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Light-modulated 0-π transition in a silicene-based Josephson junction
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We investigate the Andreev bound states (ABSs) and Josephson current in a silicene-based superconductor-
normal-superconductor junction modulated by a perpendicular electric field and an off-resonant circularly
polarized light. Based on the Dirac–Bogoliubov–de Gennes equation, we analytically derive the ABS levels
and show they have different phase-difference dependences, which will remarkably influence the velocity of
Cooper pairs and then the Josephson current. In the pristine or gated silicene, the ABS levels always show
negative slope, which means that the Josephson current is irreversible because of the time-reversal symmetry.
When an off-resonant circularly polarized light is applied, whether or not there is a perpendicular electric field, the
ABS levels will have positive slope, leading to the emergence of reversed Josephson current due to the nonzero
center-of-mass wave vector of Cooper pairs. In this light-modulated silicene-based Josephson junction, valley
polarization provides an alternative mechanism for 0-π transition, very different from that for the conventional
ferromagnetic Josephson junctions where the spin polarization is essential.
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I. INTRODUCTION

Silicene, the counterpart of graphene, has received much
attention due to its topological behavior from the strong
spin-orbit coupling and gate-controlled band gap [1–3]. More
importantly, silicene-based devices, which can grow on some
substrates such as Ag(111) and ZrB2 [4,5], are compatible with
conventional silicon-based technology. Its unique properties in
electronics, thermoelectrics, optoelectronics, and magnetics
have been investigated widely [6–12]. Especially, owing to
its available spin and valley degrees of freedom, silicene has
sparked huge research interest in spintronics and valleytron-
ics [13–15].

However, in contrast to many works on graphene-based
superconducting junctions [16–20], including the Andreev
reflection and Josephson effect, the silicene-based supercon-
ducting junctions have been studied less [21]. Therefore, the
intrinsic properties and possible applications of the silicene-
based superconducting junctions deserve to be studied in
both theory and experiment. Traditionally, a dc Josephson
current is a supercurrent carried by Cooper pairs which tunnel
between two superconductors with different macroscopic
phases, separated by a thin insulating barrier [22]. When the
insulating barrier is replaced by a conductor, the Andreev
bound states will exist in the middle region, which come from
the round-trip Andreev reflection of the electron and hole with
subgap energies between the two superconductors [23,24].
If the middle region is a ferromagnetic metal, i.e., in a
superconductor-ferromagnet-superconductor (SFS) junction,
the direction of the supercurrent can be reversed [25], as
first predicted by Buzdin et al. [26] and later reviewed by
Buzdin [27]. Here the spin degree of freedom plays a vital role
in this well-known 0-π transition.

In silicene, there exist both spin and valley degrees of
freedom. Naturally, a simple analogy can be proposed that the
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valley degree of freedom may play the same role as the spin
degree of freedom in the phenomenon of the 0-π transition.
The pioneering work on the Andreev reflection and Josephson
effect in silicene-based superconducting junctions showed that
a Cooper pair is composed of one electron with up (down) spin
in the K valley and another electron with down (up) spin in the
K ′ valley [21], but it did not highlight the role of spin as well as
the valley degree of freedom in the superconducting transport.
In addition, the recent research on valleytronics focuses on
searching for the valley polarized current [28] but does not
make use of the advantage of the valley degree of freedom
adequately. In order to explore more possible applications of
the silicene-based superconducting junctions and deepen the
role of the valley degree of freedom, we would like to search for
the valley-related 0-π transition, analogous to the one related
to the spin degree of freedom.

In this work, we investigate the Andreev bound states
and Josephson current in a silicene-based superconductor-
normal-superconductor (SNS) junction, schematically shown
in Fig. 1(a). The superconducting regions are realized by
the superconducting proximity effect. The normal region is
applied by a perpendicular electric field and irradiated by an
off-resonant right-circularly polarized light. The perpendicular
electric field is used to tune the band gap based on the buckled
structure of silicene, while the off-resonant light can open a
valley-dependent gap in terms of the Floquet theory [29,30].
This paper is organized as follows. In Sec. II, the model
and basic formulas are constructed. In Secs. III and IV, the
theoretical treatments and numerical results for the Andreev
bound states and the Josephson effect are presented and
discussed, respectively. Finally, in Sec. V, the conclusion of
this work is given.

