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We present a method to calculate short-time nonequilibrium universal exponents within the functional-
renormalization-group scheme. As an example, we consider the classical critical dynamics of the relaxational
model A after a quench of the temperature of the system and calculate the initial-slip exponent which characterizes
the nonequilibrium universal short-time behavior of both the order parameter and correlation functions. The value
of this exponent is found to be consistent with the result of a perturbative dimensional expansion and of Monte
Carlo simulations in three spatial dimensions.
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I. INTRODUCTION

The quest for nonequilibrium collective properties in
macroscopic classical and quantum systems lies at the fore-
front of modern statistical physics. In fact, when macroscopic
systems are driven out of equilibrium, they exhibit a variety of
novel and fascinating phenomena which have no counterpart
in equilibrium: when these collective properties are insensitive
to the microscopic details of the system, nonequilibrium
universality emerges. Instances of it are found in both
classical and quantum systems. For the former, examples are
provided by relaxational models [1–5], driven-diffusive [6] and
reaction-diffusion systems (both in stationary and transient
regime) [7–10], directed percolation [11–13], self-organized
criticality [14], and roughening phenomena [15,16]. In quan-
tum many-body systems, nonequilibrium universality was
predicted in open electronic systems [17], noise-driven phase
transitions [18], superfluid turbulence and nonthermal fixed
points of Bose gases [19–28], driven-dissipative quantum-
optical platforms [29–33], aging dynamics of isolated [34–
36] and open [37–39] quantum systems, dynamical phase
transitions [40–49], and in the statistics of the work done upon
quenching [50,51].

The theoretical investigation of nonequilibrium universality
is, however, considerably more challenging than its equilib-
rium counterpart, since one cannot rely in general on the min-
imization of thermodynamic potentials or exploit fluctuation-
dissipation relations [2,52–56], which constrain static and
dynamical properties in equilibrium systems. Accordingly, a
systematic description of nonequilibrium universality calls for
the introduction of novel theoretical tools.

The response-function formalism (also known as MSRJD
formalism) [2,53,57–60] provides a practical framework for
a systematic classification of equilibrium critical dynam-
ics [5,61] based on a renormalization-group (RG) approach,
which was also successfully used to study nonequilibrium
classical critical systems [1,3,5]. A similar formalism, based on
the Schwinger-Keldysh functional [62–65], is correspondingly
used for investigating nonequilibrium criticality in quantum
systems. While the typical RG scheme used for studying

nonequilibrium universality is based on the dimensional
expansion [5], the functional renormalization group (FRG) has
been recently introduced for the investigation of nonequilib-
rium classical [66–68] and quantum systems [30,32,69–71],
where it turned out to be effective in providing quantitative
predictions which are out of reach of low-order dimensional
expansions. FRG methods have been used, so far, to investi-
gate both the universal critical properties of nonequilibrium
stationary states of classical and quantum statistical systems,
and the nonequilibrium real-time evolution of small quantum
systems coupled to an environment [72–79], with a few
notable exceptions concerning the nonequilibrium dynamics
of many-body systems [80–82].

In this paper, we introduce a FRG scheme to address
the nonequilibrium dynamics of classical systems quenched
close to a critical point; specifically, we consider the so-called
stochastic model A [5,61] after the temperature of the thermal
bath (which provides the thermal noise) has been quenched
to the critical value. A concrete lattice realization of a
system belonging to this universality class is the classical
Ising model with nonconserved, i.e., spin-flip, dynamics. In
fact, the nonequilibrium dynamics of this model exhibits a
universal short-time behavior [1–3], which is revealed, e.g.,
in the scaling form of correlation functions and of the global
magnetization, and is characterized by a new critical exponent,
the so-called initial-slip exponent θ . This universal quantity
was first calculated at the second order in the dimensional
ε expansion in Ref. [1], and subsequently determined via
numerical simulations (see Ref. [3] for a summary). Here,
we show how to calculate the exponent θ by implementing
FRG within the response function formalism.

The presentation is organized as follows: In Sec. II we
introduce model A and the scaling form of correlation
functions and of the order parameter after a critical quench.
In Sec. III, the FRG scheme is introduced for a quench, after
rephrasing the Langevin dynamics of model A in a functional
setting. In Sec. IV we detail the results of our analysis for a
simple ansatz of the effective action, benchmarking the method
with the available predictions based on the analytical first-order
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(dimensional) ε expansion reported in the literature [1]. In
Sec. V, we introduce an improved ansatz and we discuss and
compare its results with those of a second-order (dimensional)
ε expansion and of numerical Monte Carlo simulations.
Finally, in Sec. VI we provide an overview of potential
applications of our approach to classical and quantum systems.
All the relevant details of the calculations are reported in a
number of appendices.

II. CRITICAL QUENCH OF MODEL A

The so-called model A [5,61] captures the universal aspects
of the relaxational dynamics of a classical system belonging to
the Ising universality class and coupled to a thermal bath. This
model prescribes an effective dynamics for the coarse-grained
order parameter (i.e., the local magnetization), described by
the classical field ϕ ≡ ϕ(r,t) and evolving according to the
Langevin equation

ϕ̇ = −�
δH
δϕ

+ ζ, (1)

where � is the diffusion coefficient, ζ is a zero-mean Marko-
vian and Gaussian noise with correlation 〈ζ (r,t)ζ (r′,t ′)〉 =
2�T δ(d)(r − r′)δ(t − t ′), describing the thermal fluctuations
induced by the bath at temperature T (measured in units of
Boltzmann constant), and H is given by

H =
∫

r

[
1

2
(∇ϕ)2 + τ

2
ϕ2 + g

4!
ϕ4

]
, (2)

where
∫

r ≡ ∫
ddr with d the spatial dimensionality, τ

parametrizes the distance from the critical point, and g � 0
controls the strength of the interaction. The parameter τ

depends on T and it takes a critical value τc at the critical
temperature T = Tc.

We assume that the system is prepared at t = t0 in the high-
temperature phase with T → +∞ and an external magnetic
field h0, i.e., that the initial condition ϕ(r,t = t0) = ϕ0(r) is a
random field with probability distribution P0[ϕ0] given by

P0[ϕ0] ∝ exp

[
−

∫
r

τ0

2
(ϕ0 − h0)2

]
. (3)

Equation (3) implies that the initial field ϕ0, with average
〈ϕ0(r)〉 = h0(r), is characterized by short-range correlations

〈[ϕ0(r) − h0(r)][ϕ0(r′) − h0(r′)]〉 = τ−1
0 δ(d)(r − r′), (4)

where 1/τ0 is the correlation length of the order parameter
ϕ0(r) at t = t0. We recall that the correlation function GC is
defined as [5]

GC(r,t,t ′) = 〈ϕ(r,t)ϕ(0,t ′)〉, (5)

where 〈· · · 〉 denotes the average over the dynamics generated
by Eq. (1), which includes averaging over both the initial
condition ϕ0 and the realizations of the noise ζ . The response
function GR is defined as the linear response to an external
field h(r,t), which couples linearly to ϕ and which modifies
the Hamiltonian H in Eq. (2) as Hh = H − ∫

r hϕ; specifically,
we have

GR(r,t,t ′) ≡ δ〈ϕ(r,t)〉h
δh(0,t ′)

∣∣∣∣
h=0

, (6)

where 〈· · · 〉h denotes the average over the dynamics generated
by Eq. (1) with the Hamiltonian Hh. Note that in Eqs. (5)
and (6) we made use of the spatial translational invariance of
the dynamical equation (1), as GC and GR only depend on
the distance between the two spatial points involved in these
equations. Accordingly, one can take the Fourier transform
with respect to r and express more conveniently GC,R in wave-
vector space.

We assume that the temperature T of the bath takes the
critical value Tc for t > t0, so that the system will eventually
relax to a critical equilibrium state. As a consequence of being
at criticality, this relaxation dynamics exhibits self-similar
properties, signaled by the emergence of a scaling behavior
referred to as aging; for example, correlation and response
functions in momentum space read [1,3,83], after a quench
occurring at t = t0,

GR(q,t,t ′) 	 q−2+η+z

(
t

t ′

)θ

GR(qzt), (7a)

GC(q,t,t ′) 	 q−2+η

(
t

t ′

)θ−1

GC(qzt), (7b)

with η the anomalous dimension [84,85], z the dynamical
critical exponent [5,86], and GR,C(x) scaling functions. The
scaling forms (7) are valid for h0 = 0, t ′ 
 t , and t ′ → tm,
where tm is a microscopic time which depends on the specific
details of the underlying microscopic model. The dynamics
at times shorter than tm has a nonuniversal character and
it depends on the material properties of the system. The
scaling forms (7) are characterized by the so-called initial-slip
exponent θ , which is generically independent of the static
critical exponents η,ν [84,85] and of the dynamical critical
exponent z characterizing the equilibrium dynamics of model
A. The physical origin of θ can be eventually traced back to
the (transient) violation of detailed balance due to the breaking
of the time-translational invariance induced by the quench [1].

In the presence of a nonvanishing initial homogeneous
external field h0, the evolution of the magnetization M(t) ≡
〈ϕ(r,t)〉 displays an interesting nonequilibrium evolution. In
fact, for t � tm, it follows the scaling form [1]

M(t) = M0 t θ
′F(M0 t θ

′+β/(νz)), (8)

where θ ′ = θ + (2 − z − η)/z, β is the equilibrium critical
exponent of the magnetization [84,85], M0 ≡ h0 is the initial
value of the magnetization, and F(x) is a function with the
following asymptotic properties:

F(x) ≈
{
x−1 for x → ∞,

1 for x → 0.
(9)

Accordingly, M(t) exhibits the nonmonotonic behavior de-
picted in Fig. 1: for times t � tM0 ∝ M

1/[θ ′+β/(νz)]
0 it grows

as an algebraic function with the nonequilibrium exponent
θ ′, while for t � tM0 it relaxes towards its equilibrium value
Meq = 0, with an algebraic decay controlled by a combi-
nation of universal equilibrium (static and dynamic) critical
exponents.
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M(t)
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M0

0 tm tM0

∼ tθ ∼ t−β/(νz)

FIG. 1. Sketch of the time evolution of the magnetization M(t)
after a quench at t = t0 from a disordered initial state with a small
value M0 of the magnetization to the critical temperature. The gray
area indicates the time interval up to tm within which the dynamics
does not display universal features.

