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Using the Landau-Ginzburg-Devonshire theory, we established the role of the flexoelectric coupling between
the gradients of elastic strain and polarization in the stability of spatially modulated phases in ferroics, such
as incipient and proper ferroelectrics with commensurate and incommensurate long-range-ordered phases.
We included the square of elastic strain gradient in the Landau-Ginzburg-Devonshire functional because
this term provides the functional stability for all values of the strain gradient. Analytical expressions for
polarization, strain, dielectric susceptibility, and stability threshold were derived for a one-dimensional case.
The expressions show that the maximal possible values of the static flexoelectric effect coefficients (upper
limits) established by Yudin, Ahluwalia, and Tagantsev without the square of elastic strain gradient and
other higher order gradients terms lose their direct meaning. Considering the gradients, the temperature
dependent condition for the flexocoupling magnitude exists instead of the upper limits. Also, we established
that spatially modulated phases appear and become stable in commensurate ferroelectrics if the flexocoupling
constant exceeds a critical value. The critical value depends on the electrostriction and elastic constants,
temperature, and gradient coefficients in the Landau-Ginzburg-Devonshire functional. We calculated soft phonon
dispersion in commensurate and incommensurate long-range-ordered phases of ferroelectrics with the square
of elastic strain gradient, static, and dynamic flexocoupling. It appeared that the dispersion of the optical
mode is slightly sensitive to the flexocoupling, and the dispersion of acoustic mode strongly depends on the
coupling magnitude. Obtained results demonstrate that nontrivial differences in the dispersion of optical and
acoustic modes occur with the change of flexocoupling constant. Therefore, experimental determination of
soft phonon dispersion might be very informative to study the influence of strain gradients and flexocoupling
on the spatially modulated phase in ferroelectrics with commensurate and incommensurate long-range
order.
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I. INTRODUCTION

The static flexoelectric effect is the appearance of electric
polarization in solids as response to the strain gradient and
vice versa [1]. The effect was first predicted from microscopic
consideration by Mashkevich and Tolpygo [2], and shortly
after the link to the continuous medium formalism was
established by Kogan [3]. According to the continuous medium
approach, the polarization component variation δPi induced by
the static flexoelectric effect is linearly proportional to elastic
strain gradient components, ∂uij /∂x, and the proportionality
coefficient is the component of the flexocoupling tensor fijkl ,
δPi = fijkl

∂ukl

∂xj
. Following Kogan [3], fijkl values are quite

small, |fijkl| ∼ e/a, where e is the electron charge and a is the
lattice constant. The dynamic flexoelectric effect considered
microscopically by Axe et al. [4] and phenomenologically
by Yudin and Tagantsev [5] and Kvasov and Tagantsev [6]

contributes to the polarization variation, δPi = −Mij

α

∂2Uj

∂t2 ,
where Uj are the components of elastic displacement, Mij are
the components of flexodynamic tensor, and α is the dielectric
stiffness. The dynamic flexoelectric effect corresponds to the
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polarization response to accelerated motion of the medium in
the time domain.

Flexoelectricity occurs in all 32 crystalline point groups be-
cause the strain gradient breaks the inversion symmetry. Owing
to the universal nature, flexoelectricity permanently attracts
broad scientific interest [5,7], but its application potential in
homogeneous macroscopic materials is fundamentally limited
due to the small f values.

In contrast to homogeneous macroscopic systems, it is
difficult to estimate the significance of the flexoelectric
phenomena in ferroics and multiferroics (e.g., antiferro-
electrics, ferrielectrics, ferroelectrics, superparaelectrics, and
magnetoelectrics) [8–10], which are either nanosized (e.g.,
thin films, nanoparticles, fine-grained ceramics) or possess
nanoscale heterogeneity [e.g., nanoregions, dense nanodomain
structures, spatially modulated phases (SMPs)] of the order
parameter (e.g., spontaneous polarization, magnetization, an-
tiferromagnetic order parameter) [11]. The gradient of the
order parameter interacts with elastic strains in nanostructured
ferroics via the flexocoupling (e.g., flexoelectric, flexoanti-
ferrodistortive, or flexomagnetic couplings). Hence the flex-
ocouplings strongly change the structural, polar, and electro-
transport properties of ferroic thin films [12–15], nanoparticles
[16,17], fine-grained ceramics [18,19], ferroelectric [20–23],
and ferroelastic [24,25] domain walls and interfaces as well
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as inducing reentrant phases [26] and incommensurate SMPs
[27–29] in ferroelectrics.

Considering the importance of the flexoelectricity for the
physical understanding of mesoscale and nanoscale couplings
in ferroelectrics, one has to determine the static (fijkl) and
dynamic (Mij ) coupling constants. It appeared that the values
fijkl calculated from the first principles [30–33] according
to Kogan’s microscopic definition [3] can be several orders
of magnitude smaller than those measured experimentally
[34–36]. The discrepancy motivated Yudin, Ahluwalia, and
Tagantsev to establish theoretically the upper limits for the
values of the static flexoelectric coefficients fijkl in ferro-
electrics [37]. The calculated maximal values of fijkl showed
that the anomalously high flexoelectric coefficients measured
for perovskite ceramics [34–36] cannot be related with the
manifestation of the static flexoelectric effect.

Note that Yudin, Ahluwalia, and Tagantsev used the
Landau-Ginzburg-Devonshire (LGD) free energy, which in-
cluded the flexoelectric term in the form of the Lifshitz
invariant fijkl

2 (Pi
∂ ukl

∂xj
− ukl

∂ Pi

∂xj
) [1,5,37,38] but did not include

the quadratic term of elastic strain gradient vijklmn

2 ( ∂ uij

∂xm

∂ ukl

∂xn
).

The gradient term is omitted in the free energy of ferroics
considered in most studies, with the exception of several
papers, e.g., Eliseev et al. [16], Yurkov [39], Mao and Purohit
[40], and Stengel [41].

Note that Eliseev et al. [16] pointed out that the square of
elastic strain gradient creates the stable smooth distribution of
the order parameter for all values of the strain gradients since
the presence of the Lifshitz invariant essentially changes the
stability conditions of the LGD free energy. Eliseev et al.
[16] stated that the term vijklmn

2 ( ∂ uij

∂xm

∂ ukl

∂xn
) can be neglected

only for small strain gradients under the condition f 2
klmn <

gijklcijmn, wherein cijmn are the components of elastic stiffness
tensor and gijkl are the components of polarization gradient
tensor. Yurkov [39] demonstrated that the square of elastic
strain gradient changes the existing boundary conditions
for polarization and strains and produces the new form of
elastic boundary conditions. Mao and Purohit [40] propose a
general formalism for a flexoelectric phenomena description
in linear anisotropic dielectrics. They included the quadratic
contribution of the strain gradient tensor in the free energy
functional but ignored the quadratic term of the electric
polarization gradient gijkl

2 ( ∂ Pi

∂xj

∂ Pk

∂xl
) and did not consider a

ferroelectric nonlinearity. The role of the strain gradient
can be established from the analytical solutions obtained by
Mao and Purohit [40] for a number of practically important
geometries. Stengel [41] evolved the ab initio approach for
determination of the flexocoupling tensor. He considered soft
phonon spectra calculated from the first principles and pointed
out the gradient of elastic strain effects on the spectra. Also,
Stengel [41] discussed the qualitative conditions of the free
energy functional stability.

Let us emphasize that basic experimental methods, which
contain information about the spatial modulation of the
order parameter in ferroics (such as antiferroelectrics, proper,
and incipient ferroelectrics), are dielectric measurements
[42], inelastic neutron scattering [4,43–48], x-ray [49–52],
Raman [53], and Brillouin [49,52,54] scattering. Theoretical
analysis of the flexocoupling contribution to the soft

phonon eigenvectors revealed that if the stability condition
limiting the maximal value of the flexocoupling constant
f becomes inapplicable, one can expect the instability
of the commensurate homogeneous ferroelectric phase
(HFP). The instability could lead to the appearance of the
incommensurate SMPs in the long-range-ordered phase of
ferroelectrics [55]. These results demonstrate the significant
influence of the flexocoupling on the scattering spectra in the
long-range-ordered phases of different ferroics. However, the
thermodynamic analysis of the SPM stability in the ferroics
with the square of elastic strain gradient and higher gradients
of the order parameters is absent to date.

