolated vacancies. These highly stable and
rapid vacancy-solute pairs are probably at the origin of bubble
nucleation. It is also interesting to note that at the atomic scale,
migration is anisotropic, whereas at a larger scale, diffusion
coefficients show very little anisotropy. This is because the
same atomic migration mechanism accounts for diffusion in
all directions of the AFM UN.

Experimental data of solute diffusivity are not consistent,
and this is most probably due to the fact that these experiments
were performed on irradiated samples, where the vacancy
concentration, hence solute diffusivities, is extremely sensitive
to irradiation conditions. Still, our theoretical predictions
seem to give lower bounds (equilibrium system) and upper
bound (with vacancy concentration around 0.1 at. %) of solute
diffusivity in UN. Further work on this topic is required for
quantitative and meaningful comparison.
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APPENDIX

In this Appendix, we provide the analytical expressions
of transport coefficients in a dilute tetragonally distorted fcc
alloy (symmetrically equivalent to an antiferromagnetic fcc
structure). It is assumed that there are no thermodynamic
interactions between a vacancy and a solute beyond the
1NN configuration. For the calculation of kinetic correlations,
effective interactions have also been limited to the 1NN range
(Rkin = √

2a, where a is the fcc lattice parameter). This
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approximate model has been shown to be accurate when
long-range migration is controlled by 1NN jumps only, as
it is the case for Kr and Xe vacancy-mediated diffusion in UN
(cf. Table V).

In the following expressions, ζαβγ is a shorthand notation
for the product of three (or two or one depending on the number
of subscripts) jump rates: ζαβγ = Wα × Wβ × Wγ . Wα is the
product between the probability of a configuration and the
jump rate out of this configuration. Let α represent a transition
state between two configurations i and j , then

Wα = Wij = piωij = pjωji = να exp

(
− Eα

sp

kBT

)
, (A1)

where ωij is an atomic jump rate between configurations i and
j [as in Eq. (4)], pi = exp (Ei

b/kBT ) is the thermodynamic
probability of configuration i, controlled by the binding energy
of the configuration, να is the attempt frequency for transition
α (in s−1), and Eα

sp is the energy at the transition state, or
saddle-point energy. In the tetragonal fcc system with only
1NN interactions, there are three possible configurations with
respective probabilities pT (V and S are 1NN located in the
same spin plane), pN (V and S are 1NN perpendicular to the
spin plane), and 1 (V and S do not interact). Thus, the partition
function Z of the V S cluster is given by

Z = 4pT + 8pN + 7. (A2)

The transitions are denoted by a number. Contrary to Le
Claire’s five-frequency model for fcc systems [65] there are
eight transitions to consider here. These are sorted in two
categories: in-plane jumps (jumps inside a spin plane or per-
pendicular to the elongation direction) and out-of-plane jumps
(jumps between two spin planes or parallel to the elongation
direction). The latter jumps are denoted by a hat symbolˆabove
the number. Transitions 1 and 1̂ are vacancy jumps around the
solute, between two 1NN configurations; transitions 2 and 2̂
correspond to vacancy-solute exchange; transitions 3 and 3̂
correspond to association (dissociation) jumps to (from) an
in-plane 1NN configuration of the V S pair; transitions 4 and
4̂ correspond to association (dissociation) jumps to (from) an
out-of-plane 1NN configuration of the V S pair.

Below we provide the analytical expressions for cluster
transport coefficients and mobilities, both in the elongation
direction (or perpendicular to spin planes, N ) and in the
direction perpendicular to the elongation (or inside spin planes,
T ). Quantities dT and dN are introduced to reduce the size
of the expressions. Note that in order to have mobilities and
transport coefficients in m2/s the expressions below must be
multiplied by the square of the lattice parameter along the
diffusion direction.

Transport coefficients and mobilities of a V S pair in the N

direction:

dN × Z × LV V (V S)N = 2ζ42̂ + 64ζ4̂1̂ + 8ζ2̂3̂ + 20ζ4̂3̂ + 8ζ1̂3̂ + 32ζ4̂4̂ + 37ζ2̂4̂ + 2ζ2̂1̂ + 8ζ43̂ + 20ζ44̂ + 8ζ41̂,

dN × Z × LSS(V S)N = 2ζ2̂4 + 5ζ2̂4̂ + 2ζ2̂1̂,

dN × Z × LSV (V S)N = −2ζ2̂4 − 11ζ2̂4̂ + 2ζ2̂1̂,

Z × M(V S)N = ζ2̂1̂

ζ2̂ + ζ1̂
,

dN = 2ζ4 + 2ζ2̂ + 5ζ4̂ + 2ζ1̂.