Gaussian approximation

In the absence of interaction (g = 0), Eq. (1) is linear and
therefore it is possible to calculate exactly the correlation and
response functions. By solving Eq. (1) with g = 0 and h0 = 0,
based on the definitions (5) and (6), one finds, after a Fourier
transform in space with wave vector q,

G0R(q,t,t ′) = ϑ(t − t ′)e−�ωq (t−t ′), (10)

G0C(q,t,t ′) = T

ωq

[
e−�ωq |t−t ′|

+
(

ωq

T τ0
− 1

)
e−�ωq (t+t ′−2t0)

]
, (11)

where ωq = q2 + τ is the dispersion relation, ϑ(t) is the
Heaviside step function, and t0 is the time at which the
quench occurs. The subscript 0 in G0C,0R indicates that these
expressions refer to the Gaussian approximation. Notice that
while G0R is a time-translational invariant function, as it
depends only on the difference of times t − t ′, G0C breaks
time-translational invariance. However, by taking the initial
time t0 → −∞ and as long as ωq = 0, G0C recovers its
equilibrium time-translational invariant form [5]; this is, in
fact, a consequence of the relaxational nature of model A,
which erases at long times the information about the initial
state. In the presence of a nonvanishing initial homogeneous
external field h0, it is also possible to calculate exactly the
evolution of the magnetization M(t), i.e.,

M(t) = M0e
−�τ (t−t0), (12)

which vanishes exponentially fast in time for τ > 0, while it
keeps its initial value M0 = h0 for τ = 0.

Within this Gaussian approximation, the dynamics (1)
becomes critical for τ = 0; in this case, by comparing
Eqs. (10), (11), and (12) with Eqs. (7a), (7b), and Eq. (8),
one finds θ = 0, η = 0, and z = 2.

As a result of a having finite interaction strength
g = 0, the Gaussian value of the initial-slip exponent

acquires sizable corrections [1,3]. In Sec. III we introduce
a functional-renormalization-group formalism, which we em-
ploy in Secs. IV and V in order to calculate the resulting value
of θ .

III. FUNCTIONAL RENORMALIZATION GROUP
FOR A QUENCH

In general, breaking translational invariance in space and/or
time prevents the use of ordinary computational strategies
of FRG [87], which are primarily based on writing the
corresponding flow equations in Fourier space, where they
acquire a particularly simple form; accordingly one has to
resort to more advanced techniques [88–91]. In this section,
we show how the case of broken time-translational invariance
can be successfully and effectively studied.

A. Response functional and FRG equation

The Langevin formulation of model A in Eq. (1) can
be converted into a functional form by using the response
functional [2,5,53,57–60]. The corresponding action is given
by

S[ϕ,ϕ̃] = S0[ϕ0,ϕ̃0] +
∫

r

∫ +∞

t0

dt ϕ̃

(
ϕ̇ + �

δH
δϕ

− �T ϕ̃

)
,

(13)

where ϕ̃ = ϕ̃(r,t) is the so-called response field, while ϕ̃0 =
ϕ̃(r,t = t0). The averages of quantities O[ϕ,ϕ̃] can thus be
calculated via a functional integration as [5]

〈O[ϕ,ϕ̃]〉 =
∫

DϕDϕ̃O[ϕ,ϕ̃]e−S[ϕ,ϕ̃]. (14)

The action S0[ϕ0,ϕ̃0] contains information about the initial
state and can be derived by including the initial probability
distribution (3) into the functional description [1–3]. We
postpone the discussion of its precise form to Sec. III B.
The quench occurs at time t0; if one is interested only in
the stationary properties of model A, the limit t0 → −∞ can
be taken, thus recovering a full time-translational invariant
behavior, as discussed in Sec. IV C.

In order to implement the FRG [87,92], it is necessary to
supplement the action S[ϕ,ϕ̃] with a cutoff function Rk(q), and
to derive the one-particle irreducible effective action �[φ,φ̃] as
the Legendre transform of the generating function associated
with Sk[ϕ,ϕ̃] [see Appendix A, in particular Eq. (A3)]. Rk(q) is
introduced as a quadratic term in the modified action Sk[�] ≡
S[�] + �Sk[�], where �Sk[�] = ∫

t,r � tσ�Rk/2 with the

Pauli matrix σ = (0 1
1 0) acting in the two-dimensional space

of the variables ϕ and ϕ̃, encoded in � t = (ϕ,ϕ̃). The cutoff
function Rk as a function of k is characterized by the following
limiting behaviors [87,92,93]:

Rk(q) 	
{
�2 for k → �,

0 for k → 0,
(15)

where � is the ultraviolet cutoff of the model. Correspond-
ingly, the effective action �k can be interpreted as an action
which interpolates between the microscopic one S[ϕ,ϕ̃] for
k → �, and the long-distance effective one for k → 0. When
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the fluctuations of the order parameter are integrated out in
order to evaluate the effective action, the effect of Rk is to sup-
plement slow modes with an effective k-dependent quadratic
term (a mass, in field-theoretical language), allowing a smooth
approach to the critical point, when the effective low-energy
action is recovered for k → 0. More specifically, for momenta
q � k the mass of the critical modes becomes proportional
to Rk(q) 	 k2 [as we detail in Eq. (30)], and this regularizes
the infrared divergences of RG loop corrections, occurring
at criticality when q → 0 (see, e.g., Refs. [87,92,93]). As
a consequence of the introduction of the regulator Rk , the
k-dependent effective action �k can then also be regarded
as an action which has been coarse-grained on a spatial
volume k−d .

As discussed in Appendix A, the flow equation for �k upon
varying the coarse-graining scale k is given by [87,94]

d�

dk
= 1

2

∫
x

tr

[
ϑ(t − t0)G(x,x)

dR

dk
σ

]
, (16)

where, in order to simplify the notation, we no longer indicate
explicitly the dependence on k of � and R, while we defined
x ≡ (r,t),

∫
x

≡ ∫
ddr

∫ +∞
t0

dt . The matrix G(x,x ′) is defined
as

G(x,x ′) = (�(2) + R σ )−1(x,x ′), (17)

where the inverse of the matrix on the right-hand side is taken
with respect to spatial and temporal variables, as well as to the
internal matrix structure. The kernel �(2)(x,x ′) is the second
variation of the effective action � with respect to the fields,
i.e.,

�(2)(x,x ′) =
(

δ2�
δφ(x)δφ(x ′)

δ2�

δφ̃(x)δφ(x ′)
δ2�

δφ(x)δφ̃(x ′)
δ2�

δφ̃(x)δφ̃(x ′)

)
. (18)

While Eq. (16) is exact, it is generally not possible to solve
it. Accordingly, one has to resort to approximation schemes
which render Eq. (16) amenable to analytic and numerical
calculations. A first step in this direction is to provide an
ansatz for the form of the effective action � which, once
inserted into Eq. (16), results in a set of coupled nonlinear
differential equations for the couplings which parametrize it.
In fact, any coupling gn,lφ

nφ̃l/(n! l!) (with n and l positive
integers) appearing in � corresponds to a term of its vertex
expansion [69,95,96] as

gn,l = δl+n�

δφnδφ̃l

∣∣∣∣
φ̃=0

φ=φm

, (19)

where the derivatives of � are evaluated at some homogeneous
field configurations φ̃ = 0 and φ = φm. The field φm, referred
to as background field, is typically chosen as the minimum of
the effective action �.

In this work, we consider the following ansatz for model
A:

�[φ,φ̃] = �0[φ0,φ̃0]

+
∫

x

ϑ(t − t0)φ̃

(
Zφ̇ + K∇2φ + ∂U

∂φ
− Dφ̃

)
.

(20)

The boundary action �0[φ0,φ̃0] accounts for the initial condi-
tions and its form will be discussed in detail in Sec. III B. For
the time being, we just assume that it is a quadratic function
of the fields. Note that the effective action (20) can generally
describe a quench because of the presence of the Heaviside
step function in the second term. The field-independent factors
Z, K , and D account for possible renormalizations of the
derivatives and of the Markovian noise, while the generic
potentialU(φ) is aZ2-symmetric local polynomial of the order
parameter φ. For constructing the FRG equations, we consider
the following cutoff function:

R(q) = K(k2 − q2)ϑ(k2 − q2), (21)

which is known to minimize spurious effects introduced by
the specific truncation ansatz of the effective action [93].

The kernel �(2) + Rσ appearing in Eq. (17)—which is ob-
tained by deriving Eq. (20)—can be conveniently reexpressed
by separating the field-independent part G−1

0 (which receives
contributions from the quadratic part of � and from σR) from
the field-dependent part V , i.e.,

�(2)(x,x ′) + R(x,x ′)σ = G−1
0 (x,x ′) − V (x,x ′), (22)

such that [see Eq. (17)]

G−1(x,x ′) = G−1
0 (x,x ′) − V (x,x ′). (23)

Note that, since we assumed �0[φ0,φ̃0] to be quadratic, its
presence is completely encoded in the function G−1

0 . For the
ansatz (20), the field-dependent part V reads

V (x,x ′) = V (x) δ(x − x ′), (24)

where the delta function δ(x − x ′) ≡ δ(t − t ′)δ(d)(r − r′) ap-
pears as a consequence of the locality in space and time of the
potential U , and where the function V (x) is defined as

V (x) = −ϑ(t − t0)

(
φ̃(x) ∂3U

∂φ3 (x) ∂2U
∂φ2 (x)

∂2U
∂φ2 (x) 0

)
. (25)

The function ϑ in this expression of V (x) appears as a
consequence of the one in Eq. (20): as will become clear
below, the presence of ϑ allows one to encompass both the
case of the quench and of a stationary state in the calculation
of G (see Sec. IV C).

Finally, in order to derive the RG equations for the couplings
appearing in the effective action (20), one has to take the
derivative with respect to k on both sides of Eq. (19) and, by
using Eq. (16), one finds

dgn,l

dk
= δl+n

δφnδφ̃l

1

2

∫
x

tr

[
ϑ(t − t0)G(x,x)

dR

dk
σ

]∣∣∣∣
φ̃=0

φ=φm

+ δl+n+1�

δφn+1δφ̃l

∣∣∣∣
φ̃=0

φ=φm

dφm

dk
, (26)

from which one can evaluate the flow equation for the
couplings gn,m, once the derivative of φm is calculated, where
φm corresponds to the minimum of the potential U .

