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Nano-cross-junction effect on phonon transport in silicon nanowire cages
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Wave effects of phonons can give rise to controllability of heat conduction in nanostructures beyond that
by particle scattering at surfaces and interfaces. In this paper, we propose a new class of three-dimensional
nanostructures: a silicon-nanowire-cage (SiNWC) structure consisting of silicon nanowires (SiNWs) connected
by nano-cross-junctions. We perform equilibrium molecular dynamics simulations and find an ultralow value of
thermal conductivity of SiNWC, 0.173 Wm−1 K−1, which is one order lower than that of SiNWs. By further modal
analysis and atomistic Green’s function calculations, we identify that the large reduction is due to significant
phonon localization induced by the phonon local resonance and hybridization at the junction part in a wide range
of phonon modes. This localization effect does not require the cage to be periodic, unlike the phononic crystals,
and can be realized in structures that are easier to synthesize, for instance in a form of randomly oriented SiNW
network.
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Over the past decades, nanostructures have attracted great
attention due to their unique properties, including low thermal
conductivity. The most commonly exercised approach is to
lower thermal conductivity by phonon scattering at boundaries
(surfaces and interfaces) that become dominant over intrinsic
scattering as the length scales of the nanostructures decrease.
Taking silicon nanowires (SiNWs) as a representative ma-
terial, reduction of thermal conductivity has been realized
by enhanced phonon scatterings at surfaces due to high
surface-to-volume ratio [1,2]. A number of works followed to
further reduce the thermal conductivity of SiNWs by surface
roughness [3–5], inner holes [6,7], dopants [8], and kinks
[9,10]. This includes a report of ultralow value 1.1 Wm−1 K−1

in experiment [7] and 0.40 Wm−1 K−1 in simulation [8];
however, the values are obtained form ultrashort SiNWs of
just a few nanometers. Such materials are not scalable by
themselves because the thermal conductivity would increase
with the length [11], and thus, fundamental barriers remain
against the practical implementation.

Another line of effort to further reduce thermal conductivity
of bulk materials is to utilize wave nature of phonons.
Periodic phononic crystals can terminate or inhibit phonon
propagation by interference of phonons reflected at boundaries
[12–15]. A challenge here is to ensure the occurrence of wave
interferences, which requires strict periodicity of the internal
structure with a size on the order of the phonon waves, whose
wavelength is about 1 nm at room temperature [16]. In addi-
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tion, boundaries of the internal structures need to be smooth
enough to specularly reflect phonons. These structures make
production of the phononic crystals by bottom-up synthesis
and top-down fabrication extremely challenging [17].

Therefore, there is a strong need for a structure that
can give rise to wave effects (interference, localization, and
resonance) locally so that the periodicity is no longer required.
Recently, by introducing small pillars on a silicon thin film,
Davis and Hussein theoretically obtained the reduction of the
thermal conductivity through the local resonance of phonons
[18]. In the same year, Han et al. confirmed local phonon
interference by germanium atoms embedded at a Si interface
[19]. However, these works also show limitation in the range of
phonon modes in which the local structure can induce distinct
resonance and hybridization. To have stronger impact on the
overall thermal conductivity, the structure needs to influence
a broader range of phonon modes instead of resonating with
specific modes.

The current paper aims to resolve the above issues being
encouraged by the advances in the bottom-up synthesis of
various NW structures, which has been a driving force in
realizing entirely new device concepts and functional systems
[20]. The advances include the growth of branched and hy-
perbranched NW structures [21,22], two NW-heterostructure-
based nanocomposites [23,24], ZnO nanotetrapod bridging
networks [25], and planar NW cross-junction architectures
[26]. These works have shown the advantages of two-
dimensional (2D) cross-junction over bridge junction.

In this paper, based on the above bottom-up approach and
planar nano-cross-junctions (NCJs) [26], we take a step further
and propose a SiNW cage (SiNWC) [Fig. 1(c)] structure

2469-9950/2016/94(16)/165434(10) 165434-1 ©2016 American Physical Society

https://doi.org/10.1103/PhysRevB.94.165434


MA, DING, MENG, FENG, WU, SHIOMI, AND YANG PHYSICAL REVIEW B 94, 165434 (2016)

FIG. 1. The bulk structure (c) SiNWC is constructed by using the
1D (a) SiNWs and (b) the 3D NCJ. (d) A random supercell structure
that has the same supercell length and CSA as supercell (c).

consisting of SiNWs [Fig. 1(a)] and three-dimensional (3D)
NCJs [Fig. 1(b)]. Thus, the one-dimensional (1D) SiNW is
turned into a 3D bulk material, as shown in Fig. 1(c). We
perform equilibrium molecular dynamics (EMD) simulations
and find that the thermal conductivity of SiNWC (κNWC) is
drastically lower than that of the SiNWs. In addition to the
parameter studies by varying the cross section area (CSA)
of the cage bar, period length (PL), and temperature, the
mechanism of the reduction is identified by modal analysis
and atomistic Green’s function (AGF) calculations. Finally,
the comparative study of SiNWC with and without periodicity
confirms the localness of the resonance and hybridization
effects and thus the robustness to loss of periodicity and
ordered structure, leading us to suggest practical realization
in a form of random networks.