The gap in the knowledge encouraged us to study the
role of flexocoupling between the electric polarization and
elastic strain gradients in the stability of SMP in ferroics
(such as proper and incipient ferroelectrics) with the square
of elastic strain gradient and higher order gradients. Since
analytical expressions give insight into the physical nature of
the phenomena induced by the flexocoupling and provide
the simplest way for quantitative comparison with various
experiments, as well as allowing us to determine poorly defined
flexoelectric and gradient constants from the comparison with
neutron scattering spectra, our primary goal is to derive
comprehensive analytical expressions for the conditions of
different phases stability and the dispersion law of soft phonons
in paraelectric, SMP, and normal ferroelectric phases.

In order to derive the analytical expressions from the LGD
free energy, which includes the higher gradient terms, static,
and dynamic flexocoupling, we were subjected to restrict our
consideration by uniaxial ferroelectrics with one component of
the spontaneous polarization and strain. These restrictions can
be called the scalar approximation. The consequence of this
approximation is the occurrence of only one optical and one
acoustic mode in the soft phonon dispersion law, which interact
via electrostriction and flexoelectric couplings. The simpli-
fied dispersion law cannot describe the interaction between
different transverse and longitudinal optical modes and three
acoustic modes induced by cooperative effects, flexoelectric,
and electrostriction couplings in the ferroelectric phase of
multiaxial ferroelectric such as perovskites BiFeO3,BaTiO3,
or (Pb,Zr)TiO3 [55]. Moreover, the coupling between different
optical phonon modes can either act cooperatively with the
flexocoupling or against it [see, e.g., the models by Kappler
and Walker [56] and Hlinka et al. [57], adopted for organic
ferroelectrics such as (CH3)3NCH2COO·CaCl2·2H2O]. If two
or more optical modes are considered, their mutual coupling
contributes to the SMP appearance similarly to the flexoelec-
tricity standing alone [57].

Taking into account the limitations of the scalar approxi-
mation validity, we can reasonably apply obtained analytical
results to describe the experimentally observed phonon disper-
sion in uniaxial ferroics only, e.g., for commensurate ferroelec-
tric Sn2P2S6 and incommensurate ferroelectric Sn2P2Se6. We
choose the monoclinic ferroelectrics Sn2P2(SexS1−x)6 due to
their fascinating phase diagrams, relatively well-known mate-
rial parameters [58–60], and reliable neutron scattering exper-
imental data [61,62]. Rather unexpectedly, we determined that
the scalar theory describes semiquantitatively the soft phonon
dispersion in the incipient ferroelectric SrTiO3 [43], as well in
the paraelectric phase of perovskite ferroelectric PbTiO3 [44],
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probably because the interaction between different phonon
modes appeared relatively small in the ferroics.

II. SCALAR APPROXIMATION IN THE FREE ENERGY
FUNCTIONAL AND LAGRANGE FUNCTION

The LGD free energy F of a ferroic such as proper
or incipient ferroelectric acquires the simplest form for

the one-component polarization, P , coupled with the strain
tensor component, u, which depend only on the coordinate x

in the one-dimensional (1D) case [61]. A more general form of
the free energy density, which includes tensors and depends on
three coordinates, is listed in Appendix. In the simplest one-
component 1D case considered hereinafter, the bulk part of the
free energy F , which depends on P , u, and their gradients, has
the following form:

FV =
∫

dx

⎛
⎝α(T )

2 P 2 + β

4 P 4 + γ

4 P 6 + g

2

(
∂P
∂x

)2 + w
2

(
∂2P
∂x2

)2
+ h

2 P 2
(

∂P
∂x

)2

−PE − 1
2PEd − quP 2 + c

2u2 + v
2

(
∂ u
∂x

)2 − f

2

(
P ∂u

∂x
− u∂P

∂x

)
⎞
⎠. (1a)

According to Landau theory [63,64], the coefficient α

linearly depends on the temperature T for proper fer-
roelectrics such as PbTiO3,BaTiO3,Sn2P2(SexS1−x)6, and
α(T ) = αT (T − TC). For incipient ferroelectrics such as
SrTiO3, α obeys the Barrett-type formula [65], α(T ) =
αT (Tq coth(Tq/T ) − TC). TC is the real, or virtual, Curie
temperature; Tq is a characteristic temperature. All other
coefficients in Eq. (1a) are supposed to be temperature
independent. Coefficient β > 0 for the ferroics with the
second order phase transition, and β < 0 for the first order
one. Nonlinear stiffness γ should be non-negative (γ � 0)
for the stability of the functional (1a) for all P values.
Parameters g, w, and v determine the magnitude of the gradient
energy. For ferroelectrics with HFP, the gradient coefficients
g > 0 and w � 0, and the coefficients g < 0 and w > 0
for ferroelectrics with the incommensurate SMP [66]. The
nonlinear gradient parameter h is usually small, so its influence
will be neglected hereinafter. The polarization interacts with
an external electric field E. Also, we assume that the depolar-
ization field Ed is absent. The case corresponds to the trans-
verse variation of polarization components and strains. The
electrostriction coefficient q can be positive or negative. The
elastic stiffness c and the strain gradient coefficient v should
be always positive for the functional stability. Coefficient f is
the component of the static flexocoupling tensor, whose sign
is not fixed. The first 11 lines of Table I describe all symbols in
the LGD free energy (1a) and contain their numerical values
for several ferroelectrics. The known numerical values were
collected from Refs. [60,61], and [67–69]. The poorly known
and previously unknown values of f , v, w, M , and μ were
extracted by us from the fitting of the soft phonon spectra
measured by Shirane and Yamada [43] and Eijt et al. [61,62].
The fitting details are given in Sec. V.

The Lagrange function L = ∫
t
dt(F − K) consists of the

free energy F given by Eq. (1a) and the kinetic energy

K =
∫

dx

(
μ

2

(
∂P

∂t

)2

+ M
∂P

∂t

∂U

∂t
+ ρ

2

(
∂U

∂t

)2
)

, (1b)

which includes the dynamic flexocoupling [5,6] with the
magnitude M , where ρ is the density of a material and μ

is a kinetic coefficient. The elastic displacement component U

is related with the strain u as u = ∂U/∂x. The last four lines
of Table I describe the parameters of the kinetic energy (1b)

and contain the numerical values of M , μ, and ρ for several
ferroelectrics.

III. THE ANALYTICAL SOLUTIONS OF LINEARIZED
EQUATIONS OF STATE

Thermodynamic equations of state are obtained from the
variation of the free energy (1a) on the components of the
polarization P and strain u, δF/δP = 0 and δF/δu = 0. The
explicit form of the equations is

αP + βP 3 + γP 5 − g
∂2P

∂x2
+ w

∂4P

∂x4

−E − f
∂u

∂x
− 2quP = 0, (2a)

cu − v
∂2u

∂x2
+ f

∂P

∂x
− qP 2 = 0. (2b)

Let us find the solution of these equations after their
linearization in the vicinity of spontaneous values PS and
uS . The presentation of linearized solution in the form of the
Fourier integral is

P = PS +
∫

dk exp (ikx)P̃ , u = uS +
∫

dk exp (ikx)ũ.