B. Functional renormalization group for a quench

In order to study the critical properties of the tempera-
ture quench described in Sec. II, we consider the effective
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action (20), in which one has still to specify the form of the
boundary action �0. The Gaussian probability distribution (3)
of the initial condition can be effectively accounted for by
taking

�0 =
∫

r

(
− Z2

0

2τ0
φ̃2

0 + Z0φ̃0φ0 + Z0h0φ̃0

)
. (27)

This form is uniquely fixed by requiring that it does not result
in a violation of causality in the response functional [97]
and that it reproduces the Gaussian Green’s functions (10)
and (11); see Appendix B. The factor Z0 accounts for a
possible renormalization of the initial response field φ̃0: the
way in which corrections to Z0 are generated is discussed
further below in this section. Note, in addition, that the
term ∝φ̃2

0 can be regarded as a Gaussian noise located
at the initial time t0. The boundary action �0 may in
principle contain higher powers of φ0 and φ̃0, and spatial
and temporal derivatives of these fields; however, taking into
account their engineering dimension, one can argue [1] that
they are irrelevant in the renormalization-group sense, and
therefore they have not been included here. The presence of a
nonvanishing initial field h0 induces a nontrivial evolution of
the magnetization M(t), but it does not generate new additional
critical exponents (see Sec. II and Ref. [1]), and therefore in
the rest of this work we will assume h0 = 0 without loss of
generality.

In order to study the flow of the couplings of the effective
action � in Eq. (20) from the FRG equation (16) it is necessary
to evaluate the matrix G defined in Eq. (17). However, the
presence of the boundary action given in Eq. (27) as well as
the breaking of time-translational invariance in Eq. (20) makes
the calculation of G(x,x ′) nontrivial, since now G depends
separately on the two times t and t ′. In order to overcome
this difficulty, we notice that G satisfies the following integral
equation (see Appendix C for a proof of this statement):

G(x,x ′) = G0(x,x ′) +
∫

y

G0(x,y) V (y)G(y,x ′), (28)

with G0 and V defined in Eq. (22). The explicit form of G0

can be evaluated by using the boundary action �0 in Eq. (27)
and it reads (see Appendix B for details)

G0(t,t ′) =
(

G0C(t,t ′) G0R(t,t ′)
G0R(t ′,t) 0

)
, (29)

where G0R and G0C are given by Eqs. (10) and Eqs. (11)
(with � = 1 and T replaced by D), respectively, with the
dispersion relation ωq replaced by the regularized one ωk,q ,
defined as

ωk,q ≡ Kq2 + τ + K(k2 − q2)ϑ(k2 − q2). (30)

Equation (28) can then be solved iteratively and, once its
solution has been replaced into the FRG equation (16),
the latter can be cast in the form [see, e.g., Eqs. (C5)
and (C7)]

d�

dk
=

+∞∑
n=1

��n, (31)

where the functions ��n are defined as (see Appendix C for
details)

��n = 1

2

∫
x,y1...yn

tr

[
G0(x,y1)V (y1)G0(y1,y2)

× · · · × V (yn)G0(yn,x)
dR

dk
σ

]
. (32)

As discussed in Appendix C, the FRG equation in the form
of Eq. (31) is the most convenient one for calculations when,
as in the present case, time-translational invariance is broken,
and therefore it cannot be further simplified by expressing it
in the Fourier frequency space.

For simplicity, let us assume that the potential U in Eq. (20)
is quartic in the field φ, i.e.,

U(φ) = τ

2
φ2 + g

4!
φ4, (33)

such that, from Eq. (25), the field-dependent function V (x)
reads

V (x) = −ϑ(t − t0) g

(
φ̃φ φ2/2

φ2/2 0

)
. (34)

Accordingly, since this V appears n times in the convolu-
tion (32) which defines ��n on the right-hand side of Eq. (31),
it follows that ��n contains products of 2n possibly different
fields. Because of the ansatz (20) also the left-hand side of
Eq. (31) is a polynomial of the fields, and therefore each
term on the left-hand side is uniquely matched by a term
of the expansion on the right-hand side. Accordingly, in
order to derive the RG equation for the coupling of a term
involving a product of 2n fields, it is sufficient to evaluate the
corresponding ��n. Note that this line of argument applies
also to the time-translational invariant case, and, moreover, it
can be easily generalized to the case in which the potential
contains powers of φ of higher order than those in Eq. (33).

IV. TRUNCATION FOR φm = 0

In this section we discuss the derivation of the RG
equations from the ansatz (20) with the quartic potential U
introduced in Eq. (33). Considering this simple case allows
us to detail how the boundary action (27) is renormalized
by the postquench interaction. Since this ansatz corresponds
to a local potential approximation [67,87,92], the anomalous
dimensions of the derivative terms (K,Z) and of the Markovian
noise strength D vanish, and therefore in the following
we set, for simplicity, K = Z = 1. The only nonirrelevant
terms which are renormalized within this scheme are those
proportional to quadratic and quartic powers of the fields φ

and φ̃, i.e., those associated with the postquench parameter τ ,
the boundary field renormalization Z0, and the coupling g. As
discussed in Sec. III B, the renormalization of the quadratic
terms is determined by the contribution ��1 appearing on the
right-hand side of Eq. (31), while the renormalization of the
quartic one by the contribution ��2.

A. Derivation of the RG equations

Let us now consider Eq. (31) and focus on the term ��1,
as defined in Eq. (32). A simple calculation renders (see
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Appendix D for details)

��1 = − kd+1 ad

d

gD

ω2
k

∫
r

∫ +∞

t0

dt φ̃(t,r)φ(t,r)

× [1 − fτ (t − t0)], (35)

where ad = 2/[�(d/2)(4π )d/2], with d the spatial dimen-
sionality of the system and �(x) the gamma function. The
integration over the intermediate time variable in Eq. (32) for
n = 1 generates, within the square brackets in the integrand
of Eq. (35), one term which is independent of time and one
which depends on it via the function fτ (t − t0), defined as

fτ (t) = e−2ωkt

[
1 + 2ωkt

(
1 − ωk

Dτ0

)]
, (36)

where ωk ≡ ωq=k or, equivalently, ωk ≡ ωk,q=k [see Eq. (30)].
Since fτ (t) vanishes exponentially fast upon increasing the
time t , its contribution to the renormalization of the time-
independent parameter τ can be neglected [98]. Accordingly,
the flow equation for τ can be simply obtained by comparing
the left-hand side of Eq. (31) with Eq. (35), where we
introduced the potential (33) in the truncated action (20); this
yields

dτ

dk
= −kd+1 ad

d

gD

(k2 + τ )2
. (37)

At short times, instead, the function fτ (t) singles out con-
tributions containing fields of the temporal boundary, thus
renormalizing the boundary action �0 introduced in Eq. (27).
In fact, the formal identity∫ +∞

t0

dt g(t)e−c(t−t0) =
+∞∑
n=0

1

cn+1

dng

dtn

∣∣∣∣
t=t0

, (38)

with c > 0 and g(t) an arbitrary smooth function, can be used
in order to express the part of the integral involving fτ (t) on
the right-hand side of Eq. (35) as∫ +∞

t0

dt φ̃(t)φ(t)fτ (t − t0)

=
+∞∑
n=0

cn,k(τ0)

(2ωk)n+1
Z0,n

dn

dtn
[φ̃(t)φ(t)]

∣∣∣∣
t=t0

, (39)

with

cn,k(τ0) ≡ (n + 2) − (n + 1)ωk

Dτ0
. (40)

Accordingly, the time-dependent part in the integrand of
Eq. (35) generates an infinite series of operators contributing to
the boundary action �0. For future convenience, we introduced
in Eq. (39) additional numerical factors Z0,n, which account for
possible renormalization of the boundary operators and which
equal one in the nonrenormalized theory. Most of the terms in
the sum (39) renormalize irrelevant operators which were not
included in the original ansatz (27) for the boundary action, and
therefore one can neglect them. The only nonirrelevant term
corresponds to n = 0 in Eq. (39): by inserting the boundary
action �0 [see Eq. (27)] into the left-hand side of Eq. (31), and
by combining it with Eqs. (35) and (39), one finds the flow

equation for Z0 ≡ Z0,0, i.e.,

dZ0

dk
= kd+1 ad

d

gD

(k2 + τ )3

[
1 − k2 + τ

2Dτ0

]
Z0. (41)

We consider now the renormalization of the quartic term,
which can be read off from ��2. A simple calculation renders
(see Appendix D for details)

��2 = 3

2
kd+1 ad

d

g2D2

ω4
k

∫
r

∫ +∞

t0

dt φ̃2(t)φ2(t)[1 − fD(t − t0)]

+ kd+1 ad

d

g2D

ω3
k

∫
r

∫ +∞

t0

dt φ̃(t ′)φ3(t)[1 − 0fg(t − t0)],

(42)

where fg and fD , given in, cf., Eqs. (D10) and (D11),
respectively, decay exponentially upon increasing the time t ,
and therefore they do not contribute to the renormalization of
the couplings at long times. Note that the integration produces
a term proportional to φ̃2φ2 in Eq. (42); however, this operator
is irrelevant for d > 2 and it can be neglected, since our
truncation includes only relevant couplings. On the other hand,
the term proportional to φ̃φ3 in Eq. (42) renormalizes the
relevant coupling g and, comparing Eq. (42) with the left-hand
side of Eq. (31) after using the ansatz (20) for � with the
potential (33), one finds the flow equation for g:

dg

dk
= 6kd+1 ad

d

g2D

(k2 + τ )3
. (43)

B. Flow equations

In order to study the flow of τ and g prescribed by Eqs. (37)
and (43), it is convenient to introduce the dimensionless quanti-
ties τ̃ = τ/k2 and g̃ = gDkd−4ad/d. The corresponding flow
equations follow from Eqs. (37) and (43):

k
dτ̃

dk
= −2τ̃ − g̃

(1 + τ̃ )2
, (44)

k
dg̃

dk
= g̃

[
−ε + 6

g̃

(1 + τ̃ )3

]
, (45)

where ε = 4 − d. These equations describe the RG flow of
the couplings in the equilibrium state which is asymptotically
reached by the system at long times. Accordingly, they are
independent of both Z0 and τ0: the relaxational nature of model
A erases the information about the initial state in the long time.
Since the final state corresponds to an equilibrated system, the
equations for τ̃ and g̃ must result in the same critical exponents
as in the equilibrium Ising universality class [5,85,86]. This
can be seen, for instance, by comparing Eqs. (44) and (45)
(at leading order in ε) with the results obtained within the
perturbative RG at one loop in the equilibrium theory [5].
Note that Eqs. (44) and (45) do not have the same form
as the corresponding equations derived within perturbative
RG, as they are obtained within a different renormalization
scheme; nevertheless, they provide the same critical exponents,
as discussed further below.

