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Resolving phase information of the optical local density of state with scattering near-field probes
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We theoretically discuss the link between the phase measured using a scattering optical scanning near-field
microscopy (s-SNOM) and the local density of optical states (LDOS). A remarkable result is that the LDOS
information is directly included in the phase of the probe. Therefore by monitoring the spatial variation of the
trans-scattering phase, we locally measure the phase modulation associated with the probe and the optical paths.
We demonstrate numerically that a technique involving two-phase imaging of a sample with two different sized
tips should allow to obtain the image the pLDOS. For this imaging method, numerical comparison with extinction
probe measurement shows crucial qualitative and quantitative improvement.
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I. INTRODUCTION

The rate of spontaneous emission of a fluorescent emitter
is determined both by the internal electronic states and the
optical local density of state (LDOS) [1]. Luminescence,
i.e., the emission of light by a source, can therefore be
tailored through the nanostructuration of its environment, thus
modifying the LDOS. Due to this tremendous technological
impact at the nanoscale, new applications were designed for
its development. This is notably true for energy consumption,
which allows the enhanced energy extraction for a localized
source such as LED [2], OLED [3], and also for an integrated
local photon source [4,5], which makes this of a rising
interest in the field of telecommunication information for
quantum information processing. Thus imaging the LDOS of
fabricated samples becomes essential to characterize optical
devices, together with a deeper understanding of light-matter
interaction. Despite the general interest, such task remains
difficult and few works have been reported, which only
partially address the question. The main technique developed
in the past decade was based on an indirect measurement,
typically by determining the life time of a fluorescence emitter
[6–8]. However, this kind of optical characterization is mono
frequency and remains very dependent on the quality of the
source attached to the scan probe microscopy (SPM) and
the resolution is still not really convincing. Nevertheless, a
relationship between the electromagnetic LDOS and images
obtained by optical scanning near-field microscopy (SNOM)
have been identified [9,10]. This has been demonstrated
experimentally for a well defined near-field structure [11,12].
Despite this, the theoretical approaches that unify LDOS
and SNOM images were ultimately neglecting the cross
coupling mechanisms between the tip and the structure itself,
leading to the introduction of possible errors in the extraction
measurements and misleading the interpretations. Recently,
taking advantage of the tip-substrate interaction, we have
underlined a link between the modification of the width of
absorption cross section resonance of a dipolar plasmonic
nanoantenna that is in proximity to a given environment and
the variation of the corresponding LDOS [13]. However, to go
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further, i.e., for a quantitative measurement, another approach
needs to be considered.

Here, first let us present the considered experimental setup,
then some elements on LDOS theory and the polarizability
probe, followed by a detail derivation of their connections,
and finally we will present the schematic idea behind the
LDOS-sensitive technique of the phase. The simulations are
based on a discrete dipole approximation (DDA) code that we
have used previously to study plasmonic and magneto-optical
nanostructures [14].

Since the first development of near-field microscopy
[15,16], several types of SNOM have been developed, with
different setups and near-field probes. Here, we consider a
SNOM operating in the scattering mode with an apertureless
dielectric probe and the tip is tilted above the sample, see
Fig. 1, in order to realize a measure in transmission.

The incident polarized plane wave E0 at normal incidence
has been focalized on the tip’s apex from above and the trans-
mitted light is collected through the sample (see Fig. 1). We
will call this configuration trans-scattering SNOM mode (TS-
SNOM). The probe’s apex is considered to be spherical [17],
and vibrates vertically at frequency �. Signal demodulation
at the tip’s oscillation frequency along with an interferometric
detection yields transmitted field intensity and phase maps,
which corresponds to the local field scattered by the tip,
for this we derive formal expressions. Before presenting,
the LDOS-sensitive technique of phase (LDOS-SP), let us
introduce the theoretical framework that is used to derive the
formal expression in this study.

II. THEORY

Assuming the scatterer is small enough to be treated as an
electric point dipole [14], the dipole moment p induced by the
exciting local field Eloc(r), at its position r, is expressed as
follows [18]:

p(r,ω) = ε0α(r,ω)Eloc(r,ω) (1)

with α(r,ω) the dressed polarizability [13], that is in the most
generalized situation, a tensor, can be written as

α(r,ω) = α0

I − k2
0Greg(r,r,ω)α0

(2)
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FIG. 1. Trans-scattering-type scanning near-field optical mi-
croscopy (TS-SNOM). The wave front illustrates the local field being
scattered over the tip and propagating to the detector.

with Greg(r,r′,ω) as the regular part of the electric dyadic
Green function. This Green function connects the electric field
between two spatial positions and its own information about
its environment. I is the identity tensor, the wave number in
vacuum is k0(= ω/c = 2π/λ), and

α0 = 3V (ε − 1)(ε + 2)−1 (3)

is the quasistatic polarizability of the spherical tip’s apex of
volume V , with the dielectric constant ε.