(3)

Homogeneous spontaneous strain and order parameter
values are denoted as PS and uS , respectively. The perturbation
field is E = ∫

dk exp(ikx)Ẽ.
The spontaneous polarization and strain are absent (PS =

0, uS = 0) in the high temperature parent phase, wherein
the coefficient α > 0. In the low temperature ordered phase
(wherein α < 0 and PS �= 0, uS �= 0), the spontaneous strain
and polarization values can be determined from the equations
of state (2) at zero gradients, namely

uS = q

c
P 2

S , P 2
S = 1

2γ
(
√

β∗2 − 4αγ − β∗), (4)

where the coefficient β∗ = (β − 2 q2

c
). Expression (4) is valid

for ferroelectrics with the first and second order phase
transitions from the ordered phase to the parent phase. In
the particular case of the second order phase transition for
parameters β∗ > 0,γ = 0, the spontaneous polarization value
is P 2

S = −α/β∗, so the condition cβ > 2q2 should be valid for
the transition realization.
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TABLE I. Description of the symbols in the LGD free energy (1a) and kinetic energy (1b) and their numerical values for several ferroelectrics
with g > 0 and g < 0.

Incipient and proper ferroelectrics

Description Symbol and dimension SrTiO3 PbTiO3 Sn2P2S6 Sn2P2Se6

Coefficient at P 2 α(T ) (×C−2 · mJ) αT

(
Tq coth

( Tq

T

) − TC

)
αT (T − TC) αT (T − TC) αT (T − TC)

Inverse Curie-
Weiss constant αT (×105C−2 · mJ/K) 15 7.53 16 26

Curie temperature TC (K)
TC = 30
Tq = 54

752 337 193

LGD coefficient at P 4 β (×108 JC−4 · m5) 81 −2.90 +7.42 −4.8
LGD coefficient at P 6 γ (× 109 JC−6 · m9) 0 (data absent) 1.56 35 85
Electrostriction q(×109 Jm/C2) 2.4 since q44 = 2.4 3 since q44 = 3.0 4 (reference interval 5 (defined from
coefficient 1.6– 4.7) acoustic mode tilt)
Elastic stiffness c (×1010 Pa) 12.7 since c44 = 12.7 9 since c44 = 9.0 1.6 since c44 = 1.6 ± 0.3 1.6 (defined from
coefficient acoustic mode tilt)
Gradient g (×10−10 C−2m3J) 2 0.5 sinceg44 = 0.5 0.5 −0.6
coefficient at (∇P )2 (fitting par.) (fitting parameter) (fitting parameter)
Gradient w (×10−29 Jm5/C2) 0 0 1.8 2.5
coefficient at (∇2P )4 (data absent) (data absent) (reference value 1.8) (reference value 2.2)
Elastic strain v (×10−9 V s2/m2) 12 8 5 1
gradient (∇u)2 (fitting parameter) (fitting parameter) (fitting parameter) (fitting parameter)
Static f (V) ±1.5 ± 2.0 f44 = ± (1.6–1.8) ±1.0
flexo-coefficient (fitting parameter) (fitting parameter) (fitting parameter) (fitting parameter)
Dynamic M (×10−8 Vs2/m2) ± 24 ± 2.0 ± 2.5 ±1.5
flexo-coefficient (fitting parameter) (fitting parameter) (fitting parameter) (fitting parameter)
Kinetic coefficient μ (×10−18 s2 mJ) 22 1.59 11.0 14.5

(fitting parameter) (fitting parameter) (fitting parameter) (fitting parameter)
Material density at ρ (×103 kg/m3) 4.930 at 120 K 8.086 (at T > Tc) 1.801 2.547
normal conditions
Lattice a (nm) ax = ay = az ax = ay = az ax ≈ 0.93, ax ≈ 0.97,

constant = 0.395 at 120 K = 0.397 ay ≈ 0.75, az ≈ ay ≈ 0.77, az ≈
at (760–800) K 0.65 at (200–350) K 0.68 at (200–350) K

After linearization, Eqs. (2a) and (2b) acquire the form,

(
α + 3βP 2

S + 5γP 4
S − 2quS + gk2 + wk4

)
P̃

− (if k + 2qPS)ũ = Ẽ, (5a)

(c + vk2)ũ + (if k − 2qPS)P̃ = 0. (5b)

The linearized solution of Eqs. (5a) and (5b) is

ũ = − (if k − 2qPS)

(c + vk2)
χ̃(k)Ẽ, P̃ = χ̃ (k)Ẽ. (6)

The linear susceptibility χ̃(k) introduced in Eq. (6) is given
by the expression

χ̃ (k) =
(

α + 3βP 2
S + 5γP 4

S − 2quS + gk2 + wk4

−4q2P 2
S + f 2k2

c + vk2

)−1

. (7)

The condition of the solution (6) instability corresponds
to the divergence of the susceptibility (7). After substituting
expression (4) for uS into Eq. (7), the instability condition

acquires the form

αS + geffk2 +
(gv

c
+ w

)
k4 + wv

c
k6 − 4

q2

c
P 2

S = 0. (8)

Here, parameter αS and effective gradient coefficient geff

are introduced:

αS = α +
(

3β − 2
q2

c

)
P 2

S + 5γP 4
S , (9a)

geff =
(

g + αSv

c
− f 2

c

)
. (9b)

One can show that parameter αS is always positive. It
is equal to α in the parent phase, wherein PS = 0. The
inhomogeneous SMP can appear if the renormalized gradient
coefficient (9b) becomes negative. Since the elastic stiffness
is always positive (c > 0), the homogeneous phase P = PS

is absolutely stable under the condition f 2 < cg + αSv. The
condition is temperature dependent because of the temperature
dependence of the coefficient αS(T ).

If the strain gradient coefficient v is zero, the condition
f 2 < cg + αSv reduces to the inequality f 2 < cg, which
is nothing more that the scalar form of the tensor relation
f 2

klmn < gijklcijmn from Ref. [16]. Later on, the condition
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TABLE II. Description of dimensionless parameters and their numerical values for several ferroelectrics.

Numerical value for incipient and proper ferroelectrics

Dimensionless Analytical SrTiO3 PbTiO3 Sn2P2S6
∗ Sn2P2Se6

parameter expression above 100 K at (730–800) K at (200–440) K at (100–223) K

Wave vector k∗ = ak/π variable variable variable variable

Lattice constant a∗ = √
c/2v (a/π ) 0.07 0.30

0.26 (az
∗at 200 K)

0.3 (ay
∗at 440 K)

0.61

Static flexoconstant F ∗ = f 2/(cg) 0.09 0.89
3.20 (f44

∗at 200 K)
4.05 (f55

∗at 440 K)
−1.04

Reduced temperature α∗
v = αS (T )v/(cg) 0.64 (at 120 K) 0.04 (at 783 K)

1.03 (at440 K)
3.97 (at 200 K)

−0.08 (at 223 K)
−0.88 (at 100 K)

Stiffness constant α∗
T = vαT TC/ (gc) 0.21 1.01 3.37 −4.18

High gradient coefficient w∗ = cw/ (vg) 0 0 1.15 −6.67

Electrostriction parameter Q∗ = 4q2P 2
S /(cαS) 0

0 (at 783 K)
0.63 (at 733 K)

0 (at 440 K)
0.44 (at 200 K)

0 (at 223 K)
0.42 (at 100 K)

Electrostriction ratio 2q2/βc 0.011 −0.689 2.695 −6.510

Dynamic flexoconstant M∗ = cM/(2ρf ) 2.06 0.056
0.062 (at 440 K)
0.069 (at 440 K)

0.047

Kinetic coefficient μ∗ = cμ/ (2gρ) 1.41 0.18 0.89 −0.76
Phonon frequency ω∗ = √

4vρω/c variable variable variable Variable
Characteristic frequency ω0 = c/

√
4vρ 8.3 × 1012 s−1 5.6 × 1012 s−1 2.7 × 1012 s−1 5.0 × 1012 s−1

∗S2P2S6 fitting parameters have been determined for k ↑↑ z at 440 K and for k ↑↑ y at 200 K. Because of this, the lattice constants and
flexoelectric coefficients can be different for different directions.

f 2
44 < g44c44 (along with other similar conditions) has been

derived for perovskite symmetry by Yudin, Ahluwalia, and
Tagantsev [37] and interpreted as the upper limit for the
magnitude of the static flexoelectric tensor without the gradient
term vijklmn

2 ( ∂ uij

∂xm

∂ ukl

∂xn
) and other higher order gradients in the free

energy of ferroelectrics. However, Mao and Purohit derived
more complex stability conditions for the spatially confined
systems with nonzero strain gradient tensor vijklmn �= 0 [see

Eq. (28) in Ref. [40]], which can be reduced to the simple
inequality f 2 < αv in the scalar approximation because the
authors assume that g = 0 in the designations of this paper.
Following Ref. [37], Stengel used the inequality f 2 < cg for
the critical value of the flexoelectric coefficient [see Eq. (106)
in Ref. [41]].