Equations (44) and (45) admit two fixed points: the Gaus-
sian one (̃τ ∗

G,̃g∗
G) = (0,0) and the Wilson-Fisher one, which at

leading order in ε reads (̃τ ∗
WF ,̃g

∗
WF) = (−ε/12,ε/6) + O(ε2)

(in general we will denote by the superscript ∗ any quantity
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which is evaluated at a fixed point). By linearizing Eqs. (44)
and (45) around these fixed points, one finds that the Gaussian
one is stable only for ε < 0, while the Wilson-Fisher fixed
point is stable only for ε > 0. The latter has an unstable
direction, and from the inverse of the negative eigenvalue of the
associated stability matrix, one derives the critical exponent ν,
which reads ν = 1/2 + ε/12 + O(ε2), which is the same as
in equilibrium [5,85,86]. As mentioned at the beginning of
this section, the ansatz (33) for the potential does not allow
for a renormalization of the time and spatial derivatives in the
effective action (20). Accordingly, the anomalous dimension
η and the dynamical critical exponent z are equal to their
Gaussian values η = 0 and z = 2.

Let us now focus on the renormalization of the terms in
the boundary action �0 in Eq. (27). From Eq. (41), we define
the anomalous dimension η0 of the response field φ̃0 at initial
time as

η0 ≡ − k

Z0

dZ0

dk
= − g̃

(1 + τ̃ )3

(
1 − 1 + τ̃

2τ̃0

)
, (46)

where we introduced the rescaled prequench parameter τ̃0 =
τ0/k2 and we used Eq. (41). Since τ0 does not receive any
correction from the renormalization, its flow equation is simply
determined by its canonical dimension and thus

k
dτ̃0

dk
= −2τ̃0. (47)

Accordingly, τ̃0 has only one stable fixed point τ̃ ∗
0 = +∞,

in the infrared regime (i.e., for k → 0). Close to this fixed
point, any possible term in the boundary action �0 (except for
φ̃0φ0) is irrelevant for d > 2, and therefore the ansatz (27) is
consistent. Note that the right-hand side of Eq. (46) diverges
at the unstable fixed point τ̃ ∗

0 = 0; this is expected since τ0 =
0 is unphysical [1] for the initial probability in Eq. (3) and
hence for the ansatz in Eq. (27), as it would correspond to a
non-normalizable probability.

The value η∗
0 of the anomalous dimension η0 of the

initial response field at the Wilson-Fisher fixed point can
be straightforwardly derived by substituting in Eq. (46) the
fixed-point values τ̃ ∗

WF and g̃∗
WF of the couplings, obtaining

η∗
0 = −ε/6. The initial-slip exponent θ is then defined as [1,3]

θ = −η∗
0

z
, (48)

and therefore, in the present case, it takes the value

θ = −η∗
0

2
= ε

12
, (49)

which agrees up to first order in ε, with the expression

θ = ε

12

[
1 + ε

(
8

27
+ 2 log 2

3

)]
+ O(ε3), (50)

obtained in Ref. [1].

C. Comparison with equilibrium dynamics

In this section, we show how one can recover the flow
equations for the equilibrium case in the limit t0 → −∞. First
of all, we note that in the expressions for ��1 and ��2 given
in Eqs. (35) and (42), respectively, the only dependence on
t0 occurs in the lower limit of the integration domain of the

integrals on t and in the functions fτ (t − t0), fg(t − t0), and
fD(t − t0). For t0 → −∞ these functions vanish exponentially
fast [see Eqs. (36), (D11), and (D10)] and Eqs. (35) and (42)
read

��
eq
1 = −kd+1 ad

d

gD

ω2
k

∫
x

φ̃(x)φ(x), (51a)

��
eq
2 = kd+1 ad

d

g2D

ω3
k

∫
x

[
3D

2ωk

φ̃2(x)φ2(x) + φ̃(x)φ3(x)

]
,

(51b)

with x ≡ (r,t) and
∫
x

≡ ∫
ddr

∫ +∞
−∞ dt .

Alternatively, one could have taken the limit t0 → −∞
from the outset, i.e., before evaluating ��1 and ��2; in this
case one simply needs to replace ϑ(t − t0) with its limiting
value 1 in Eqs. (16) and (25), while G0R is modified inasmuch
as G0C becomes time-translational invariant as t0 → −∞ [see
Eqs. (11) and (29)]. This gives rise again to Eq. (51), since
the operations of taking the limit t0 → −∞ and of calculating
the integrals over time (and momenta) on the right-hand side
of Eq. (31) do commute (because all the time integrals are
convergent due to the decreasing exponentials in G0R and
G0C).

Taking the limit t0 → −∞ in the action (20) just cor-
responds to considering the equilibrium, time-translational
invariant theory [5], and therefore one concludes that Eq. (51)
give rise to the equilibrium flow equations. Since the flow
equations (44) and (45) can also be derived from Eq. (51), they
thus represent the equilibrium ones: this is an expected result,
since the relaxational nature of model A leads the system to
its equilibrium state (yet for asymptotically long times at the
critical point), regardless of the quench protocol [1].

V. TRUNCATION FOR φm �= 0

In this section, we discuss the results of a different,
improved ansatz for the potential U in the effective action (20),
namely

U = g

4!

(
φ2 − φ2

m

)2 + λ

6!

(
φ2 − φ2

m

)3
, (52)

the flow of which is derived in Appendix E. This potential dif-
fers from the one considered in Eq. (33) in two respects. First,
it corresponds to an expansion around a finite homogeneous
value φm; this choice has the leverage to capture the leading
divergences of two-loop corrections in a calculation which is
technically carried at one-loop, as typical of background field
methods (see, e.g., Refs. [69,87,92,96]), and thus it allows us
to calculate, for instance, the renormalization of the factors
Z, K , and D. In fact, the presence of a background field,
φm, reduces two-loop diagrams to one-loop ones in which an
internal classical line (corresponding to a correlation function,
GC) has been replaced by the insertion of two expectation
values φm (straight lines stand for the field φ, curved lines
for the response field φ̃; see, e.g., Ref. [5]). For instance, the

174301-7



CHIOCCHETTA, GAMBASSI, DIEHL, AND MARINO PHYSICAL REVIEW B 94, 174301 (2016)

renormalization of Z and K comes from the diagram

(53)

while the renormalization of the noise strength D comes from
the diagram

(54)

Second, we added a sextic interaction, which is marginal for
d = 3 and therefore it is expected to contribute with sizable
corrections to the value of the critical exponents only upon
approaching d = 3. In fact, the effective action (20) with the
potential (52) contains all the nonirrelevant operators in d = 3.
As anticipated, this ansatz allows the renormalization of the
time and spatial derivative terms and of the Markovian noise,
i.e., of the coefficients K , Z, and D in Eq. (20), which therefore
will be reinstated in the following analysis. The flow equations
for these coefficients can be conveniently expressed in terms
of the corresponding anomalous dimensions ηD,ηZ , and ηK ,
defined as

ηD ≡ − k

D

dD

dk
, ηZ ≡ − k

Z

dZ

dk
, ηK ≡ − k

K

dK

dk
. (55)

The calculation of ηD , ηZ , and ηK is detailed, respectively, in
Appendices F 1, F 2, and F 3.

The somewhat lengthy flow equations of the corresponding
dimensionless couplings

m̃ = 1

3

φ2
mg

Kk2
, g̃ = ad

d

D

ZK2

g

k4−d
, λ̃ = ad

d

D2

Z2K3

λ

k6−2d

(56)

and of the anomalous dimensions ηD,Z,K are reported in
Eqs. (G1)–(G6) of Appendix G. First of all, we note that
ηD = ηZ; this a consequence of detailed balance [5,69,96],
which characterizes the equilibrium dynamics of model A. In
fact, while the short-time dynamics after the quench violates
detailed balance inasmuch as time-translational invariance is
broken, in the long-time limit (in which the flow equations are
valid) detailed balance is restored.

The fixed points (m̃∗,̃g∗ ,̃λ∗) of Eqs. (G1)–(G4) can be
determined numerically (see Appendix G for details) and they
can be used in order to calculate the anomalous dimension η

and the dynamical critical exponent z as

η = η∗
K, z = 2 − η∗

K + η∗
Z. (57)

The critical exponent ν can be determined after linearizing the
flow equations around the fixed point, as the inverse of the
negative eigenvalue of the stability matrix (see Appendix G).

As a consistency check, we compare our values ν = 0.64,
η = 0.11, and z = 2.05 in d = 3 with the ones determined
in Ref. [96] for the equilibrium dynamics of model A within
the same truncation ansatz for the effective action � as the one
employed here, i.e., ν = 0.65, η = 0.11, and z = 2.05, finding

FIG. 2. Main plot: Initial-slip exponent θ as a function of the
spatial dimensionality d , evaluated from the FRG discussed here
(blue, central line) and from the ε expansion to first (green, lower line)
and second (red upper line) order in ε = 4 − d provided in Eq. (50).
The value of θ obtained from numerical Monte Carlo simulations are
indicated for d = 2 and 3 (symbols with error bars). For d = 2, the
error bars are within the symbol size. Inset: Magnification of the main
plot for d 	 3.

very good agreement. For completeness, we also report the
Monte Carlo estimates (see Ref. [96] for a summary), given
by νMC = 0.6297(5), ηMC = 0.0362(8), and zMC = 2.055(10).

In Fig. 2, we compare the values of θ obtained from Eq. (48)
on the basis of the present analysis (blue line), and of the first-
(green line) and second-order (red line) ε expansion of Ref. [1]
reported in Eq. (50), as a function of the spatial dimensionality
d. The first-order term in the ε expansion is accurate only for
spatial dimensionality d close to d = 4, while the second-order
contribution provides sizable corrections at smaller values of
d. Our results are in remarkable agreement with the latter
expansion for d � 3.2, while increasing discrepancies emerge
at smaller values of d. In particular, for d � 3 additional stable
fixed points appear in the solution of Eqs. (G1)–(G4) beyond
the Wilson-Fisher one, while for d � 2.5 the latter disappears.
This is not surprising, since for d � 3 new nonirrelevant terms
are allowed, and therefore the potential in Eq. (52) is no
longer an appropriate ansatz and additional terms have to be
introduced. In particular, the number of nonirrelevant operators
diverges as d approaches 2: one should indeed recall that in
d = 2 any term of the form φ̃φ2n+1, with positive integer n, is
relevant in the RG sense and therefore the correct truncation
for the effective action requires considering a full functional
ansatz for the potential, beyond the polynomial expansion used
in this work. In Refs. [92,96] it is shown how to deal with this
issue within the standard approach to FRG.