II. MODEL AND FORMALISM

In the considered system, the electron and hole excitations
are described by the Dirac–Bogoliubov–de Gennes (DBdG)
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FIG. 1. Schematic diagrams for (a) the top view of a silicene-
based Josephson junction and (b) the side view of silicene. An applied
external electric field and an off-resonant right-circularly polarized
light in the normal region are also shown.

equation [31](
H − EF �(T )
�∗(T ) EF − T HT −1

)(
ue

vh

)
= ε

(
ue

vh

)
. (1)

Here ε is the excited energy relative to the Fermi level EF,
and ue (vh) is the electronlike (holelike) quasiparticle wave
function. �(T ) = 0 in the normal region, while �(T ) =
�0 tanh (1.74

√
Tc
T

− 1)eiφL(R) in the left (right) superconducting
region. The latter is the temperature-dependent energy-gap
function for an s-wave superconductor, with �0 being the zero-
temperature energy gap, Tc being the transition temperature,
and φL(R) being the macroscopic phase in the left (right)
superconductor. In the process of calculations, kBTc = 2�0

3.53 ,
with �0 = 1 meV, which is used as the energy unit.

The single-particle Hamiltonian is

H =
(
H+ 0
0 H−

)
, (2)

in which

Hη = −i�vF(sx∂x + ηsy∂y)σ0 + ηλsoszσz

+ (ηFω − lEz)szσ0 − U, (3)

where η = ± denote the two valleys of the band structure,
vF = 5.5 × 105 m/s is the Fermi velocity, sx,y,z and σz are
2 × 2 Pauli matrices, σ0 is the unit matrix, and the positive
electrostatic potential U can be adjusted by doping or a
gate voltage in the superconducting regions and is zero in
the normal region. λso = 3.9 meV is the intrinsic spin-orbit
coupling of silicene. l = 0.23 Å is the half distance between
the two sublattice planes in which a perpendicular electric
field Ez can be applied due to the buckled structure, as shown

in Fig. 1(b). The illumination parameter is Fω = e2E2
0v2

F
�ω3 , with

E0 being the amplitude of the electric field and ω being the
frequency of the off-resonant right-circularly polarized light,
as defined in the Floquet theory [29,30].

The time-reversal operator is expressed by T = iηx ⊗ sz ⊗
σyC, with ηx being the Pauli matrix and C being the complex-
conjugation operator. By substituting it into Eq. (1), Eq. (1)

can be decoupled into four sets of independent equations after
matrix transformation, i.e.,(
Hησ + ηFωsz − EF �(T )

�∗(T ) EF − (Hησ − ηFωsz)

)(
ue

vh

)
=ε

(
ue

vh

)
,

(4)

where Hησ = −i�vF(sx∂x + ηsy∂y) + (ησλso − lEz)sz − U ,
with σ = ±1 being the spin index.

In the normal region, when ε and transverse momentum ky

are known, we obtain the four eigenstates by solving the DBdG
equation and keeping the probability current conservation.
They are

ψ±
e,ησ = e±ikxex+ikyy

√
A cos θ

(e∓iηθ/2,±Ae±iηθ/2,0,0)T,

ψ±
h,ησ = e±ikxhx+ikyy

√
B cos ϕ

(0,0,e∓iηϕ/2,∓Be±iηϕ/2)T. (5)

The state ψ+
e,ησ (ψ+

h,ησ ) denotes the electron (hole) moves in the
+x direction, while ψ−

e,ησ (ψ−
h,ησ ) denotes the electron (hole)

moves in the −x direction. The longitudinal wave vector of the
electron kxe (hole kxh), the incident angle of the electron θ , the
reflection angle of the corresponding hole ϕ, and the oscillation
amplitudes A and B are all functions of the intrinsic and
extrinsic quantities λso, Ez, Fω, ε, and EF and are calculated
in the Appendix.

In the two superconducting regions, considering the heavily
doped regime to ensure EF + U � �(T ), ε, and λso, the
simplified wave functions are obtained as

ψ±
SL = eikSL±x+ikyy(e∓iβ ,±e∓iβ ,e−iφL ,±e−iφL )T,

ψ±
SR = eikSR±x+ikyy(e∓iβ ,∓e∓iβ ,e−iφR ,∓e−iφR )T, (6)

where

kSL(SR)± = [−(+)i�(T ) sin β ± U ]/�vF (7)

and

β =
{−iarcosh[ε/�(T)] ε > �(T ),

arccos[ε/�(T )] ε < �(T ). (8)

Referring to Eq. (6), the state ψ+
SL(SR) (ψ−

SL(SR)) represents the
wave function of a quasielectron (quasihole) for ε > �(T ) or is
the coherent superposition of the electron and hole excitations
for ε < �(T ).