Transport coefficients and mobility of a V S pair in the T direction:

dT × Z × LV V (V S)T = 2ζ21̂1̂ + 95

2
ζ234̂ + 87

2
ζ32̂4̂ + 16ζ334 + 48ζ24̂4̂ + 16ζ1̂44 + 16ζ332̂ + 40ζ1̂1̂4 + 8ζ3̂3̂1 + 40ζ334̂ + 2ζ1̂1̂2̂

+ 8ζ3̂3̂4 + 96ζ1̂4̂4̂ + 48ζ1̂1̂4̂ + 8ζ3̂3̂2̂ + 19ζ231̂ + 19ζ231 + 20ζ21̂3̂ + 19ζ234 + 4ζ21̂1 + 28ζ31̂3̂ + 28ζ21̂4

+ 20ζ23̂1 + 64ζ31̂1 + +2ζ21̂2̂ + 20ζ23̂4 + 60ζ31̂4 + 20ζ23̂2̂ + 40ζ214 + 51ζ31̂2̂ + 28ζ33̂4 + 80ζ1̂3̂1

+ 50ζ23̂4̂ + 28ζ33̂2̂ + 60ζ314 + 64ζ1̂3̂4 + 48ζ214̂ + 26ζ242̂ + 70ζ33̂4̂ + 80ζ1̂14 + 52ζ244̂ + 72ζ314̂

+ 39ζ342̂ + 152ζ1̂3̂4̂ + 4ζ1̂12̂ + 29ζ22̂4̂ + 78ζ344̂ + 96ζ1̂14̂ + 52ζ1̂42̂ + 4ζ3̂12̂ + 104ζ1̂44̂ + 58ζ1̂2̂4̂

+ 104ζ3̂44̂ + 58ζ3̂2̂4̂ + 2ζ212̂ + 3ζ312̂ + 96ζ3̂14̂ + 72ζ34̂4̂ + 96ζ3̂4̂4̂ + 19ζ232̂ + 28ζ33̂1 + 16ζ331

+ 80ζ3̂14 + 20ζ3̂3̂4̂ + 60ζ1̂3̂2̂ + 136ζ31̂4̂ + 40ζ1̂1̂3̂ + 52ζ3̂42̂ + 34ζ21̂4̂ + 8ζ244 + 8ζ1̂3̂3̂ + 12ζ344

+ 16ζ3̂44 + 32ζ31̂1̂ + 16ζ331̂,

dT × Z × LSS(V S)T = 15

2
ζ234̂ + 15

2
ζ32̂4̂ + 2ζ21̂1̂ + 2ζ1̂1̂2̂ + 3ζ231̂ + 3ζ231 + 4ζ21̂3̂ + 3ζ234 + 10ζ23̂4̂ + 2ζ212̂ + 2ζ242̂ + 3ζ312̂

+ 4ζ1̂3̂2̂ + 3ζ342̂ + 4ζ21̂4 + 4ζ23̂1 + 2ζ21̂2̂ + 4ζ23̂4 + 10ζ21̂4̂ + 4ζ23̂2̂ + 3ζ31̂2̂ + 4ζ1̂42̂ + 4ζ3̂12̂ + 4ζ3̂42̂

+ 10ζ1̂2̂4̂ + 10ζ3̂2̂4̂ + 4ζ21̂1 + 3ζ232̂ + 4ζ1̂12̂ + 5ζ22̂4̂,

dT × Z × LSV (V S)T = −25

2
ζ234̂ − 21

2
ζ32̂4̂ + 2ζ21̂1̂ + 2ζ1̂1̂2̂ − 5ζ231̂ − 5ζ231 − 8ζ21̂3̂ − 5ζ234 − 4ζ21̂4 − 8ζ23̂1 + 2ζ21̂2̂

− 8ζ23̂4 − 2ζ21̂4̂ − 8ζ23̂2̂ − 20ζ23̂4̂ + 2ζ212̂ − 6ζ242̂ + 3ζ312̂ − 8ζ1̂3̂2̂ − 9ζ342̂ − 12ζ1̂42̂ + 4ζ3̂12̂

− 12ζ3̂42̂ − 14ζ1̂2̂4̂ − 14ζ3̂2̂4̂ − 5ζ31̂2̂ + 4ζ21̂1 − 5ζ232̂ + 4ζ1̂12̂ − 7ζ22̂4̂,
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Z × M(V S)T = ζ21̂1̂ + ζ1̂1̂2̂ + 2ζ21̂1 + ζ21̂2̂ + ζ212̂ + 2ζ1̂12̂

2ζ21̂ + 2ζ21 + 2ζ22̂ + 4ζ1̂1 + 4ζ1̂2̂ + 2ζ1̂1̂
,

dT = 4ζ21̂ + 6ζ31̂ + 4ζ21 + 10ζ24̂ + 6ζ32̂ + 8ζ1̂4 + 8ζ3̂1 + 15ζ34̂ + 8ζ1̂2̂ + 20ζ1̂4̂ + 8ζ3̂2̂ + 20ζ3̂4̂ + 4ζ1̂1̂

+ 8ζ1̂1 + 8ζ3̂4 + 8ζ1̂3̂ + 4ζ22̂ + 6ζ34 + 4ζ24 + 6ζ31.
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