Below, we will show that the necessary temperature
dependent condition geff < 0 per se is not sufficient for the
stability of the spatial modulation onset.

If one can neglect the smallest term vwk6 in Eq. (8), it reduces to the biquadratic equation with four roots:

k±
1,2 = ±

√√√√√ cg

2(gv + cw)

⎛
⎝f 2

cg
− 1 − αSv

cg
±

√(
f 2

cg
− 1 − αSv

cg

)2

− 4
(gv + cw)

cg2

(
αS − 4

q2

c
η2

S

)⎞
⎠. (10)

Subscripts 1 and 2 in expression (10) correspond to the + and − signs before the outer square root. The solution k+
1,2

corresponds to the + sign before the inner square root, and root k−
1,2 corresponds to the − sign before it.

Let us introduce the dimensionless wave vector k∗ and parameters a∗, F ∗, α∗
v , w∗, Q∗:

k∗ = ak

π
, a∗ = a

π

√
c

2v
, F ∗ = f 2

cg
, α∗

v = αSv

cg
, w∗ = cw

vg
, Q∗ = 4

q2η2
S

cαS

, (11)

where a is the lattice constant. Note that the case g = 0 is excluded from the analysis for chosen dimensionless variables (11),
since we consider ferroelectrics with composition far from the Lifshitz point.

Description of these dimensionless parameters and their numerical values for several ferroelectrics are given in the first eight
lines of Table II. The next four lines describe the dimensionless parameters of the kinetic energy (1b), which will be introduced
in Sec. IV.

Using the dimensionless parameters (11), we can represent the positive solutions (10) in the following form:

k∗
± = a∗

√
1

w∗ + 1
(F ∗ − 1 − α∗

v ±
√

(F ∗ − 1 − α∗
v )2 − 4α∗

v (w∗ + 1)(1 − Q∗)). (12)
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The wave vector k∗
+ corresponds to the + sign before the

inner square root in Eq. (12), and k∗
− corresponds to the − sign

before it.
Note that the parameter α∗

v is proportional to the product
of the temperature dependent coefficient αS and the strain
gradient coefficient v. For the ferroelectrics with the second
order phase transitions with parameters β∗ > 0 and γ =
0, the square of the order parameter is P 2

S = −α/β∗ ∼=
αT (TC − T )/(β − 2q2/c). From the expression, one deter-
mines that the coefficient α∗

v linearly depends on T in the
high temperature parent phase and low temperature ordered
phase:

α∗
v (T ) =

⎧⎨
⎩

α∗
T

(
T
TC

− 1
)
, T

TC
> 1,

2α∗
T

(1−(2q2/βc))
(
1 − T

TC

)
, 0 < T

TC
< 1.

(13)

The dimensionless parameter α∗
T = vαT TC

gc
is introduced in

Eq. (13). The parameter is positive for g > 0 and negative for
g < 0.

Note that it makes sense to study the phase diagram in
dependence on the reduced temperature α∗

v ∼ α∗
T (1 − T/TC)

and flexoconstant F ∗ ∼ f 2/g. Both parameters, α∗
v and F ∗,

are proportional to 1/g, positive for g > 0, and negative for
g < 0.

Expression (9b) for geff written in dimensionless variables
(11) acquires the form geff

g
= (1 + αSv

gc
− f 2

gc
) ≡ 1 + α∗

v − F ∗.

Thus, the necessary condition of the SMP appearance geff < 0,
written in dimensionless variables (11), is equivalent to the
inequality sign(g)(1 + α∗

v − F ∗) < 0. However, as one can see
from Eq. (12), the condition geff < 0 is not sufficient per se
because the additional condition of positive inner determinant,
(F ∗ − 1 − α∗

v )2 � 4α∗
v (w∗ + 1)(1 − Q∗), should be valid.

IV. THE IMPACT OF ELASTIC STRAIN GRADIENT
AND FLEXOCOUPLING ON THE STABILITY

OF SPATIALLY MODULATED PHASES

Let us analyze expression (12) for different signs of g.
Since g > 0 for proper and incipient ferroelectrics without
the incommensurate phase at f = 0, the parameters F ∗ � 0,
α∗

v � 0, Q∗ � 0, and w∗ � 0 for the case. Hereinafter, we put
w∗ = 0 for ferroelectrics with g > 0 for the sake of simplicity.
The parameters F ∗ � 0, α∗

v � 0, Q∗ � 0, and w∗ < 0 for
ferroelectrics with g < 0.

The typical values of dimensionless parameters (11) can
be estimated from Table II. In particular, dimensionless
parameters can change in the ranges 0 � Q∗ < 1, 0 �
w∗ < 1 for g > 0, and w∗ < −2 for g < 0; −5 < F ∗ <

5, − 5 < αv
∗ < 5, and 0.1 < a∗ < 1 for both signs of g,

and −0.5 < k∗ < 0.5 in the first Brillouin zone.

A. Ferroelectrics with positive coefficient
of polarization gradient

Inequalities 4α∗
v (w∗ + 1)(1 − Q∗) > 0, F ∗ � 0, α∗

v � 0,
0 � Q∗ < 1, and w∗ � 0 are valid for g > 0. Using all of
these inequalities in Eq. (12), we derived that the HFP is ther-
modynamically stable under the condition (F ∗ − 1 − α∗

v )2 <

4α∗
v (w∗ + 1)(1 − Q∗), and the SMP with modulation pe-

riods k∗
± can appear under conditions (F ∗ − 1 − α∗

v )2 �

FIG. 1. (a) Diagrams of the spatially modulated phase (SMP)
and homogeneous ferroelectric phase (HFP) stability in ferroics
with g > 0 (right side) and g < 0 (left side) plotted in dimen-
sionless coordinates—flexoconstant F ∗ and reduced temperature α∗

v .
Parameters Q∗ = 0.5, F ∗ � 0,av

∗ � 0, and w∗ = −2 for the case
g < 0; F ∗ � 0, αv

∗ � 0, and w∗ = 0 for g > 0. (b) Temperature de-
pendence of the flexoconstant critical value F ∗

cr . (c), (d) Dependence
of the flexoelectric coefficient critical value f ∗

cr on the strain gradient
constant v (c) and temperature T (d). The curves in (b)–(d) are
calculated for dimension and dimensionless parameters of incipient
ferroelectric SrTiO3 and proper ferroelectrics PbTiO3, Sn2P2S6, and
Sn2P2Se6 from Tables I and II, with the exception of f values, which
change in (b) and (d), and v values, which change in (c). Points in
(c) correspond to the values of f and v, determined from the phonon
spectra of ferroelectrics shown in Fig. 4.