For the Josephson effect considered here, which is similar to
the short graphene-based SNS junction [17], the supercurrent
across the junction between two superconductors is mainly
carried by the bound states, known as the Andreev bound states
(ABSs), which are the result of the closed-loop motion of the
particles with discrete subgap energies, shown in Fig. 1(a).
One can see that it is usually sufficient to find the ABSs for
calculating the supercurrent carried by them. By summing over
the energy εnησ of subgap quasiparticles at finite temperature
T , the Josephson current J passing through the junction is
given as

J = −2e

�

∑
nησ

∫
N (εnησ ) tanh

(
εnησ

2kBT

)
dεnησ

dφ
cos θdθ, (9)
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where n represents the number of ABSs, N (εnησ ) =
(W/π�vF)

√
(εnησ + EF)2 − (ησλso − lEz + ηFω)2 are the

transverse modes in a silicene monolayer of width W , and
φ = φR − φL is the phase difference. The detailed process for
calculating the ABSs is given in the Appendix.

III. ANDREEV BOUND STATES

The Andreev reflection and ABSs have been discussed for
silicene-based superconducting junctions without off-resonant
light [21]. The results in Ref. [21] can be reproduced by
suppressing the light in the present case. According to the
pairing rule referred to in Sec. I and the fact that the light-
induced gap is always enlarged at one valley [8], the Andreev
reflection is reduced with increasing Fω. Here we focus on the
light-modulated ABSs.

Before investigating the ABSs, the qualitative analysis,
similar to the ferromagnetic Josephson junction [32,33], is
instructive for further treatment in our model. From Eq. (3),
the dispersion relation in the normal region is obtained as

Eησ = ±
√

(�vFk)2 + (ησλso − lEz + ηFω)2. (10)

Considering the normal incidence, two paired electrons at the
Fermi energy [32] will have the center-of-mass wave vector

q = kx(η,σ ) − kx(−η, − σ ), (11)

where kx(η,σ ) =
√

E2
F − (ησλso − lEz + ηFω)2/�vF is de-

rived from Eq. (10). We can see that the nonzero q can appear
if Fω �= 0. This is similar to the case in the ferromagnetic
Josephson junction in which nonzero q is generated by the spin
splitting. So the Josephson current reversal can be realized by
irradiating an off-resonant light.

For the sake of revealing the influences of lEz and Fω on
the ABSs and finding the essential relation between the ABS
level and the Josephson current in Eq. (9), we still consider
the normal incidence and derive from Eqs. (A8) and (A9) the
Andreev bound level as

εησ

�(T )
= ±

√
1 − X(Z−cos φ)±

√
Y 2[X2+Y 2−(Z−cos φ)2]
X2+Y 2

√
2

(12)

and then the related velocity factor as

dεησ

�(T )dφ
= ± f sin φ

2
√

2

√
1 − X(Z−cos φ)±

√
Y 2[X2+Y 2−(Z−cos φ)2]
X2+Y 2

,

(13)

where f = (−X ± Y (Z−cos φ)√
X2+Y 2−(Z−cos φ)2

)/(X2 + Y 2). We can

show in Fig. 2 the φ-dependent ABS level εnησ from Eq. (12).
These ABSs are in the experimentally most favorable short-
junction regime where length L of the normal region is
small relative to the superconducting coherence length ξ , i.e.,
L 	 �vF

�0
. Using reasonable values for the parameters here, it

is confirmed that L 	 362 nm. It should be pointed out that
the nonzero incident angle does not affect the result of the
qualitative analysis below. From calculations, one can confirm
that each of these cases has eight ABS energy curves which
cannot all be shown definitely in Figs. 2(a)–2(d) because of
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FIG. 2. (a)–(f) Andreev-bound-state level versus the phase dif-
ference with different lEz, Fω, and L. The Fermi energy EF = 120,
and the unit for the junction length is 1 nm.

the possible degeneracy of levels. From Figs. 2(a) to 2(f), the
energy curves of the φ-dependent ABSs show entirely different
tendencies with the varied electric field, off-resonant light, and
junction length, which will obviously modulate the Josephson
current.