Now, let us recall that the density of the photonics state
ρ(r,ω) is the trace of the imaginary part of the Green function
[19], more precisely its regular part Greg(r,r′,ω),

ρ(r,ω) = 6ω

πc2
Tr[�[Greg(r,r,ω)]] (4)

and the partial LDOS (pLDOS), ρn(r,ω), is a component of
this LDOS for a given n direction. Therefore it can be written
as

ρn(r,ω) = 6ω

πc2
�[n · Greg(r,r,ω) · n]. (5)

It can be noted that the pLDOS is the LDOS available for a
point dipole, which is oriented along the direction of n.

III. LDOS-SENSITIVE TECHNIQUE OF PHASE

In our trans-scattering configuration, the vectorial trans-
mitted phase, φtrans = arg(E(rd ,ω)), is obtained from the local
field that is scattered from the tip and transmitted up to the
detector (the direct field being removed by demodulation
technique), see Fig. 1. This can be described in terms of the
dipolar moment p(r,ω), see Eq. (1), propagating up towards
the detector (at position rd )

E(rd ,ω) = G(rd ,r,ω)p(r,ω). (6)

For a general case, the dipolar moment is a combination of
moments in several directions depending on the direction of
the local field Eloc = Eloc,xex + Eloc,yey + Eloc,zez, and on
the polarizability tensor α(r) as given by Eq. (1). Using the
following, let us simplify our analysis to the case of layered
non gyrotropic substrates (LNGS). Under this condition,
the incoming x-polarized plane wave induces a local field
polarized along the x-direction Eloc = Elocex , and the Green
function Greg(r,r) and α(r) are diagonal. Therefore Eq. (6) can

be approximated as follows:

E(rd ) = ε0G(rd ,r)ex[ex · α(r) · ex]Eloc(r). (7)

This formulation leads to a simple decomposition of the
trans-scattered phase, of the transmitted field E(rd ) in the
direction ex ,

φtrans,ex
= arg (E(rd ,ω) · ex) = φG,ex

+ φα,ex
(r) + φEloc . (8)

In the TS-SNOM mode, the phase in the x direction, φtrans,ex
,

is the sum of the phase of the total Green function φG,ex
=

ex · G(rd ,r) · ex , in the x direction, that is propagating the
field from the probe position up to the detector, the phase
of the polarizability tensor in the x-direction φα,x(r,ω) =
ex · arg(α(r,ω)) · ex , and the phase of the local field φEloc .
This last term φEloc (r), being the usual term, is assumed to
be measured in general SNOM interferometric technique.
Indeed, the dressed polarizability, Eq. (2), which contains the
regular part of the total Green function Greg(r,r,ω), gives the
information about the environment.

A. Phase of the near-field probe

Here, let us focus on the second term, the phase of the
polarizability in the x-direction φα,ex

and its link to the LDOS
in the x direction, ρex

(r,ω), Eq. (5), and call this quantity,
probe’s phase shift (PPS). Using Eqs. (2) and (3) along with
the probe being dielectric and Arg(α0) = 0, the equation can
be written as

φα,ex
(r,ω) = ex · arg (α(r,ω)) · ex (9)

= −ex · arg
(
1 − k2

0 Greg(r,r,ω)α0(ω)
) · ex (10)

= arctan
k2

0α0�[ex · Greg(r,r,ω) · ex]

1 − k2
0α0�[ex · Greg(r,r,ω) · ex]

.(11)

A direct observation of this formula, informs us that for a small
enough value of the quasi-static polarizability α0 [i.e., small
tip, see Eq. (3)], the previous equation (11), gets reduced to
the following:

φα,ex
(r,ω) � k2

0α0�[ex · Greg(r,r,ω) · ex]. (12)

We will see the consequences of this formula in the following
sections, where the two cases are explained.