4α∗
v (w∗ + 1)(1 − Q∗) and F ∗ � 1 + α∗

v . Therefore, the nec-
essary condition of SMP appearance is the fulfillment of
inequality (1 + α∗

v − F ∗) < 0. All these inequalities give us
the necessary and sufficient conditions of the HFP and SMP
stability in ferroelectrics with g > 0:

0 � F ∗ < 1 + α∗
v + 2

√
α∗

v (w∗ + 1)(1 − Q∗)

(HFP phase is stable), (14a)

F ∗ � 1 + α∗
v + 2

√
α∗

v (w∗ + 1)(1 − Q∗)

(SMP phase is stable). (14b)

The phase diagram of the ferroelectrics with g > 0 is shown
in the left-hand side of Fig. 1(a), where α∗

v � 0 and F ∗ � 0.
As one can see from the figure, the minimal positive value of
the flexoconstant F ∗

cr required for SMP appearance is F ∗
cr = 1;

the case corresponds to α∗
v = 0. In this way, HFP is absolutely

stable for F ∗ < 1 at α∗
v = 0. The value of F ∗

cr monotonically
increases with α∗

v increasing, in accordance with the formula
F ∗

cr (α∗
v ) = 1 + α∗

v + 2
√

α∗
v (w∗ + 1)(1 − Q∗) [see red curves

in the left-hand side of Fig. 1(a)].
The dependence of the critical value of dimensionless flexo-

constant F ∗
cr on relative temperature T /TC and the temperature

dependence of the critical value of flexoelectric coefficient
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fcr (T ) are nonmonotonic with a pronounced peculiarity
(jumps look like “gull wings”) at the Curie temperature for
proper ferroelectrics [see the curves for PbTiO3 and Sn2P2S6

in Figs. 1(b) and 1(d)]. The peculiarity originates from the
break in the parameter α∗

v (T ) at the Curie temperature TC

[see, e.g., Eq. (13)]. The peculiarity is absent for incipient
ferroelectrics since α∗

v (T ) monotonically decreases as T in-
creases, in accordance with the Barrett-type formula for these
materials. Therefore, the critical values F ∗

cr and |fcr | slightly
increase with temperature increase for incipient ferroelectrics
with g > 0 [see the curves for SrTiO3 in Figs. 1(b) and
1(d)]. The critical value of the flexoelectric coefficient |fcr |
monotonically increases, with the coefficient v increasing for
g > 0 [see the curves for SrTiO3,PbTiO3, and Sn2P2S6 in
Fig. 1(c)].

Note that the curves in Figs. 1(b)–1(d) are calculated for
the parameters of ferroelectrics SrTiO3,PbTiO3, and Sn2P2S6

from Tables I and II, except for the f values, which are
variables in Figs. 1(b) and 1(d), and v values, which vary
in Fig. 1(c). Dark green, red, and maroon colored points in
Fig. 1(c) correspond to the values of f and v determined from
the phonon spectra of SrTiO3,PbTiO3, and Sn2P2S6 considered
in Sec. VI. The points are located significantly lower than
the curves |fcr (v)| for these materials, indicating that the
SMP appearance is impossible at 300 K for realistic values
of the parameters f and v, as anticipated from experiment
because SrTiO3 is paraelectric and PbTiO3 and Sn2P2S6 are
commensurate ferroelectrics at room temperature. The critical
values F ∗

cr and fcr are essentially higher for SrTiO3 and PbTiO3

in comparison with the values for Sn2P2S6.
The dependences of the wave vectors k∗

+ and k∗
− on the

dimensionless flexoconstant F ∗ and reduced temperature α∗
v

are shown in the right-hand side of Figs. 2(a) and 2(b),
respectively. The gap of width d corresponding to the α∗

v range,
for which both wave vectors k∗

+ and k∗
− are absent, exists for all

curves calculated for different values of α∗
v and F ∗ < F ∗

cr [see
the left-hand side of Fig. 2(a)]. The gap width d is conditioned
by the value F ∗

cr (α∗
v ), and it increases as α∗

v increases. Equal
wave vectors appear under the condition F ∗ = F ∗

cr , namely
k∗
−(α∗

v ,F
∗
cr ) = k∗

+(α∗
v ,F

∗
cr ). At F ∗ > F ∗

cr , the wave vector k∗
−

decreases, and k∗
+ increases with F ∗ increasing [see dashed

and solid curves in the left-hand side of Fig. 2(a)]. There
is the maximal positive value α∗

cr (F ∗) required for the SMP
appearance at fixed F ∗ value. Wave vectors are equal under the
condition α∗

v = α∗
cr , namely k∗

−(α∗
cr ,F

∗) = k∗
+(α∗

cr ,F
∗). Under

the condition α∗
v < α∗

cr , the wave vector k∗
− increases, and k∗

+
decreases as the parameter α∗

v increases [compare dashed and
solid curves in the right-hand side of Fig. 2(b)].

B. Ferroelectrics with negative coefficient
of polarization gradient

The stability conditions of the HFP and SMP are more
complex for negative g because they are different for the
cases −1 < w∗ � 0 and w∗ < −1. In accordance with our es-
timates, the most realistic and interesting situation corresponds
to the case w∗ < −1, for which we continue our analysis. For
the case w∗ < −1, the inequality 4α∗

v (w∗ + 1)(1 − Q∗) > 0 is
valid. Also, the inequalities F ∗ � 0, α∗

v < 0, and 0 � Q∗ < 1
are valid for the case g < 0. Using all these inequalities in

FIG. 2. Dependences of the wave vectors k∗
+ (solid curves) and k∗

−
(dashed curves) on the flexoconstant F ∗ (a) and reduced temperature
α∗

v (b). Different curves are calculated for several values of α∗
v =

0.001,0.1,0.5, 1 for g > 0 and α∗
v = −0.001,−0.1,−0.5,−1 for g <

0 [curves 1–4 in plot (a)]; F ∗ = 1.5,2,2.5, 5 for g > 0; and F ∗ =
−0.001,−1,−2.5,−5 for g < 0 [curves 1–4 in plot (b)]. Parameters
Q∗ = 0.5, a∗ = 0.1, and w∗ = −2 for ferroelectrics with g > 0, and
w∗ = 0 for g < 0.

Eq. (12), we derived that the HFP is thermodynamically stable
under the condition (F ∗ − 1 − α∗

v )2 < 4α∗
v (w∗ + 1)(1 − Q∗)

(the same as for g > 0), and the SMP with modulation periods
given by Eq. (12) can appear under the conditions F ∗ � 0,
F ∗ � 1 + α∗

v , and (F ∗ − 1 − α∗
v )2 � 4α∗

v (w∗ + 1)(1 − Q∗).
The necessary condition of the SMP appearance is the
inequality (1 + α∗

v − F ∗) < 0. All these inequalities lead to
the necessary and sufficient conditions of the HFP and SMP
stability in ferroelectrics with g < 0:

1 + α∗
v − 2

√
α∗

v (w∗ + 1)(1 − Q∗) < F ∗ < 0,

(HFP phase is stable), (15a)

F ∗ � 0 and F ∗ � 1 + α∗
v − 2

√
α∗

v (w∗ + 1)(1 − Q∗)

(SMP phase is stable) (15b)

The phase diagram of the ferroelectrics with g < 0 is
shown in the right-hand side of Fig. 1(a), where α∗

v � 0
and F ∗ � 0. In contrast to ferroelectrics with g > 0, the
SMP appears at F ∗ = 0, and α∗

v � −0.3 for g < 0. The
negative critical value of the flexoconstant F ∗

cr (α∗
v ) occurs

if α∗
v < −0.3, and its absolute value increases quasilin-

early with |α∗
v | increasing, in accordance with the formula

F ∗
cr (α∗

v ) = 1 + α∗
v − 2

√
α∗

v (w∗ + 1)(1 − Q∗) [see blue curves
in the right-hand side of Fig. 1(a)].
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Similar to the case of ferroelectrics with g > 0, for
ferroelectrics with g < 0 the temperature dependences of
the critical values F ∗

cr and fcr (T ) are nonmonotonic with a
pronounced peculiarity at the Curie temperature [see the curves
for Sn2P2Se6 in Figs. 1(b) and 1(d)]. The critical value of the
flexocoefficient |fcr | monotonically increases with increase of
the strain gradient coefficient v [see the curve for Sn2P2Se6 in
Fig. 1(c)].

Note that the curves in Figs. 1(b)–1(d) are calculated for
parameters of Sn2P2Se6 from Tables I and II, except for the
f values, which are variables in Figs. 1(b) and 1(d), and v

values, which vary in Fig. 1(c). The blue point in Fig. 1(c)
corresponds to the values of f and v, determined from the
phonon spectra of Sn2P2Se6 shown in Figs. 4(c)–4(d). The
point is located a bit lower than the curve |fcr (v)| for Sn2P2Se6

that indicates the SMP instability at room temperature as
anticipated from experiments because Sn2P2S6 is a paraelectric
at the temperature. Sn2P2Se6 has the region of the SMP (even
at f = 0) for temperatures slightly higher that the Curie
temperature 193 K.