In the absence of Fω, corresponding to Figs. 2(a) and 2(b),
q = 0, which leads to Y = 0 in Eq. (A9); then Eqs. (12)
and (13) become the following formulas:

εησ

�(T )
= ±

√
cos φ−Z

X
+ 1

2
(14)

and

dεησ

�(T )dφ
= ± − sin φ

2
√

2
√

cos φ−Z

X
+ 1

. (15)

We observe Eq. (9) and find that the direction of the Josephson
current is dependent on the product of signs of the negative
Andreev bound level −εnησ and its slope dεnησ

dφ
. It is easy

to judge that the sign of the Josephson current is always
positive (negative) for φ ∈ [0,π ) (φ ∈ [π,2π ]) from the above
formulas. The same result can be obtained in Figs. 2(a)
and 2(b), in which the product of the signs of an Andreev
bound level and its slope are negative (positive) for φ ∈ [0,π )
(φ ∈ [π,2π ]); then the value of the Josephson current remains
positive (negative) for φ ∈ [0,π ) (φ ∈ [π,2π ]). Whatever the
junction length or electric field is, Figs. 2(a) and 2(b) always
keep the same relation of φ-dependent ABSs due to time-
reversal symmetry. These ABS-transferred Josephson currents
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FIG. 3. (a)–(d) Josephson current versus the phase difference
with different perpendicular electric fields, off-resonant lights, and
junction lengths but fixed Fermi level EF = 120.

are the same as the traditional ones and are shown in Figs. 3(a)
and 3(b).

In the presence of Fω, besides the similar relation of
φ-dependent ABS levels in Figs. 2(a) and 2(b), there exist
two different relations of φ-dependent ABS levels shown
in Figs. 2(c) and 2(d). They come from the fact that the
combination of Fω and λso leads to a nonzero center-of-mass
wave vector of a Cooper pair, shown in Eq. (11). The slope of
a φ-dependent ABS level is described by Eq. (13). The sign
of the slope is determined by the Fω-dependent function f ,
which will lead to the Josephson current reversal by adjusting
Fω. It is found that in Fig. 2(c), some products of the signs of
the ABS levels and their slopes are negative, while some of
their products are positive for φ ∈ [0,π ), which will lead to the
sign reversal at φ between 0 and π . Unfortunately, in this case,
it is not easy to judge whether the 0-π transition occurs or not
because the critical current cannot be estimated correctly. In
contrast, in Fig. 2(d), the products of the signs of the ABS levels
and their slope are opposite to the case in Figs. 2(a) and 2(b),
which means the generation of the 0-π transition. Interestingly,
in the presence of Fω and lEz, shown in Figs. 2(e) and 2(f),
although the relations of the φ-dependent ABS levels are the
same as in Figs. 2(c) and 2(d), there exists another origin
of nonzero q, i.e., the valley polarization-induced nonzero
q. All these analyses are confirmed in Figs. 3(c) and 3(d),
respectively.

From the numerical calculations and analyses above, it is
found that the property of the Josephson current is dependent
on the slope of a φ-dependent positive ABS level for φ ∈ [0,π ]
and the slope can be three different types, i.e., the negative
slope, the positive slope, and the hybrid of negative and
positive slopes. The negative (positive) slope is the sign of
the 0 (π ) state, while the hybrid of negative and positive
slopes cannot give a qualitative result. Further, when the
effect of temperature is taken into account, the distribution
function of ABSs, that is, tanh( εnησ

2kBT
), will affect the Josephson

current. From Fig. 2, for the negative (positive) slope at
φ ∈ [0,π ], no matter how the temperature is adjusted, the
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FIG. 4. (a)–(d) the critical Josephson current versus the junction
length with different perpendicular electric fields and off-resonant
lights in the case of EF = 120.

Josephson current always shows the 0 (π ) state. However,
for the hybrid of negative and positive slopes at φ ∈ [0,π ],
there is a competition between the ABSs for generating the
Josephson current. The temperature-dependent distribution
function of ABSs will affect the competitive effect and may
lead to the temperature-induced Josephson current reversal at
some phase differences. But in our model, this current reversal
is not the 0-π transition, which can be confirmed by numerical
calculations in Fig. 5 below.