B. In vacuum

It is to be noted that in vacuum �[n.Greg,vac(r,r,ω).n] =
k0/6π and Eqs. (11) and (12) reduce to the following:

φαvac,ex
� arctan

(
k3

0α0

6π

)
� k3

0α0

6π
. (13)

We observe that the probe phase shift is a nonzero value
and that it can have consequences in experimental situations.
This phenomenon is due to the radiation losses, included in
Eq. (2), and is taken into account by the radiation correction

in the dipolar polarizability [13], αvac = α0(1 − i
k3

0
6π

α0)
−1

. To
illustrate this effect, we have plotted in Fig. 2, its dependence
with the probe radius. From this, one can observe the PPS in
vacuum has a cubic dependency with the probe’s radius, see
Eq. (13). It leads to a magnitude of order two proportionality
between 25 and 5 nm radius, respectively, and φα25,ex

� φα1,ex
.
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FIG. 2. Vacuum PPS φαvac,ex
in the dipolar approximation with

radiative correction (DARC), and with Mie calculation, as a function
of the probe’s radius.

Let us notice here that a 25-nm dielectric probe creates an
intrinsic phase shift of around 0.5◦. In Fig. 2, a comparison
with Mie theory [20] has been added and it shows that
till 25-nm-probe radius the dipolar approach shows small
deviation with exact Mie solution.

C. In a given environment

In a general situation of an LNGS, Eq. (12), indicates a
remarkable result, the probe’s phase shift is proportional to
the pLDOS,

φα,ex
(r,ω) ∝ ρex

(r,ω). (14)

This is one of the key point of this study. It demonstrates that
a measure of the PPS gives us quantitative information about
the pLDOS.

Furthermore, using renormalized expressions, we obtain

φ̂α,ex
(r,ω) � 6π

k0
�[ex · Greg(r,r,ω) · ex] = ρ̂ex

(r,ω), (15)

an equality between the PPS change φ̂α,ex
(r,ω) = φα,ex (r,ω)

φαvac,ex
and

the LDOS change ρ̂ex
(r,ω) = ρex (r,ω)

ρ0(ω) . Normalization is done
by dividing the PPS and LDOS by their values in free space,
i.e., without the environment φαvac,ex

, or equivalently for large
distances from the sample.

To illustrate those analytical results, we simulate an
experimental configuration that is made up of a silver film of
10-nm thickness. The numerical calculations are realized using
a dipole dipole approximation (DDA) code. The impinging
light is an s-polarized plane wave at a wavelength of 400 nm,
scattering over a spherical particle. The probe is approximated
by a dipole [13] and calculations are done at variable distances
z above the metallic film. In Fig. 3, we trace the normalized
partial LDOS, ρ̂ex

(r,ω), the phase of the dipolar moment,
φp,ex

= arg(p.ex), along with the phase of the local field, φEloc

and the normalized PPS, φ̂α,ex
. A 1-nm probe radius is used.

The phase of the dipolar moment (PDM) is defined as follows
φp,ex

= φα,ex
+ φEloc .

FIG. 3. Normalized partial LDOS ρ̂ex
(r,ω), phase of the dipolar

moment φp,ex
, phase of the local field φEloc , and normalized PPS φ̂α,ex

at a variable distance of a 10-nm silver film, with a dielectric probe
of 1 nm radius, at λ = 400 nm.

In this case, the PDM and the phase of the local field have
very small differences, which are related to the polarizability
phase. This illustrates the fact that even in the case of a strong
LDOS environment, the PPS remains negligible due to the
1nm probe size. Nevertheless, a comparaison of the normalized
PPS with the normalized pLDOS shows a perfect agreement
as expected from Eq. (15).

D. Polarizability phase extraction method

Based on the results of the previous sections, a polarizability
phase extraction method for pLDOS is proposed, see Fig. 4.
After measuring the transmitted phase with tips of different
size, and calculating the difference, we obtain the phase

FIG. 4. Illustration of the LDOS phase sensitive (LDOS-SP)
technique. It is based on the imaging of the trans-scattering phase
map with two different tip sizes that is done sequentially and by
normalization of the numerical subtraction, we obtain the map of the
pLDOS.
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FIG. 5. PDM for two tip radius, R = 25 and 1 nm. In insert,
normalized pLDOS, and normalized difference of the PDM between
the two tip of radius R = 25 and 1 nm.

difference of polarizabilities:

φtrans25,ex
− φtrans1,ex

= φp25,ex
− φp1,ex

= φα25,ex
− φα1,ex

.