For comparison, we report in Fig. 2 also the two values of θ

obtained from Monte Carlo simulations (see, e.g., the summary
in Ref. [3]) in d = 2 and d = 3 (symbols). Remarkably, the
predictions of both FRG and ε expansion are compatible
(within error bars) with the numerical estimate in d = 3,
where the ansatz for the potential (52) is reliable, while the
FRG predicts a smaller value compared to the one predicted
by the ε expansion. For d = 2, instead, our ansatz (52) is
unable to provide reliable predictions for the reasons reported
above, while the ε expansion still provides an unexpectedly
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accurate estimate, yet outside the error bars of the best available
numerical estimate θ = 0.383(3).

VI. CONCLUSIONS AND PERSPECTIVES

In this work we generalized the functional-renormalization-
group (FRG) scheme in order to describe the universal
dynamical behavior emerging at short times in a classical
statistical system after a temperature quench to its critical
point. Specifically, we focused on the relaxational dynamics
described by the model A [5] for a scalar order parameter and a
Landau-Ginzburg effective Hamiltonian, and we evaluated the
initial-slip exponent θ , which controls the universal scaling
of correlation functions and magnetization after the quench
within the Ising universality class with spin-flip (Glauber)
dynamics. The value of θ is found to be in good agreement with
the one obtained via an ε expansion and numerical simulations
in d = 3. Our prediction for θ can be systematically improved
by using a more refined ansatz for the effective action,
taking advantage of the existing FRG schemes for equilibrium
systems [87,92].

The approach developed in this work can be extended
to different static universality classes, such as O(N ) and
Potts models, or to different dynamics, e.g., with conserved
quantities [99,100]. In addition, it can also be used in order to
study equilibrium phase transitions in systems with a spatial
boundary, whose description is formally similar to the case
of a quench [101], and possibly also their nonequilibrium
dynamics [102,103]. Moreover, this FRG approach can pro-
vide quantitative predictions for additional relevant nonequi-
librium universal quantities such as the fluctuation-dissipation
ratio and the effective temperatures in the aging regime
[3,104–107].

Finally, the approach discussed here constitutes a first step
towards the exploration of universality in the dynamics of iso-
lated quantum many-body systems after a parameter quench,
a current topic of considerable theoretical and experimental
interest [28,108–113].
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APPENDIX A: DERIVATION OF THE FRG EQUATION

In this appendix we briefly review the derivation of Eq. (16)
for the response functional [87]. Let us consider the action
S[�], where � t = (ϕ,ϕ̃), with ϕ the order parameter and ϕ̃ the
response field. We define a modified action Sk[�] = S[�] +

�Sk[�] where �Sk[�] = 1
2

∫
t,r � tσ�Rk , where σ = (0 1

1 0)
and Rk is a function which implements the infrared cutoff.
Then we define the generating function Wk[J ] as

Wk[J ] = log

[∫
D� e−Sk [�]+∫

t,r � tJ

]
, (A1)

where D� denotes functional integration over both the fields
ϕ and ϕ̃, while J t = (j,j̃ ) is an external field. Defining the
expectation value 〈�〉, where the average is taken with respect
to the action −Sk[�] + ∫

t,r � tJ , it is straightforward to check
that the following properties follow from Eq. (A1) [87]:

〈�〉 = δWk

δJ t
, 〈�� t〉 − 〈�〉〈� t〉 = δ2Wk

δJ tδJ
= δ〈� t〉

δJ t
.

(A2)
The effective action �k[�] is defined as

�k[�] = −Wk[J ] +
∫

t,r
J t� − �Sk[�], (A3)

where J is fixed by the condition

� = δWk

δJ t
. (A4)

By comparing the previous equation with the first one in
Eq. (A2), it follows that � = 〈�〉; accordingly, by using
Eq. (A2), the following relationships can be derived [87]:

δ�k

δ�t
= J − σRk�,

(A5)
δ2�k

δ�tδ�
+ σRk = δJ t

δ�t
=

[
δ2Wk

δJ tδJ

]−1

.

The definition of �k[�] in Eq. (A3) is such that [87]
�k=�[�] ≈ S[�]; i.e., when k is equal to the ultraviolet
cutoff � of the theory, the effective action �k reduces to
the “microscopic” action S[�] evaluated on the expectation
value �. This can also be easily seen by taking a Gaussian
microscopic action S[�]; in this case a simple calculation
shows that �k[�] = S[�]. We can now derive the FRG
equation by taking the total derivative of the effective action
with respect to k:

d�k

dk
= −∂Wk

∂k
−

∫
t,r

(
δW

δJ
− �t

)
dJ

dk
− 1

2

∫
t,r

�tσ
dRk

dk
�

= 1

2

∫
t,r

〈
� tσ

dRk

dk
�

〉
− 1

2

∫
t,r

�tσ
dRk

dk
�

= 1

2

∫
t,r

tr

[
〈�� t〉σ dRk

dk

]
− 1

2

∫
t,r

tr

[
��tσ

dRk

dk

]

= 1

2

∫
t,r

tr

[(
δ2�k

δ�tδ�
+ σRk

)−1

σ
dRk

dk

]
, (A6)

where we repeatedly used Eqs. (A2) and (A5) and we
expressed the scalar products � tσ� and �tσ� as traces over
the internal degrees of freedom. Equation (A6) is the FRG
equation which describes the flow of the effective action �k

upon varying the infrared cutoff k.
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APPENDIX B: DERIVATION OF GAUSSIAN GREEN’S
FUNCTIONS FROM �0

In this appendix we show how the boundary action �0 in
Eq. (27) contributes to the matrix G0 defined in Eq. (29). Let us
consider the quadratic part of the effective action (we consider
Z0 = 1 and h0 = 0 for the sake of simplicity) expressed in
momentum space:

� =
∫

q

(
− 1

2τ0
φ̃2

0 + φ̃0φ0

)
+

∫
t,q

ϑ(t − t0) φ̃(φ̇ + ωqφ − Dφ̃), (B1)

where ωq = q2 + τ is the dispersion law,
∫

q ≡ ∫
ddq/(2π )d ,

and φ ≡ φ(t,q),φ̃ ≡ φ̃(t,q). By taking its second variation
�(2)(q,t,t ′) as defined in Eq. (18), one finds

�(2)(q,t,t ′) = [−V0 δ(t − t0) + B̂q(t)]δ(t − t ′), (B2)

where the matrices V0 and B̂q(t) are defined as

V0 =
(

0 −1
−1 τ−1

0

)
, B̂q(t) =

(
0 −∂t + ωq

∂t + ωq −2D

)
.

(B3)

The matrix V0 is obtained from the boundary action, and
consequently it appears in Eq. (B2) multiplied by a delta
function localized at t = t0, while the term proportional to
B̂q(t) is, instead, related to the bulk action. The matrix
G0(t,t ′) of the correlation functions, defined in Eq. (29), is
given by G0(q,t,t ′) = [�(2)]−1(q,t,t ′), where the inverse is
taken with respect to the internal matrix structure, the times
t,t ′, and the momentum q. However, since the matrix is
diagonal in q, the inversion with respect to the dependence on
momenta is trivial. Making use of the definition of G(q,t,t ′) in
Eq. (17), multiplying both sides by Geq(q,t,t ′) ≡ [B̂q(t,t ′)]−1,
and integrating over the intermediate times, one finds

G0(t,t ′) = Geq(t,t ′) + Geq(t,t0)V0G0(t0,t
′). (B4)

The explicit form of Geq(q,t,t ′) can be calculated by inverting
the Fourier transform of B̂q(t,t ′) and antitransforming in real
time:

Geq(q,t,t ′) =
∫

dω

2π
e−iω(t−t ′)[Bq(ω)]−1

=
(

Dω−1
q e−ωq |t−t ′| ϑ(t − t ′)e−ωq (t−t ′)

ϑ(t ′ − t)e−ωq (t ′−t) 0

)
.

(B5)

Notice that Bq(ω) is diagonal in the frequency ω, since B̂q(t,t ′)
depends only on the difference of times t − t ′. In fact, Geq(t,t ′)
is a time-translational invariant function which corresponds to
the correlation matrix of the model at thermal equilibrium.
Equation (B4) can be solved by iteration, and it yields the
formal solution

G0(q,t,t ′) = Geq(q,t,t ′) + Geq(q,t,t0)V0

×
+∞∑
n=0

[Geq(q,t0,t0)V0]nGeq(q,t0,t
′). (B6)

Recalling that within the response functional formalism
adopted here we set ϑ(0) = 0 in order to ensure causality [5],
we get

V0

+∞∑
n=0

[Geq(q,t0,t0)V0]n

= V0[1 − Geq(q,t0,t0)V0]−1 =
(

0 −1
−1 Dω−1

q + τ−1
0

)
.

(B7)

Combining Eqs. (B6), (B5), and (B7), one finds the same
Gaussian Green’s functions as those in Eqs. (11) and (10),
with � = 1 and T replaced by D.

APPENDIX C: INTEGRAL EQUATION FOR G

In this appendix we derive and discuss Eq. (28) for the
matrix G defined in Eq. (17). The former can be obtained
by multiplying both sides of the latter by G−1

0 − V defined
in Eq. (22) and by integrating over intermediate coordinates,
which yields∫

y

[
G−1

0 (x,y) − V (x,y)
]
G(y,x ′) = δ(x − x ′), (C1)

where the delta function on the right-hand side of Eq. (C1)
appears as a consequence of Eq. (23). Accordingly, by
multiplying both sides of Eq. (C1) by G0 and integrating over
the intermediate coordinates, and by using Eq. (24), one finds
the integral equation for G

G(x,x ′) = G0(x,x ′) +
∫

y

G0(x,y) V (y)G(y,x ′). (C2)

This equation can be formally solved by iteration, and the
solution can be expressed as the infinite series

G(x,x ′) = G0(x,x ′) +
+∞∑
n=1

Gn(x,x ′), (C3)

where Gn are convolutions given by

Gn(x,x ′) ≡
∫

y1...yn

G0(x,y1)V (y1)G0(y1,y2)

× · · ·V (yn)G0(yn,x
′). (C4)

The formal solution Eq. (C3) can be inserted into Eq. (16),
providing a convenient expression for the FRG equation, which
now reads (as in the main text, the dependence of � and R on
k is understood)

d�

dk
=

+∞∑
n=0

��n, (C5)

where

��0 ≡ 1

2

∫
x

tr

[
G0(x,x)

dR

dk
σ

]
(C6)

and

��n = 1

2

∫
x

tr

[
Gn(x,x)

dR

dk
σ

]
for n � 1. (C7)
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A straightforward calculation shows that ��0 ∝ ϑ(0) and
therefore this term vanishes, since we assumed from the outset
ϑ(0) = 0 in order to ensure causality [5]. As a result, the sum
over n in Eq. (C5) actually starts from n = 1, as in Eq. (31).