The dependences of the wave vectors k∗
+ and k∗

− on the
flexoconstant F ∗ and coefficient α∗

v are shown in the left-hand
side of Figs. 2(a) and 2(b), respectively. The gap of thickness
d exists only for the two curves, corresponding to the highest
values of |α∗

v |, as it follows from the dependence F ∗
cr (α∗

v ) [see
the right-hand side of Fig. 2(a)]. Wave vectors are equal for
the case F ∗ = F ∗

cr , namely k∗
−(α∗

v ,F
∗
cr ) = k∗

+(α∗
v ,F

∗
cr ). For the

case F ∗ < F ∗
cr , the wave vector k∗

− decreases as |F ∗| increases,

while k∗
+ increases as |F ∗| increases [compare dashed and

solid curves in the right-hand side of Fig. 2(a)]. There is the
minimal negative value α∗

cr (F ∗) of the SMP appearance at
fixed F ∗ value. Wave vectors are equal under the condition
α∗

v = α∗
cr , for which k∗

−(α∗
v ,F

∗) = k∗
+(α∗

v ,F
∗). At |α∗

v | < |α∗
cr |,

wave vector k∗
− increases, and k∗

+ decreases as |α∗
v | increases

[compare dashed and solid curves in the right-hand side of
Fig. 2(b)].

To resume the results of the section, performed analysis
showed that the fundamental upper limits for the maximal
values of the static flexoelectric coefficients [37], which exist
under the absence of the higher order gradient terms in the
free energy (1b), should be substituted by the temperature
dependent conditions (14) or (15) corresponding to the HFP
stability or SPM phase appearance.

V. SOFT PHONON DISPERSION IN THE
SCALAR APPROXIMATION

Soft phonon dispersion can be calculated from the time-
dependent dynamic equations of state for the polarization
and elastic displacement components P and U, respectively
[55]. The dynamic equations of state are obtained from the
variation of the Lagrange function L = ∫

t
dt(F − K) on P

and U , where the free energy F is given by Eq. (1a), and the
kinetic energy K is given by Eq. (1b). The explicit form of the
equations δL/δU = 0 and δL/δP = 0 is

v
∂4U

∂x4
+ ρ

∂2U

∂t2
− c

∂2U

∂x2
− f

∂2P

∂x2
+ 2qP

∂P

∂x
+ M

∂2P

∂t2
= 0, (16a)

�
∂P

∂t
+ μ

∂2P

∂t2
+ αP + βP 3 + γP 5 − g

∂2P

∂x2
+ w

∂4P

∂x4
− f

∂2U

∂x2
− 2qP

∂U

∂x
+ M

∂2U

∂t2
= E. (16b)

Note that the Khalatnikov mechanism of polarization relaxation, namely the term �∂P/∂t , is included in Eq. (16b); � is a
kinetic coefficient.

The solution of dynamic Eq. (16) was found after the linearization in the vicinity of spontaneous values PS and uS , respectively.
Using Fourier integrals for polarization, P = PS + ∫

dk exp(ikx + iωt)P̃ , displacement U = uSx + ∫
dk exp(ikx + iωt)Ũ , and

perturbation field, E = ∫
dk exp(ikx + iωt)Ẽ, the linearized Eq. (16) acquires the form

(vk4 + ck2 − ρω2)Ũ + (f k2 + 2ikqPS − Mω2)P̃ = 0, (17a)(
iω� − μω2 + α + 3βP 2

S + 5γP 4
S − 2quS + gk2 + wk4)P̃ + (f k2 − 2iqkPS − Mω2)Ũ = Ẽ. (17b)

The solution of Eq. (17) in the spatial (k) and frequency (ω) domains was found after elementary transformations:

Ũ = −f k2 + 2ikqPS − Mω2

vk4 + ck2 − ρω2
P̃ , (18a)

P̃ = χ̃(k,ω)Ẽ. (18b)

The generalized linear susceptibility χ̃ (k,ω) introduced in Eq. (18b) is given by expression

χ̃(k,ω) =
(

iω� − μω2 + α + 3βP 2
S + 5γP 4

S − 2quS + gk2 + wk4 −
(
f k2 − Mω2

)2 + 4k2q2P 2
S

vk4 + ck2 − ρω2

)−1

. (19)

The condition of the susceptibility (19) divergence leads to the equation for phonon dispersion ω(k):

iω� − μω2 + α + 3βP 2
S + 5γP 4

S − 2quS + gk2 + wk4 − (f k2 − Mω2)
2 + 4k2q2P 2

S

vk4 + ck2 − ρω2
= 0. (20)
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Using the solution uS = qP 2
S /c [Eq. (4)] and the definition of αS = α + (3β − 2(q2/c))P 2

S + 5γP 4
S [Eq. (9a)] and neglecting

the damping (� → 0), one can rewrite Eqs. (19) and (20) in the form,

χ̃(k,ω) =
(

−μω2 + αS + gk2 + wk4 − (f k2 − Mω2)
2 + 4k2q2P 2

S

vk4 + ck2 − ρω2

)−1

, (21)

(−μω2 + αS + gk2 + wk4)(vk4 + ck2 − ρω2) − (f k2 − Mω2)2 − 4k2q2P 2
S = 0. (22)

The solution of biquadratic Eq. (22) can be represented in the form,

ω2 = C ± √
D

2(μρ − M2)
, (23a)

wherein the constant C and determinant D are introduced

C = αSρ + (cμ − 2f M + gρ)k2 + (μv + ρw)k4, (23b)

D = C2 − 4(μρ − M2)k2(αSc − 4q2P 2
S + (cg + αSv − f 2)k2 + (gv + cw)k4 + vwk6). (23c)

Let us introduce the dimensionless frequency ω∗ and parameters M∗ and μ∗ in the following way:

ω∗ =
√

4vρ

c
ω, M∗ = cM

2ρf
, μ∗ = cμ

2gρ
. (24)

Description of these dimensionless parameters and their numerical values for several ferroelectrics are given in the last four
lines of Table II.

Using the definitions of dimensionless wave vector k∗ and frequency ω∗ and parameters (11) and (24), one can rewrite Eq. (22)
in the dimensionless variables,(

−μ∗ω∗2 + 2α∗
v + k∗2 + w∗

2
k∗4

)
(k∗4 + 2k∗2 − ω∗2) − 2F ∗(k∗2 − M∗ω2)2 − 4α∗

vQ
∗k∗2 = 0. (25)

The solution of Eq. (23) acquires the form,

ω∗2 = (C∗ ± √
D∗)

2(μ∗ − 2F ∗M∗2)
, (26a)

C∗ = 2α∗
v + (k∗/a∗)2(2μ∗ + 1 − 4F ∗M∗) + (k∗/a∗)4(μ∗ + w∗), (26b)

D∗ = C∗2 + 4(k∗/a∗)2(2F ∗M∗2 − μ∗)

(
4α∗

v (1 − Q∗) + 2(k∗/a∗)2(1 − F ∗ + α∗
v )

+w∗(k∗/a∗)6 + (k∗/a∗)4(1 + 2w∗)

)
.

(26c)

Dispersion relation (26a) contains one optical (O) and one
acoustic (A) phonon modes. The O mode is in fact transverse,
and the A mode can be longitudinal or transverse. The gap
between these modes is proportional to the value

√
D∗

2F ∗M∗2−μ∗ ,
which gives us the possibility to determine the magnitude of the
flexocoupling constants from the analytical expressions (26).