IV. SUPERCURRENT REVERSAL

In terms of Eqs. (9) and (12)–(15), we have calculated the
phase-difference-dependent Josephson current with different
lEz, Fω, and junction length L at zero temperature, as shown
in Fig. 3. The unit for Josephson current is J0 = 2e

�

WEF
π�vF

, and
the Fermi energy is chosen at EF = 120 meV. In Figs. 3(a)
and 3(b), the Josephson current always shows the zero state
with different junction lengths in pristine silicene and gated
silicene, respectively. In the presence of off-resonant light or
the coexistence of off-resonant light and the electric field, the 0-
π transition is generated, as shown in Figs. 3(c) and 3(d). These
numerical results are consistent with the preceding qualitative
analysis.

In order to exhibit the characteristics of the junction-length-
dependent Josephson current explicitly, the critical Josephson
current Jc, with the same parameters as in Fig. 3, versus
the junction length is plotted in Fig. 4. It is easy to find
that Jc keeps the positive value in pristine or gated silicene,
shown in Figs. 4(a) and 4(b), while it oscillates from the
positive value to the negative value with increasing junction
length in the presence of an off-resonant light, shown in
Figs. 4(c) and 4(d). According to the phenomenological theory
in the traditional ferromagnetic Josephson junction [32,33],
one find that Jc ∝ cos(|q|L), and its oscillation period is
2π/|q|, which is ≈77.6 nm using Eq. (11), in approximate
agreement with the numerical calculations from Eq. (9) in
Fig. 4(c). In the coexistence of an electric field and an
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off-resonant light, shown in Fig. 4(d), there are two different
nonzero |q| from Eq. (11), i.e., q1 = |kx(1,1) − kx(−1,−1)|
and q2 = |kx(1,−1) − kx(−1,1)|. The oscillation periods of
Jc are T1 ≈ 71.6 nm and T2 ≈ 57.8 nm, respectively, which
agree with the numerical ones in Fig. 4(d). These two
different oscillation periods make the total critical current
chaotic, shown in Fig. 4(d) by the green dot-dashed line.
Although the junction length cannot be changed continuously
in measurements, Fig. 4 provides a reference for choosing a
suitable junction length in experiment.

Although it is not a handleable way to realize the 0-π
transition by changing the junction length, the control of the
perpendicular electric field and off-resonant light is feasible in
experiment. In Fig. 5(a), curves of the Josephson current versus
the phase difference are plotted with different electric fields
and a fixed off-resonant light Fω = 50. The phenomenon of
the 0-π transition is clearly shown. We observe the Josephson
current in Fig. 5(a) carefully and find that the sign of the
Josephson current is reversed at φ between 0 and π when
lEz = 20 (or 30). This is different from the case of lEz = 10
(or 40 or 50) in which the change of sign only occurs at
φ = π . The reason is that the hybrid of negative and positive
slopes of φ-dependent ABS levels leads to the current reversal
at φ ∈ [0,π ), which was discussed in Sec. III. It should be
emphasized that, in Fig. 5(a), this 0-π transition originating
from the valley polarization is different from the traditional
one where the spin splitting plays the key role. We neglect the
spin-orbit coupling λso when lEz � λso (the yellow double-
dot-dashed line) and find that this approximate result is almost
in agreement with the accurate calculation (the magenta dot-
dashed line). Therefore, we confirm that the valley degree of
freedom in a silicene-based SNS junction plays the same role
as the spin degree of freedom in an SFS junction in the 0-π
transition.

The above numerical calculations are performed at zero
temperature. In actual experiments, the effect of temperature
on Josephson current needs to be considered. When all the
slopes of φ-dependent ABS levels are negative (positive) at
φ ∈ (0,π ), it is obvious that temperature only affects the
magnitude of the Josephson current, while the Josephson
current reversal cannot be generated. Here we focus on the
discussion of the hybrid of negative and positive slopes of
φ-dependent ABS levels. In Fig. 5(b) with lEz = 20(30) and
Fω = 50, the Josephson current reversal occurs at some φ

at a finite temperature. This temperature-induced Josephson
current reversal is attributed to the temperature-modulated
competitive effect between the ABS levels, which was illu-
minated in Sec. III explicitly. However, the critical current
is not reversed, which means that the temperature-induced
Josephson current reversal is not the 0-π transition. We can
show the 0 or π state by observing the free energy [34]

G = −kBT
∑
nησ

∫
N (εnησ ) ln

[
2 cosh

(
εnησ

2kBT

)]
cos θdθ,

(16)

shown in Figs. 5(c) and 5(d). The minimum values of free
energy are unchanged with increasing temperature, which
means that the 0 or π state is not affected by the environmental
temperature.