The FRG equation in the form of Eq. (C5) can be used to
study the case of systems with broken time-translational sym-
metry, since each ��n can now be calculated independently of
the presence of such a symmetry. However, we emphasize that
in general it is not possible to sum the series on the right-hand
side of Eq. (C5) in a closed form, because the convolutions in
��n are generically rather complicated nonlocal functions of
the fields φ and φ̃.

If, instead, time-translational invariance is not broken, e.g.,
when one takes the limit t0 → −∞ in the action (20), the
matrix G determined from Eq. (C3) is identical to the one
obtained by the direct inversion of Eq. (17). In order to
show this, let us assume that one is interested only in the
renormalization of the potential U , disregarding those of K,D,
and Z. Then one makes use of the so-called local-potential ap-
proximation [67,87,92], in which the field-dependent function

V (r,t) introduced in Eq. (25) is evaluated on configurations
of the fields φ and φ̃ which are constant in space and time,
such that V (r,t) is actually independent of r and t . As a
consequence of time-translational invariance, G depends only
on the difference of its arguments, i.e., G0(x,x ′) = G0(x − x ′)
and G(x,x ′) = G(x − x ′). Then, after taking the Fourier
transform with respect to the relative coordinates r − r′ and
t − t ′, the convolutions in Eq. (C3) become products of the
G0(k,ω), which are functions of the momentum k and of the
frequency ω. Accordingly, this equation becomes

G(k,ω) =
+∞∑
n=0

G0(k,ω)[V G0(k,ω)]n

= [
G−1

0 (k,ω) − V
]−1

. (C8)

This expression can thus be used in Eq. (16), which then
acquires a closed form. Notice that Eq. (C8) could have been
obtained directly by simply taking the Fourier transform of
Eq. (17) with the definition (22).

APPENDIX D: CALCULATION OF ��1 AND ��2

In this appendix, we detail the calculations which lead to Eqs. (35) and (42). Starting from Eq. (C7), we find

��1 = 1

2

∫
t,t ′,r,r′

tr

[
G0(r − r′,t,t ′) V (t ′,r′)G0(r′ − r,t ′,t)σ

dR

dk

]
= 1

2

∫
t,t ′,q,r′

tr

[
G0(q,t,t ′) V (t ′,r′)G0(q,t ′,t)σ

dR

dk
(q)

]
= kd+1 ad

d

∫
t,t ′,r′

tr[G0(k,t,t ′) V (t ′,r′)G0(k,t ′,t)σ ], (D1)

where ad = 2/[�(d/2)(4π )d/2], with d the spatial dimensionality and �(x) the gamma function. In the second equality of
Eq. (D1) one expresses G0(r,t,t ′) in terms of its Fourier transforms G0(q,t,t ′) and then calculates the integral over the spatial
coordinates r. In the third equality, instead, after performing the integration over angular variables (which generates the factor
ad ), the integral over momenta q becomes trivial since the function [see Eq. (21)]

dR(q)

dk
= 2k ϑ(k2 − q2) (D2)

restricts the integration domain to 0 � q � k, within which G0(q,t,t ′) is constant and equal to G0(k,t,t ′) as a consequence of the
modified dispersion relation in Eq. (30). Similarly, ωk,q is replaced by ωk,q�k = ωk,k = ωq=k [see Eq. (30) and after Eq. (11)].
Note that, since K is not renormalized within this approximation, it does not contribute to Eq. (D2) and, for simplicity, we set
K = 1. Finally, by using the definitions (29) and (34), one evaluates the trace in Eq. (D1), finding

��1 = − 2kd+1 ad

d
g

∫
r′

∫ +∞

t0

dt ′ φ̃(r′,t ′)φ(r′,t ′)
∫ +∞

t0

dt GR(k,t ′,t)GC(k,t ′,t)

= − kd+1 ad

d

gD

ω2
k

∫
r

∫ +∞

t0

dt ′ φ̃(t ′,r)φ(t ′,r)[1 − fτ (t ′ − t0)], (D3)

where in the last equality the integral over time t was calculated. The function fτ (t) is defined in Eq. (36) and corresponds to the
time-dependent part of the result of the integration over t . Note that the terms proportional to φ2 contained in V do not appear
in the final result (as required by causality [5,63]) since they would be multiplied by a factor ϑ(t − t ′)ϑ(t ′ − t) = 0. The last
equality of Eq. (D3) is nothing but Eq. (35) of the main text.

The calculation of ��2 is lengthier, but it proceeds as discussed above for ��1. From the definition in Eq. (C7) one has

��2 = 1

2

∫
t,t ′,t ′′,r,r′,r′′

tr

[
G0(r − r′,t,t ′)V (t ′,r′)G0(r′ − r′′,t ′,t ′′)V (t ′′,r′′)G0(r′′ − r,t ′′,t)

dR

dk

]
= 1

2

∫
t,t ′,t ′′,r′,r′′,q,q′

eir′ ·(q′−q) tr

[
G0(q,t,t ′)V (t ′,r′ + r′′)G0(q ′,t ′,t ′′)V (t ′′,r′′)G0(q,t ′′,t)

dR(q)

dk

]
174301-11
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≈ 1

2

∫
t,t ′,t ′′,r′,r′′,q,q′

eir′ ·(q′−q)tr

[
G0(q,t,t ′)V (t ′,r′′)G0(q ′,t ′,t ′′)V (t ′′,r′′)G0(q,t ′′,t)

dR(q)

dk

]
= kd+1 ad

d

∫
t,t ′,t ′′,r′′

tr[G0(k,t,t ′)V (t ′,r′′)G0(k,t ′,t ′′)V (t ′′,r′′)G0(k,t ′′,t)σ ], (D4)

where in the second equality we expressed the various G0(r,t,t ′) [see Eq. (29)] in terms of their Fourier transforms, we made the
change of variables r′ → r′ + r′′, and we integrated over the spatial coordinate r. In the third step we expanded V (t ′,r′ + r′′) ≈
V (t ′,r′′) in order to retain only local combinations of fields, while in the last step we integrated over r′ and calculated the trivial
integrals over q and q′. After determining the trace on the basis of the definitions (29) and (34), and by noticing that the prefactor
of the term ∝φ4 vanishes (as required by causality [5,63]) as it contains the factor ϑ(t − t ′)ϑ(t ′ − t ′′)ϑ(t ′′ − t) = 0, Eq. (D4)
becomes

��2 = kd+1 ad

d
g2

∫
r′′

∫ +∞

t0

dt dt ′dt ′′ {2 φ̃(t ′)φ(t ′)φ̃(t ′′)φ(t ′′) G0C(k,t ′,t ′′)G0C(k,t ′′,t)G0R(k,t ′,t)

+ φ̃(t ′)φ(t ′)φ2(t ′′)[G0C(k,t ′,t ′′)G0R(k,t,t ′′)G0R(k,t ′,t)

+ G0C(k,t ′,t ′′)G0R(k,t,t ′′)G0R(k,t ′,t) + G0C(k,t,′t)G0R(k,t ′,t ′′)G0R(k,t ′′,t)]}

	 kd+1 ad

d
g2

∫
r′′

∫ +∞

t0

dt ′[2φ̃2(t ′)φ2(t ′)FD(t ′) + φ̃(t ′)φ3(t ′)Fg(t ′)], (D5)

where we omitted the dependence on r′′ of the fields for the sake of clarity. In the last step of Eq. (D5), we expanded the fields
for t ′ 	 t ′′ as φ(t ′′) 	 φ(t ′) and φ̃(t ′′) 	 φ̃(t ′) in order to retain only combinations of the fields local in time, and we introduced
the functions

FD(t ′) =
∫ +∞

t0

dt dt ′′G0C(k,t,t ′)G0C(k,t ′,t ′′)G0R(k,t ′′,t) (D6)

and

Fg(t ′) =
∫ +∞

t0

dt dt ′′[G0C(k,t ′,t ′′)G0R(k,t,t ′′)G0R(k,t ′,t) + G0C(k,t,t ′′)G0R(k,t ′,t ′′)G0R(k,t ′,t)

+ G0C(k,t,t ′)G0R(k,t ′,t ′′)G0R(k,t ′′,t)]. (D7)

The functions FD and Fg can be easily evaluated using Eqs. (11) and (10), and they render

FD(t) = 1

4

D2

ω4
k

[3 − fD(t − t0)], (D8)

Fg(t) = D

ω3
k

[
1 − fg(t − t0)

]
, (D9)

with

fD(t) =
{

2 + 2ωkt − 2(1 + ωkt)
2

(
ωk

Dτ0
− 1

)
−

(
ωk

Dτ0
− 1

)2
}

e−2ωkt , (D10)

fg(t) =
[

1 + 2ωkt − 2(ωkt)
2

(
ωk

Dτ0
− 1

)]
e−2ωkt . (D11)

Finally, substituting Eqs. (D8) and (D9) into Eq. (D5), we find Eq. (42) of the main text.

APPENDIX E: FLOW EQUATIONS IN THE
ORDERED PHASE

In this appendix, we will detail the derivation of the
flow equations for the potential expanded around a finite
homogeneous value φ = φm and φ̃ = 0. For the sake of
clarity, we consider the potential U in Eq. (52) with λ = 0.
The generalization to the case λ = 0 is straightforward and
proceeds as in the equilibrium case (see, for instance, Refs. [87]
and [69]).

First of all, since the factor K is renormalized within the
ansatz discussed here, the derivative with respect to k of the
regulator R(q) defined in Eq. (21) has also to account for

the renormalization factor K on k, as

dR(q)

dk
= K

k
ϑ(k2 − q2)[2k2 − ηK (k2 − q2)], (E1)

where we made use of the definition of ηK in Eq. (55); see
also Ref. [69]. In fact, since the factor K depends on k within
this approximation, the derivative with respect to k of Eq. (21)
produces a contribution proportional to ηK .