The dependences of the dimensionless phonon frequency
ω∗ on the wave vector k∗ are shown in Figs. 3(a) and 3(b)
for ferroelectrics with g > 0 and in Figs. 3(c) and 3(d) for
ferroelectrics with g < 0. Using the numerical values from
Tables I and II, we estimated the ranges of dimensionless
dynamic parameters as M∗ ∼ (0.05–2) and m∗ = (−1.0–1.5)
and used the previously determined ranges of static parameters,
0 � w∗ < 1 for g > 0 and w∗ < −2 for g < 0, − 5 <

F ∗ < 5, − 5 < αv
∗ < 5, 0.1 < a∗ < 1, and −0.5 < k∗ <

0.5 in the first Brillouin zone.
Curves 1–3 in Figs. 3(a) and 3(c) are calculated for fixed

α∗
v and several values of flexoconstant F ∗, whose signs are

different for ferroelectrics with g > 0 and g < 0 [see the
parameters definitions in Table II]. Both O- and A-phonon

dispersion curves ω∗(k∗) are virtually insensitive to F ∗ values
for k∗ � 1. The fact reflects the gradient nature of the
flexocoupling. Moreover, O modes are slightly sensitive to
the values of F ∗ for all k∗ values. In particular, O modes 1–3
begin to differ very slightly with a k∗ increase, and this occurs
at k∗ � 0.1. In contrast to O mode behavior, A modes are
very sensitive to the F ∗ values at k∗ � 0.05. The behavior of
A modes 1–3 calculated for different F ∗ values is principally
different for ferroelectrics with g > 0 and g < 0. The A mode
first bends and then disappears with F ∗ increase at k∗ � 0.05
for g > 0. For ferroelectrics with g < 0, the A mode appears
again at k∗ > 0.1; at that the difference between curves 1–3
decreases. Unlikely, the A mode may appear at k∗ � 0.5
for commensurate ferroelectrics with g > 0. However, we
cannot state this exactly because the accuracy of the analytical
expressions (26) decreases with k∗ increase since the higher
orders of k∗ and its gradients should be considered in the
functional (1) for k∗ � 0.1.

Curves 1–3 in Figs. 3(b) and 3(d) are calculated for the
fixed value of flexoconstant F ∗ and several values of reduced
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FIG. 3. Dependences of the dimensionless phonon frequency ω∗

on the wave vector k∗ calculated for ferroelectrics with g > 0 (a),
(b) and g < 0 (c), (d). Curves 1–3 in plots (a), (c) are calculated for
α∗

v = 1 and several flexoconstants F ∗ = 1, 3, 5 for ferroelectrics with
g > 0 [plot (a)], and α∗

v = −1 and F ∗ = −1,−3,−5 for ferroelectrics
with g < 0 [plot (c)]. Curves 1–3 in plots (b), (d) are calculated for
several values of reduced temperature α∗

v = 1,2.5, 5 and F ∗ = 1 for
ferroelectrics with g > 0 [plot (b)], α∗

v = −1,−2.5,−5 and F ∗ =
−1 for ferroelectrics with g < 0 [plot (d)], as indicated by legends
on the plots. Parameters Q∗ = 0.5, M∗ = 0.05, a∗ = 0.1, w∗ = −2,
and μ∗ = −1 for ferroelectrics with g < 0; w∗ = 0 and μ∗ = 1 for
ferroelectrics with g > 0.

temperature α∗
v , whose signs are different for commensurate

and incommensurate ferroelectrics with g > 0 and g < 0,
respectively [see the dimensionless parameters definitions in
Table II]. For wave vectors k∗ < 0.15, the O modes are rather
sensitive to the values of α∗

v because soft phonons should
be sensitive to the temperature changes especially in the
vicinity of the ferroelectric phase transition [see curves 1–3
in Figs. 3(b) and 3(d) and compare the values of ω∗(0)
for O modes]. The A modes (curves 1–3) calculated for
different α∗

v values become different with k∗ increasing
for ferroelectrics with g > 0 and g < 0 [see curves 1–3
in Fig. 3 for A modes]. The A modes calculated for
ferroelectrics with g > 0 at different α∗

v begin to diverge
at wave vectors k∗ � 0.1. The A modes calculated for
ferroelectrics with g < 0 are slightly sensitive to α∗

v values in
the region of wave vectors 0.05 � k∗ � 0.15 and insensitive
outside it.

Our results obtained in the simplest 1D scalar approx-
imation demonstrate that the nontrivial differences in the
optical and acoustic phonon dispersion appeared with the
flexocoupling constant increase. This is so phonon spectra
can give the important information about influence of the
flexocoupling on the SMP in ferroelectrics with different signs
of the polarization gradient coefficient.

FIG. 4. Dependences of the phonon frequency ω on the wave
vector k measured experimentally (symbols) and calculated theoreti-
cally (solid and dashed curves) for the lowest transverse optical and
acoustic modes in SrTiO3 (a), in the paraelectric phase of PbTiO3

(b), in the paraelectric (c) and ferroelectric (d) phases of Sn2P2S6,
and in the paraelectric (e) and ferroelectric (f) phases Sn2P2Se6.
Experimental data are taken from Refs. [43,44,61,62]. Temperatures
are specified in plots (a)–(f). Parameters used in our calculations are
listed in Table I. Solid and dashed curves were calculated with and
without lattice discreteness, respectively.

VI. SOFT PHONON DISPERSION:
COMPARISON WITH EXPERIMENT

Since our results are obtained in the simplest 1D scalar
approximation, for which the phonon spectrum contains only
one acoustic and one optical mode, they cannot describe the
interaction between different phonon modes. In particular, the
scalar theory cannot describe the interaction between trans-
verse optical, longitudinal, and transverse acoustic modes in-
duced by cooperative effects, flexoelectric, and electrostriction
couplings in the ferroelectric phase of multiaxial ferroelectrics
[55–57]. That is why we performed quantitative comparison
between the calculated and experimentally observed phonon
spectra in the uniaxial ferroelectrics Sn2P2S6 and Sn2P2Se6

[61,62], in which material parameters are relatively well
known [58–60]. Unexpectedly, we determined that the scalar
theory could describe semiquantitatively the soft phonon
dispersion in the incipient ferroelectric SrTiO3 [43], as well
as in the paraelectric phase of multiaxial ferroelectric PbTiO3

[44], wherein the interaction between different phonon modes
appeared relatively small.

The dependences of the phonon frequency ω on the wave
vector k measured experimentally (symbols) and calculated
theoretically from Eq. (23) (solid and dashed curves) for the
lowest optical and acoustic modes in the incipient ferroelectric
SrTiO3 and in the paraelectric phase of commensurate ferro-
electrics PbTiO3 are shown in Figs. 4(a) and 4(b), respectively.
Experimental data are taken from Shirane and Yamada and
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Shirane et al. [43,44]. Observed and calculated phonon spectra
corresponding to the paraelectric and ferroelectric phases of
commensurate ferroelectric Sn2P2S6 are shown in Figs. 4(c)
and 4(d), respectively. Experimental data are taken from Eijt
et al. [61]. Phonon spectra corresponding to the paraelectric
and ferroelectric phase of Sn2P2Se6 are shown in Figs. 4(e) and
4(f), respectively. Experimental data are taken from Eijt et al.
[62]. Note that the incommensurate phase region is located
near TC in Sn2P2Se6.

All material parameters used in our calculations are listed in
Table I. The values of TC,Tq,αT ,β,γ,c,q,g,w, and ρ have been
collected from literature. The values of f, M, v, and μ are fitting
parameters, as their exact or approximate values are unknown.
SrTiO3 parameters were collected from Refs. [70–73], PbTiO3

parameters were taken from Refs. [74] and [55], and Sn2P2S6

and Sn2P2Se6 parameters are collected from Refs. [60–62] and
[67–69]. Since we consider only the lowest O and A modes,
which are not affected by the depolarization effects, and the
wave vector direction k ↑↑ z, the anisotropic properties of
the elastic, electrostriction, and flexoelectric tensors can be
partially accounted by the substitution c = c44, q = q44, g =
g44, and f = f44. The substitution is valid for materials with
cubic m3m parent phase symmetry (such as SrTiO3, PbTiO3,
and BaTiO3). For the materials with the lower symmetry of
parent phase (such as Sn2P2S6 and Sn2P2Se6), the values of
the c44 and c55, q44 and q55 can be different in a general
case. For the case, the elastic constant c and electrostriction
coefficient q can be unambiguously determined from the tilt
coefficient of the A mode at small k∗ → 0. The tilt is equal to√

c/ρ in a paraelectric phase and to
√

(αSc − 4q2P 2
S )/αSρ in a

ferroelectric one. The gradient coefficients g and w should be
determined from the domain wall width. Rigorously speaking,
the values c, q, g, and w can be regarded as the secondary fitting
parameters, but in contrast to the primary fitting parameters f,
M, v, and μ, the approximate values of c, q, g, and w are
relatively well known.