(16)

Here we assume φα25,ex
� φα1,ex

, based on the previous
results, therefore

φtrans25,ex
− φtrans1,ex

≈ φα25,ex
∝ ρex

(r,ω). (17)

In Fig. 5, the phase of the dipolar moment (PDM) is plotted
for two different sizes of the tips, namely, 1 and 25 nm, as a
function of the separation distance between the probe and the
slab. We observe important phase shift differences between
the two tips of up to 0.1 rad (� 5.5◦) at 25 nm from the
surface, revealing strong LDOS effect. Finally, the difference

φp(z) = φp25,ex

− φp1,ex
, normalized by its value far from
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FIG. 6. Normalized extinction, normalized pLDOS, and the
normalized local intensity for a 1 nm probe radius at a variable
distance of a 10-nm silver film, at λ = 400 nm.

the substrate 
̂φp = 
φp(z)/
φp(z → ∞), is plotted in the
insert of Fig. 5 and compared to the pLDOS. We find that good
adequacies are shown and are in agreement with Eq. (15). In
conclusion, simply imaging the trans-scattering phase map
with two tip sizes, sequentially would allow us to map the
pLDOS by numerical subtraction followed by normalization.
In these calculations, a tip of 1-nm radius was considered,
but experimentally it is not accessible. The calculation with
a radius that is experimentally accessible is of 5 nm, which
could be realized as follows: φtrans25,ex

− φtrans5,ex
≈ φα25,ex

∝
ρex

(r,ω). The results are expected to be the same because
it is assumed that the PPS, as in the vacuum case, has a
cubic dependency with the probe’s radius, therefore φα25,ex

�
φα5,ex

� φα1,ex
. Finally, as the range of the radius of the tip

seems realistic from 5 to 25 nm, the experiment appears to be
accessible with the state of the art s-SNOM setup.

E. Comparison with extinction

In order to contrast those results with the extinction
technique, a simulation based on the same computation code
is realized. The extinction measurement is compared with the
pLDOS and discrepancies are shown, see Fig. 6. In this figure,
we trace the normalized partial LDOS ρ̂ex

(r,ω) along with
extinction efficiency of the particle Pe(r,ω)/Pe,0(r,ω) and the
local intensity Iloc(r). We can observe a factor of 2 between
the pLDOS and the normalized extinction for a distance of
around 50 nm from the surface. These differences are due to
the intrication of the local field in the extinction response of the
particle, the relation at the origin of this effect is demonstrated
in the appendix, and given by

Pe(r,ω) = ωε0

2V
Iloc(r)[exIm[α(ω)] · ex]. (18)

Aside to this comparison, another remarkable quantity can
be resolved, indeed, by dividing the normalized extinction
Pe(r,ω)/Pe,0(r,ω) by the normalized pLDOS ρ̂ex

(r,ω) ob-
tained from the LDOS-SP method, we obtain the local intensity
Iloc(r)/I0 as follows:

Iloc(r)

I0
= Pe(r,ω)/Pe,0(r,ω)

ρ̂ex
(r,ω)

. (19)

Finally, let us note that the basic idea behind the LDOS-SP
method lies in the derived equation (12), which links the
PPS and the pLDOS. Therefore any other method that could
retrieve the phase of the polarizability would allow us to
access the LDOS. For instance, any modulation at the level
of the polarizability tensor of the tip (acoustic modulation,
anisotropic control, magneto-optic, liquid crystal, etc.) would
theoretically allow the same extraction measurement.

IV. CONCLUSIONS

From a theoretical and a numerical analysis point of view,
we have confirmed that in an experimental TS-SNOM mode,
the extinction and the pLDOS exhibit discrepancies coming
from the local field intensity. A framework for the trans-
scattering phase of the probe is developed and relationships
between the probe’s phase shift and the LDOS are established.
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These findings have lead us to propose an experimental
approach for measuring the LDOS optically and numerical
evaluation indicates that it should improve the extinction
measurement.
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APPENDIX: EXTINCTION BY A NEAR FIELD PROBE

The expression of the dressed polarizability, Eq. (2), can be
the starting point to compute the extinction measurement in
an arbitrary environment [13]. To carry out this derivation, we
start with the expression for the power extracted, i.e., absorbed

and scattered, from the external field Eloc by the probe [21]

Pe = 1

2

∫
V

Re[j(r′,ω)· E∗
loc(r′,ω)]d3r′, (A1)

where j(r′,ω) = −iωε0[ε(ω) − 1]Eloc(r′,ω) is the current den-
sity induced in the probe. As the electric field is assumed to
be uniform inside the probe, and under the assumption of an
electrically small probe [13], the extracted power for the probe
can be written as

Pe = ωε0

2V
Im[α(ω)Eloc(r,ω)· E∗

loc(r,ω)]. (A2)

And using Eloc = Elocex , this can be rewritten as

Pe(r,ω) = ωε0

2V
Iloc(r)[exIm[α(ω)] · ex]. (A3)

This expression connects the extinction measurement with a
cross product between the electric field and a term related to
the imaginary part of the polarizability of the probe’s tip.
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