Then, by taking the second variation of the effective action
� in Eq. (20) [see Eq. (18)], we cast the equation for the
function G defined in Eq. (17) into the same form as Eq. (C2),
with the field-dependent function V defined as (we assume
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t0 = 0 for simplicity)

V (x) = −g ϑ(t)

(
ρ̃(x) ρ(x) − ρm

ρ(x) − ρm 0

)
, (E2)

where we define

ρ ≡ φ2

2
, ρ̃ = φ̃φ, ρm ≡ φ2

m

2
, (E3)

while G0 is defined according to Eq. (29), but with the
postquench parameter r replaced by

m = 2

3
ρmg. (E4)

The use of theZ2 invariants ρ and ρ̃ is customary in the context
of FRG [69] and it helps in simplifying the notation in what
follows. The form of V (x) in Eq. (E2) allows us to express the
right-hand side of the FRG equation (31) as a power series of
ρ − ρm, in the spirit of Eq. (C5); this provides, together with
the vertex expansion (19), a way to unambiguously identify
the renormalization of the terms appearing in the potential U
in Eq. (52). In fact, ρm and the couplings g and λ are identified
as [92]

dU
dρ

∣∣∣∣
ρ=ρm

= 0,
g

3
= d2U

dρ2

∣∣∣∣
ρ=ρm

,
λ

15
= d3U

dρ3

∣∣∣∣
ρ=ρm

, (E5)

where the first condition actually defines ρm as the minimum
of the potential. In terms of the effective action �, Eq. (E5)
become [69,96]

δ�

δρ̃

∣∣∣∣
ρ̃=0

ρ=ρm

= 0,
g

3
= δ2�

δρ̃ δρ

∣∣∣∣
ρ̃=0

ρ=ρm

,
λ

15
= δ3�

δρ̃ δρ2

∣∣∣∣
ρ̃=0

ρ=ρm

.

(E6)

By taking a total derivative with respect to k of each equality
in Eqs. (E6), one finds

δ

δρ̃

∂�

∂k

∣∣∣∣
ρ̃=0

ρ=ρm

+ δ2�

δρ̃ δρ

∣∣∣∣
ρ̃=0

ρ=ρm

dρm

dk
= 0, (E7)

1

3

dg

dk
= δ2

δρ̃ δρ

∂�

∂k

∣∣∣∣
ρ̃=0

ρ=ρm

+ δ3�

δρ̃ δ2ρ

∣∣∣∣
ρ̃=0

ρ=ρm

dρm

dk
, (E8)

1

15

dλ

dk
= δ3

δρ̃ δρ2

∂�

∂k

∣∣∣∣
ρ̃=0

ρ=ρm

+ δ4�

δρ̃ δ3ρ

∣∣∣∣
ρ̃=0

ρ=ρm

dρm

dk
, (E9)

which, after replacing ∂�/∂k with the FRG equation (16),
render the flow equations for ρm, g, and λ. For the case of the
potential U in Eq. (52) with λ = 0, by using Eq. (E6), the set
of flow equations (E7) and (E8) simplifies as

dρm

dk
= − 3

g

δ

δρ̃

∂�

∂k

∣∣∣∣
ρ̃=0

ρ=ρm

= − 3

g

δ��1

δρ̃

∣∣∣∣
ρ̃=0

ρ=ρm

, (E10)

1

3

dg

dk
= δ2

δρ̃ δρ

∂�

∂k

∣∣∣∣
ρ̃=0

ρ=ρm

= δ2��2

δρ̃ δρ

∣∣∣∣
ρ̃=0

ρ=ρm

, (E11)

where we used Eq. (C5) with ��1 and ��2 defined as in
Eqs. (C7) and (C4) in terms of the V (x) in Eq. (E2). The
explicit form of the flow equations comes from a calculation
analogous to the one discussed in Sec. IV and in Appendix D

[see Eqs. (35) and (42)]. In particular, the flow of m, defined in
Eq. (E4), takes contributions from both the flow equations for
ρm and g. Similarly, the renormalization of Z0 is determined
by the contribution localized at t = 0 of the coefficient of the
quadratic term φ̃φ in the effective action (20) equipped with
the potential (52).

APPENDIX F: ANOMALOUS DIMENSIONS

In this appendix we discuss the derivation of the renor-
malization of K , Z, and D resulting from the potential U in
Eq. (52) and from the effective action � in Eq. (20).

1. Renormalization of D

The strength D of the Markovian noise can be unambigu-
ously defined from the effective action � in Eq. (20) as [69]

D = −ρm

δ2�

δ2ρ̃

∣∣∣∣
ρ̃=0

ρ=ρm

, (F1)

where ρ and ρ̃ are defined in Eq. (E3). By differentiating the
previous equation with respect to k, we find

dD

dk
= −

(
δ2�

δ2ρ̃
+ δ3�

δ2ρ̃δρ

)∣∣∣∣
ρ̃=0

ρ=ρm

dρm

dk
− ρm

δ2

δ2ρ̃

∂�

∂k

∣∣∣∣
ρ̃=0

ρ=ρm

.

(F2)

For the effective action � in Eq. (20) with the potential U in
Eq. (52), the terms in parentheses in Eq. (F2) vanish and the
flow equation for D simplifies as

dD

dk
= −ρm

δ2

δ2ρ̃

∂�

∂k

∣∣∣∣
ρ̃=0

ρ=ρm

= −ρm

δ2��2

δ2ρ̃

∣∣∣∣
ρ̃=0

ρ=ρm

, (F3)

where we used Eqs. (C5) and (C7) with V (x) as in Eq. (E2). In
fact, a direct inspection of Eq. (42) shows that ��2 contains a
term proportional to ρ̃2, while any other term ��n with n > 2
generated by the field-dependent function (E2) vanishes when
evaluated for ρ = ρm. Accordingly, by calculating ��2 as in
Eq. (42) (see also Appendix D), in the long-time limit within
which the function fD(t) [see Eqs. (42) and (D10)] vanishes,
and by applying Eq. (F3), we find the equation

dD

dk
= −3kd+1 ad

d

KD2

Z

(
1 − ηK

d + 2

)
ρmg2

(Kk2 + m)4
,

(F4)

with m given in Eq. (E4). Note that the factor 1 − ηK/(d + 2)
comes from the integration over momenta with dR/dk given
by Eq. (E1). According to definition (55), ηD is eventually
given by

ηD = 3kd+2 ad

d

KD

Z

(
1 − ηK

d + 2

)
ρmg2

(Kk2 + m)4
. (F5)

2. Renormalization of Z

Following the general procedure described, e.g., in
Refs. [69,96], in order to evaluate the correction to the
coefficient Z, we express the fields φ and φ̃ as fluctuations
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around the homogeneous field φm:

φ(r,t) = φm + δφ(r,t), φ̃(r,t) = δφ̃(r,t). (F6)

By replacing Eq. (F6) into the field-dependent function V (x)
defined in Eq. (E2), we find

V (x) = V1(x) + V2(x), (F7)

with V1 being linear in the fluctuations δφ and δφ̃, i.e.,

V1(x) = −gφmϑ(t)

(
δφ̃(x) δφ(x)
δφ(x) 0

)
, (F8)

while V2 contains only terms quadratic in the fluctuations, i.e.,

V2(x) = −gϑ(t)

(
δφ(x)δφ̃(x) [δφ(x)]2/2
[δφ(x)]2/2 0

)
. (F9)

When V in Eq. (F7) is substituted in the expression of ��2

in Eq. (D4), it produces a term which contains a product of
two V1 calculated at different spatial and temporal coordinates,
generating a quadratic term ∝δφδφ̃, nonlocal in both spatial
and temporal coordinates. Since we are interested in the
renormalization of Z, we can restrict ourselves to terms which
are local in space and therefore we can use Eq. (D4) and replace
V by V1 in it; this gives [cf. Eq. (D5)]

��2

∣∣
V →V1

= 4kd+1 ad

d
K

(
1 − ηK

d + 2

)
g2ρm

∫
r

∫ +∞

t0

dt dt ′dt ′′ {2 δφ̃(t ′)δφ̃(t ′′) G0C(k,t ′,t ′′)G0C(k,t ′′,t)G0R(k,t ′,t)

+ δφ̃(t ′)δφ(t ′′)[G0C(k,t ′,t ′′)G0R(k,t,t ′′)G0R(k,t ′,t) + G0C(k,t ′,t ′′)G0R(k,t,t ′′)G0R(k,t ′,t)

+ G0C(k,t,′t)G0R(k,t ′,t ′′)G0R(k,t ′′,t)]}, (F10)

where the dependence of the fluctuations on the spatial coordinates r has been omitted for simplicity. Then, by neglecting the term
∝δφ̃2, which generates only additional irrelevant terms, and by expanding δφ(t ′′) for t ′′ 	 t ′ as δφ(t ′′) 	 δφ(t ′) + (t ′′ − t ′)δφ̇(t ′),
keeping only the derivative, from Eq. (F10) we find

��2

∣∣
V →V1

	 4kd+1 ad

d
K

(
1 − ηK

d + 2

)
g2ρm

∫
r

∫ +∞

t0

dt ′δφ̃(t ′)δφ̇(t ′)FZ(t ′), (F11)

where

FZ(t ′) =
∫ +∞

t0

dt dt ′′(t ′′ − t ′)[G0C(k,t ′,t ′′)G0R(k,t,t ′′)G0R(k,t ′,t)

+ G0C(k,t,t ′′)G0R(k,t ′,t ′′)G0R(k,t ′,t) + G0C(k,t,t ′)G0R(k,t ′,t ′′)G0R(k,t ′′,t)]. (F12)

The function FZ(t) can be easily evaluated using Eqs. (11)
and (10), and reads

FZ(t) = D

4ω4
k

[3 − fZ(t − t0)], (F13)

where fZ(t) is a function which vanishes exponentially fast
upon increasing t and therefore does not contribute to the
renormalization of Z at long times. Finally, by replacing
Eq. (F13) into Eq. (F11), and by comparing the right-hand
side of Eq. (C5) with its left-hand side in which the effective
action (20) has been inserted, one finds the flow equation for
Z:

dZ

dk
= −3kd+1 ad

d

KD

Z

(
1 − ηK

d + 2

)
g2ρm

(Kk2 + m)4
Z,

(F14)

where m is given in Eq. (E4). By using the definitions in
Eq. (55), one thus finds the expression of the anomalous
dimension ηZ:

ηZ = 3kd+2 ad

d

KD

Z

(
1 − ηK

d + 2

)
g2ρm

(Kk2 + m)4
. (F15)