It appeared that the fitting parameters f, M, v,
and μ vary in the ranges |f | ∼ (1 − 2) V, |M| ∼ (1 −
25) × 10−8 Vs2/m2, v ∼ (1 − 15) × 10−9 Vs2/m2, and μ ∼
(1.5 − 25) × 10−18s2mJ. Since we regard that f ∼= f44, its
range (1 − 2) V determined from the phonon dispersion is
in a perfect agreement with the experiments performed by
Zubko et al. [72,73] and microscopic estimates made by Kogan
[3]. Moreover the result f ∼ (1 − 2) V is in a reasonable
agreement with the difference of the values (f11 − f12)/2 ∼
f44 calculated from the ab initio approach by Hong and
Vanderbilt [30,32], Ponomareva et al. [31], and Stengel
[33,41]. We obtained that the product f M is positive, so both
of the fitting parameters should be positive or negative simul-
taneously. Relatively high values of M ∼ 25 × 10−8 Vs2/m2

estimated for SrTiO3 probably require independent
verification.

Solid and dashed curves were calculated with and without
lattice discreteness, respectively. Since dashed and solid curves
are in a quantitative agreement with experimental data at
least for k∗ � 0.25, extracted values of the fitting parameters
f, M, v, and μ seem reliable. Our fitting procedure proves
the importance of the static, and dynamic flexoeffect, and
the squire of elastic strain gradient (v term) for the quantitative

description of available experimental data. For instance, we
previously fit the scattering data in PbTiO3 without the v term
and consider anisotropic properties of the material tensors (see
Fig. 4 in Ref. [55]). This paper shows that the v term allows us
to expand the region of the theory and experiment coincidence
up to k∗ � 0.3 for the A mode and up to k∗ � 0.5 for the O
mode, respectively [compare solid curves and experimental
points in Fig. 4(b)]. Since we consider only one optical
mode, rigorous agreement with experiment at wave numbers
k∗ > 0.25 is possible taking into account other optical modes.

VII. SUMMARY

Within the framework of LGD theory, we studied the role
of the flexocoupling between the order parameter and elastic
strain gradients in the stability of SPM phases in ferroics
(such as incipient ferroelectrics and uniaxial ferroelectrics with
commensurate and incommensurate phases of the long-range
order parameter). Our free energy includes the square of elastic
strain gradient that is mandatorily required for the system
stability. Performed analysis showed that the fundamental
upper limits for the magnitude of the static flexoelectric
coefficients established by Yudin, Ahluwalia, and Tagantsev
[37] without the square of elastic strain gradient should be
substituted by the temperature dependent condition on the
flexoelectric coupling strength.

Moreover, the condition is required for the SPM phase
appearance in ferroelectrics with the higher gradients of the
order parameter. Also, we established that the SMP appears
and becomes stable in uniaxial ferroelectrics with positive
polarization gradient coefficient g once the flexocoupling
constant f exceeds the critical value fcr , which increases
with the temperature increase. For smaller f , the phase with
homogeneous ferroelectric polarization is absolutely stable.
The phase diagram of ferroelectrics with g < 0 appeared
more complex than the one for ferroelectrics with g > 0.
For ferroelectrics with g < 0, the SMP exists at zero f until
the value of αv is less that the critical one, α < αcr . When
αv > αcr , the critical value fcr appears and increases with
αv increase. Obtained analytical expressions show that fcr is
defined by the reduced temperature, strain and order parameter
gradients, electrostriction constant, and expansion coefficients
in the LGD functional.

We derived analytical expressions for two modulation wave
vectors k− and k+ in the SMP and analyzed their dependences
on parameters f and αv . Then, we calculated the soft
phonon frequency dispersion, ω(k), for uniaxial ferroelectrics
with different signs of the polarization gradient coefficient,
allowing for the square of elastic strain gradient, static and
dynamic flexocoupling, and higher order gradient of the order
parameter. It appeared that ω(k) for the optical mode is slightly
sensitive to the flexocoupling, and ω(k) for acoustic mode
strongly depends on the coupling strength. Thus, our results
in the simplest 1D scalar approximation (one acoustic and one
optical mode are considered) demonstrate the appearance of
nontrivial differences in the dispersion of optical and acoustic
modes with the flexocoupling constants increase. Hence, the
phonon spectra analysis can give the important information
about the influence of the flexocoupling on the SMP in various
ferroelectrics.
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Finally, we would like to underline that the criteria of
Ref. [37] should be modified not only in the case of higher
order gradient terms inclusion in the free energy but also when-
ever additional optical degrees of freedom are considered.
This case is realized in multiaxial ferroelectric perovskites,
wherein three acoustic and several optical phonon modes are
observed. In this case, the coupling between different phonon
modes can either act cooperatively with the flexocoupling or
against it [56,57]. Unfortunately the analytical expressions for
phonon dispersion law are absent in the anisotropic case with

higher order gradient terms in the free energy. We hope that
the challenging task will be solved in near future.
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APPENDIX: TENSOR FORM OF THE LGD FREE ENERGY AND LAGRANGE FUNCTION

The bulk part of LGD free energy F has the form,

F =
∫

V

d3r

⎛
⎜⎜⎜⎝

aij (T )
2 PiPj + aijkl

4 PiPjPkPl + aijklmn

6 PiPjPkPlPmPn − ηi

(
E0i + Ed

i

2

)
+ gijkl

2

(
∂ Pi
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+ wijkl
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− fijkl
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Pk
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− uij

∂ Pk
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− qijkluijPkPl + cijkl

2 uijukl + vijklmn

2

(
∂ uij

∂xm

∂ ukl

∂xn

)
⎞
⎟⎟⎟⎠. (A1)

The values Pi are the components of ferroelectric polarization vector (order parameter); uij are the components of the strain
tensor. In many cases, one could suppose that coefficients aij (T ) = αT

ij (T − TC) linearly depend on temperature T , but in some
cases Barrett-type [65] formula aij = αT

ij (Tq coth(Tq/T ) − TC) should be used. Note that for proper ferroelectrics, TC > Tq , while
TC < Tq for the incipient ones. TC is the Curie temperature, and Tq is a characteristic temperature, which is sometimes called
the temperature of quantum vibrations. Coefficients aij , aijkl , and aijklmn are supposed to be temperature independent; tensors
gijkl , wijkl , and vijklmn determine the magnitude of the gradient energy. Tensors vijklmn, wijkl , and aijkl are positively defined;
qijkl are the components of electrostriction tensor; and cijkl are the components of elastic stiffness tensor. The order parameter

is conjugated with depolarization field Ed
i (if any exists). External field is E0i . The Lifshitz invariant is fijkl

2 (Pk
∂ uij

∂xl
− uij

∂ Pk

∂xl
);

tensor fijkl is the flexocoupling coefficient tensor.
Lagrange function is

L =
∫

t

dt(F − K), (A2)

where the kinetic energy K is given by expression

K =
∫

V

d3r

(
μ

2

(
∂Pi

∂t

)2

+ Mij

∂Pi

∂t

∂Uj

∂t
+ ρ

2

(
∂Pi

∂t

)2
)

, (A3)

which includes the dynamic flexoelectric coupling tensor Mij . Ui is the elastic displacement, and ρ is the density of a material.
The strain components uij = 1

2 ( ∂Ui

∂xj
+ ∂Uj

∂xi
).

Dynamic equations of state have the form of Euler-Lagrange equations allowing for the possible Khalatnikov-type relaxation
of the polarization,

�
∂Pi

∂t
= − δL

δPi

,
δL

δUi

= 0. (A4)
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