It is necessary to discuss the parameter selection. The
junction length was analyzed in Sec. III. In the presence of Fω

(lEz = 0), by checking Eq. (11), the nonzero center-of-mass
wave vector |q| → 0 when EF � Fω, λso, and the maximum
|q|max = 2

√
λsoFω/�vF when EF = λso + Fω. The larger the

nonzero wave vector is, the smaller the oscillation period
becomes. If we choose Fω = 2λso, which is the same as in
Ref. [8], the oscillation period is about 205 nm. Although the
parameters are allowed in theory, they may not be able to
meet the requirement of being short junction in experiment.
In order to exhibit the parameter dependence explicitly, the
contour plot for Jc versus Fω and EF with L = 30 nm, which
is in the experimentally most relevant short-junction regime,
is shown in Fig. 6(a). The dark blue region is the π state. In the
coexistence of Fω and Ez, in principle, it is difficult to provide
a qualitative analysis due to the two different nonzero wave
vectors q1 and q2. But we can neglect the spin-orbit coupling
λso when lEz � λso, which lets us obtain the maximum
nonzero center-of-mass wave vector |q|max = 2

√
lEzFω/�vF

when EF = lEz + Fω. The contour plot for Jc versus lEz and
Fω can also be plotted, as shown in Fig. 6(b). We can use
this simple relation combined with Figs. 6(a) and 6(b) to
estimate the values of parameters allowed in experiment. In
fact, the values of lEz, Fω, and EF in Figs. 2–5 are available
in experiment. In theory, in order to compare with Ref. [8], we
artificially set L = 100 nm, and the values of lEz and Fω are the
same as those in Ref. [8], shown in Fig. 6(c). Unfortunately, Jc

cannot be used to distinguish the different topological phases
displayed in Ref. [8] because Jc depends on the nonzero wave
vector and junction length. Excitingly, the combination of Fω

and λso can generate the 0-π transition when we compare
Fig. 6(c) with Fig. 6(d), in which λso is neglected artificially.
This is a particular property of silicene which cannot be found
in graphene due to the very weak spin-orbit coupling. We give
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FIG. 6. The contour plot for critical current Jc versus (a) EF and
Fω with L = 30 nm and lEz = 0, (b) lEz and Fω with L = 30 nm and
EF = 120, and (c) and (d) lEz and Fω with L = 100 nm, EF = 20,
and λso = 3.9 and 0, respectively.

a detailed comparison between silicene and graphene in the
following.

Although the 0-π transition can be generated in the irradi-
ated graphene-based SNS junction with a staggered sublattice
potential, there are three weaknesses. First, compared with the
gate-tunable gap in silicene, the gap induced by the staggered
sublattice potential in graphene is not flexibly controlled
in experiment. Second, when only the off-resonant light is
irradiated in the graphene-based Josephson junction, the 0-π
transition cannot be generated for small q due to the very
weak spin-orbit interaction. This is different from the irradiated
silicene in which the 0-π transition can be realized, shown in
Fig. 3(c). Third, there is a requirement for the off-resonant
light that its photon energy must be larger than the bandwidth
of graphene (silicene), i.e., �ω � γ , where γ = 2.82(1.6) eV
is the nearest-neighbor hopping energy for graphene (silicene).
This means that the frequency for graphene (silicene) is about
3500 (1000) THz [8,30]. From these three aspects, we can see
that the realization of the 0-π transition in silicene has more
advantages than in graphene.

V. CONCLUSIONS

In summary, we have studied the Andreev bound states
and Josephson effect in a silicene-based SNS junction gated
by an electric field and irradiated by an off-resonant light.
Three kinds of slopes of the φ-dependent ABS levels for
φ ∈ [0,π ], i.e., the negative slope, the positive slope, and
the hybrid of negative and positive slopes, were found. The
negative (positive) slope determines the positive (negative)
Josephson current, i.e., the 0 (π ) state, while the state of
the Josephson junction cannot be judged from the hybrid of

negative and positive slopes due to the ambiguous critical
current.