3. Renormalization of K

The calculation of the flow equation for K proceeds as
in the case of Z discussed in the previous section; i.e., we

expand the field φ around the homogeneous configuration as
in Eq. (F6). This renders the same field-dependent function
V (x) as in Eq. (F7), containing a term V1 linear in the
fluctuations which—when inserted in the expression (D4)
for ��2—generates quadratic terms which are nonlocal in
spatial and temporal coordinates. It is convenient to define K

as follows [96]:

K = N ∂

∂p2

δ2�

δφ̃(t, − p)δφ(t,p)

∣∣∣∣ p=0
δφ̃=δφ=0

, (F16)

where N is a normalization factor formally given by N =
(2π )d/[δ(d)(q = 0)δ(t = 0)], and p is a given momentum,
eventually vanishing. By taking the total derivative with
respect to k of the previous expressions, we find

dK

dk
= N ∂

∂p2

δ2

δφ̃(t, − p)δφ(t,p)

∂�

∂k

∣∣∣∣ p=0
δφ̃=δφ=0

= N ∂

∂p2

δ2��2

∣∣
V →V1

δφ̃(t, − p)δφ(t,p)

∣∣∣∣ p=0
δφ̃=δφ=0

, (F17)

where in the last equality we used Eq. (C5) and the fact that
the sole nontrivial contribution comes from the part of ��2

(indicated as ��2|V →V1
in the previous equation) involving

the product of two V1 (see Appendix F 2). From Eq. (D4), we

174301-14



UNIVERSAL SHORT-TIME DYNAMICS: BOUNDARY . . . PHYSICAL REVIEW B 94, 174301 (2016)

find with some simple calculations

��2

∣∣
V →V1

= 1

2

∫
t,t ′,t ′′,q,q′

tr

[
G0(q,t,t ′)V (t ′,q − q′)G0(q ′,t ′,t ′′)

× V (t ′′,q′ − q)G0(q,t ′′,t)
dR

dk
(q)

]
	 2g2ρm

∫
t ′,q,q′

δφ̃(q − q′,t ′)δφ(q′ − q,t ′)

× FK (q,q ′,t ′)
dR(q)

dk
, (F18)

where V (t,q) = ∫
r e−iq·rV (t,r) and in the last step we retained

only the part of the fields which is local in time by expanding
them as δφ(t ′′) 	 δφ(t ′) for t ′′ 	 t ′. In the last equality of
Eq. (F18), we also discarded the term proportional to δφ̃2,
which does not contribute to the renormalization of K . The
function FK (q,q ′,t ′) in Eq. (F18) is defined as

FK (q,q ′,t ′)

=
∫ +∞

t0

dt dt ′′[G0C(q ′,t ′,t ′′)G0R(q,t,t ′′)G0R(q,t ′,t)

+ G0C(q,t,t ′′)G0R(q ′,t ′,t ′′)G0R(q,t ′,t)

+ G0C(q,t,t ′)G0R(q ′,t ′,t ′′)G0R(q,t ′′,t)]. (F19)

Then, combining Eqs. (F17) and (F18), one finds

δ2��2

∣∣
V →V1

δφ̃(t, − p)δφ(t,p)
= 2g2ρm

N

∫
q
FK (q,|q − p|,t)dR(q)

dk
.

(F20)

In order to evaluate Eq. (F17), we need to retain the
contribution proportional to p2 from FK (q,|q − p|,t) defined
in Eq. (F19). To this end, we define the function P (q) ≡
K[q2 + (k2 − q2)ϑ(k2 − q2)] and note that G0R,0C(q,t,t ′)
depend on q via P (q), as their explicit expression is given by
Eqs. (5) and (6) with ωq replaced by ωk,q = P (q) + τ given
in Eq. (30). For a generic function of P (q) one can write

∂2

∂qi∂qj

= ∂P (q)

∂qi

∂P (q)

∂qj

∂2

∂P 2
+ ∂2P

∂qi∂qj

∂

∂P
, (F21)

where i,j = 1, . . . ,d label the components of the momenta qi .
A simple calculation shows that

∂P (q)

∂qi

= 2Kqi[1 − ϑ(k2 − q2)],

(F22)
∂2P (q)

∂qi∂qj

= 2Kδij [1 − ϑ(k2 − q2)] + 4Kqiqj δ(k2 − q2),

and therefore, all contributions proportional to 1 − ϑ(k2 − q2)
vanish when inserted into the integral on the right-hand side
of Eq. (F20), because they multiply the term ∝ϑ(k2 − q2)
contained in dR/dk [see Eq. (E1)]. Accordingly, by discarding
these contributions, the derivatives ∂2G0R,0C(q,t,t ′)/∂qi∂qj

which are involved in the expansion of the function FK in the

integrand of Eq. (F20) can be effectively replaced by

∂2G0R/0K (q,t,t ′)
∂qi∂qj

�→ ∂G0R/0K (q,t,t ′)
∂P (q)

4Kqiqj δ(k2 − q2),

(F23)

where, from Eqs. (10) and (11) with ωq → ωk,q given in
Eq. (30), we have

∂G0R(q,t,t ′)
∂P (q)

= −(t − t ′)G0R(q,t,t ′), (F24)

∂G0C(q,t,t ′)
∂P (q)

= − D

ωk,q

[(
1

ωk,q

+ |t − t ′|
)

e−ωk,q |t−t ′|

+
(

1

ωk,q

+ t + t ′
)(

ωk,q

Dτ0
− 1

)
e−ωk,q (t+t ′)

]
.

(F25)

Accordingly, terms proportional to p2 in the Taylor ex-
pansion of FK (q,|q − p|,t) can be obtained by using
Eqs. (F19), (F23), (F24), and (F25), and they eventually read

1

2

d∑
i,j=1

pipj

∂2FK (q,q,t)

∂qi∂qj

= 2K(q · p)2δ(k2 − q2)F̃K (q,t),

(F26)

with

F̃K (q,t ′)

=
∫ +∞

t0

dt dt ′′
[
∂G0C(q,t ′,t ′′)

∂P (q)
G0R(q,t,t ′′)G0R(q,t ′,t)

+ G0C(q,t,t ′′)
G0R(q,t ′,t ′′)

∂P (q)
G0R(q,t ′,t)

+ G0C(q,t,t ′)
∂G0R(q,t ′,t ′′)

∂P (q)
G0R(q,t ′′,t)

]
. (F27)

Then, by inserting Eq. (F26) into Eq. (F20), and by using the
fact that, from Eq. (E1),

dRk

dk
δ(k2 − q2) = 1

2
Kδ(k − q), (F28)

as well as the identity for the d-dimensional integral of a
rotational-invariant function f (q)∫

ddq (q · p)2f (q) = p2

d

∫
ddq q2 f (q), (F29)

we find

∂2

∂p2

δ2��2

∣∣
V 2

1

δφ̃(t, − p)δφ(t,p)

∣∣∣∣
p=0

= 2
ad

d
kd+1 g2ρm

N K2F̃K (k,t).

(F30)

Finally, a lengthy but straightforward evaluation of F̃K (k,t),
using Eqs. (F19), (10), and (11) with ωq → ωk,q [see Eq. (30)],
yields

F̃K (k,t) = − D

Zω4
k

[1 − fK (t)], (F31)

where ωk = ωq=k and fK (t) is a function which vanishes
exponentially fast upon increasing t and therefore does not
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contribute to the renormalization of K at long times. By inserting Eqs. (F31) and (F30) into Eq. (F17), we finally find the flow
equation for K , which reads

dK

dk
= −2kd+1 ad

d

DK2

Z

g2ρm

(Kk2 + m)4
, (F32)

and, according to Eq. (55), the anomalous dimension ηK reads

ηK = 2kd+2 ad

d

DK

Z

g2ρm

(Kk2 + m)4
. (F33)

APPENDIX G: FLOW EQUATIONS

In this appendix we report the explicit form of the flow equations derived from the effective action � in Eq. (20) with the
potential U in Eq. (52) and λ = 0. These equations can be derived by repeating the calculations presented in Appendices E and F
but by keeping λ finite; here we report only the final result of this somewhat lengthy calculation. The flow equations for the
couplings m̃, g̃, and λ̃, defined in Eq. (56), turn out to be

k
dm̃

dk
= (−2 + ηK )m̃ +

(
1 − ηK

d + 2

)
2g̃

(1 + m̃)2

[
1 + 3

2

(
m̃̃λ

g̃2

)2

+ 3m̃

1 + m̃

(
1 + m̃̃λ

g̃2

)2
]
, (G1)

k
dg̃

dk
= g

[
d − 4 + 2ηK +

(
1 − ηK

d + 2

)
6g

(1 + m̃)3

(
1 + m̃̃λ

g̃2

)2
]

+
(

1 − ηK

d + 2

)
λ̃

(1 + m̃)2

(
−2 + 3

m̃λ̃

g̃2

)
, (G2)

k
dλ̃

dk
= λ̃

[
2d − 6 + 3ηK + 30

(
1 − ηK

d + 2

)
g̃

(1 + m̃)3

(
1 + m̃̃λ

g̃2

)]
− 18

(
1 − ηK

d + 2

)
g̃2

(1 + m̃)4

(
1 + m̃̃λ

g̃2

)
, (G3)

while the anomalous dimensions ηK,ηD,ηZ and η0, defined, respectively, in Eqs. (55) and (46), read

ηK = 3m̃g̃

(1 + m̃)4

(
1 + m̃̃λ

g̃2

)2

, (G4)

ηZ = ηD =
(

1 − ηK

d + 2

)
9m̃g̃

2(1 + m̃)4

(
1 + m̃λ̃

g̃2

)2

, (G5)

η0 = −
(

1 − ηK

d + 2

)
g̃

(1 + m̃)3

[
1 + 3

2

(
m̃̃λ

g̃2

)2

+ 9m̃

2(1 + m̃)

(
1 + m̃̃λ

g̃2

)2
]
. (G6)

Setting to zero Eqs. (G1), (G2), (G3), we find numerically (using Wolfram Mathematica) the following fixed point values of the
rescaled couplings (up to the second significative digit):

m̃∗ 	 0.30, g̃∗ 	 0.26, λ̃∗ 	 0.04. (G7)

The linearization of the flow equations (G1), (G2), and (G3) around the fixed point values given in Eq. (G7) determines the
associated stability matrix, and from the inverse of its negative eigenvalue (see for instance Ref. [95]), we find the critical
exponent ν reported in Sec. V C. The values η∗

K,Z,0 of the anomalous dimensions at the fixed point are found by replacing directly
Eq. (G7) into the expressions (G4), (G5), and (G6).
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