The pristine- or gated-silicene-based Josephson junction,
in which the phase-difference-dependent ABSs always show
a negative slope, cannot realize the 0-π transition because
of the time-reversal symmetry. In contrast, owing to the
combination of the intrinsic spin-orbit coupling and the broken
time-reversal symmetry induced by an off-resonant light, the
0-π transition is generated by the ABSs with the positive
slope.

It should be emphasized that the 0-π transition here is tuned
by a perpendicular electric field, and an off-resonant light from
the latter valley polarization is produced uniquely. The valley
degree of freedom in the present silicene-based SNS junction,
which is analogous to the spin degree of freedom in the
conventional SFS junctions, plays a key role in the realization
of the 0-π transition. It is not very difficult technically
to verify these results experimentally. Our finding provides
an alternative mechanism and a new operating method for
realizing the 0-π transition.
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APPENDIX: SOME DETAILS ABOUT SOLVING
THE ANDREEV BOUND STATES

In the normal region shown in Fig. 1(a), there are two
interfaces, one at x = −L/2 separating the left superconductor
with phase φL = −φ/2 and the other at x = L/2 separating the
right superconductor with phase φR = φ/2. The parameters in
Eq. (5) are given by the definitions

A± =
√

(EF + ε) ± (ησλso − lEz + ηFω)/
√

�vF,

B± =
√

(EF − ε) ± (ησλso − lEz − ηFω)/
√

�vF,

kxe = A+A− cos θ, kxh = gB+B− cos ϕ,

g = sgn[(ε − EF)− | ησλso − lEz − ηFω |],
θ = arcsin[ky/(A+A−)], ϕ = g arcsin[ky/(B+B−)],

A = A−/A+, B = B+/B−. (A1)

It is noted that the Andreev reflection is specular for g = 1
and is retroreflected for g = −1. There will be no An-
dreev reflection if the incident angle is beyond the critical
angle

θc = arcsin
B+B−
A+A−

. (A2)

According to Eq. (6), the boundary conditions at the two
interfaces are given by

vh(−L/2) = Uue(−L/2), vh(L/2) = U−1ue(L/2), (A3)

with

U =
(

cos β i sin β

i sin β cos β

)
eiφ/2. (A4)
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The states of the left and right interfaces are related
as

ue(L/2) = Meue(−L/2), vh(L/2) = Mhvh(−L/2),

(A5)

where the transfer matrices are

Me = 1

cos θ

(
cos(kxeL − ηθ ) i sin(kxeL)/A

iA sin(kxeL) cos(kxeL + ηθ )

)
,

Mh = 1

cos ϕ

(
cos(kxhL − ηϕ) −i sin(kxhL)/B

−iB sin(kxhL) cos(kxhL + ηϕ)

)
. (A6)

For the existence of an Andreev bound state in the
Josephson junction, the transfer matrix for the round trip from
x = −L

2 to x = L
2 and then back to x = −L

2 is unimodular,
i.e.,

ue(−L/2) = Xue(−L/2),

detX = det
[
M−1

e UMhU
] = 1. (A7)

Solving Eq. (A7), we obtain

cos φ = X cos 2β + Y sin 2β + Z, (A8)

where

X = cos(kxeL) cos(kxhL)

− (1 + A2)(1 + B2)

4AB

sin(kxeL) sin(kxhL)

cos θ cos ϕ
,

Y = 1 + B2

2B

cos(kxeL) sin(kxhL)

cos ϕ

+ 1 + A2

2A

sin(kxeL) cos(kxhL)

cos θ
,

Z = (1 − A2)(1 − B2) sin(kxeL) sin(kxhL)

4AB cos θ cos ϕ

− sin(kxeL) sin(kxhL) tan θ tan ϕ. (A9)

When λso = lEz = Fω = 0, then A = B = 1. This reproduces
the results for graphene in Ref. [17].

It is reasonable to analyze the Josephson effect in
the experimentally most relevant short-junction regime
where the length L of the normal region is smaller than the
superconducting coherence length ξ , i.e., L 	 �vF

�0
. So the

junction length satisfies L 	 362 nm. Considering EF � ε,
then X ≈ X(ε = 0), Y ≈ Y (ε = 0), and Z ≈ Z(ε = 0). Thus,
substituting Eq. (A9) into Eq. (A8), we can derive Eq. (12)
and its derivative, Eq. (13).
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