Figure 1(c) shows the simulation cell of EMD. The
periodic boundary condition is applied in all three directions.
(Simulation details are provided in Appendix A.) Upon
studying the κNWC (the volume is the solid part of SiNWC
excluding the void), the dependence of the value on the size of
simulation cell is checked, and it is confirmed that the size of
9.78 × 9.78 × 9.78 nm3 adopted throughout this paper is large
enough to overcome the finite size effect (shown in Fig. 6 in
Appendix B).

We calculated the dependence of κNWC on the CSA of
the cage bar at room temperature, while the PL of the
simulation cell was fixed as 4.89 nm. As shown in Fig. 2(a)
(black dots), when the CSA is decreased from 7.37 nm2 to
0.29 nm2, the κNWC is sharply reduced from 1.93 Wm−1 K−1 to
0.173 Wm−1 K−1, which is caused not only by the increasing
surface-to-volume ratio, but interestingly by the NCJ effect
(details explained later and shown in Figs. 3 and 4). We also
calculated the κNWC for several different PLs at room temper-
ature, while the CSA of the cage bar was fixed as 1.18 nm2. As

FIG. 2. (a) Thermal conductivity of SiNWC versus the CSA of
the cage bar at 300 K (black dots and blue squares), where the PL
is 4.89 nm. The different colors correspond to different potentials.
Thermal conductivity of SiNWC versus PL at 300 K (red squares,
hollow dot, and hollow square), where the CSA is 1.18 nm2. The
hollow dot and square correspond to two different random structures.
(b) Thermal conductivity of bulk Si, SiNW, Si/Ge NW, kinked SiNW,
and SiNWC versus the temperature. The CSA and length or PL of
SiNWs.E1 [31], SiNWs.E2 [30], SiNWs.S1 [10], Si/Ge NWs [32],
KSiNWs [10], SiNWC.1, SiNWC.2, and SiNWC.3 are 5000 nm2,
17 000 nm; 1000 nm2, 150 000 nm; 1.21 nm2, 11.9 nm; 5000 nm2,
100–150 nm; 1.21 nm2, 19 nm, 1.18 nm2, 11.9 nm; 1.18 nm2, 8.15 nm,
and 1.18 nm2, 4.89 nm, respectively. In this figure, E1, E2, and S1
correspond to the experimental and simulation results, respectively.
The κNWC is the effective thermal conductivity, which is calculated
by the effective volume of all Si atoms not the volume of whole
simulation cell.

shown in Fig. 2(a) (red squares), when the PL is reduced from
14.12 nm to 4.89 nm, κNWC decreases from 0.80 Wm−1 K−1

to 0.49 Wm−1 K−1. One reason is that reducing PL increases
the density of NCJs, and NCJs give rise to phonon localization
(details explained later and shown in Figs. 3 and 4). Another
reason is that small PL corresponds to a short cage bar.
Seeing the cage as a SiNW, as shown in previous studies, its
thermal conductivity increases with the length [11]. Therefore,
the shortening of the cage bar also decreases κNWC. (For
the convenience of comparison with the measurement results,
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FIG. 3. (a) The phonon dispersion relationship of SiNWC from
0∼1.6 THz (other frequencies are shown in Fig. 8 in Appendix D).
(b) The phonon transmission coefficient of SiNWs (black line), single
symmetric NCJ (red line), and single random NCJ (blue line). (Three-
dimensional atomistic presentations of these structures are shown in
Fig. 10.)

the thermal conductivity is calculated by adopting Eq. (A2);
the entire volume is given in Appendix A.)

To show that our results are robust, we also have used the
Tersoff potential [27,28] to calculate the thermal conductivity
of SiNWC [as shown in Fig. 2(a)]. The thermal conductivity
calculated by the Tersoff potential is almost the same with the
Stillinger-Weber (SW) potential. A more detailed calculation
shows that the difference is within 10%.

The temperature dependence of κNWC from 300 to 1000 K is
shown in Fig. 2(b). The structures of calculated SiNWC have
different PL: 4.89 nm, 8.15 nm, and 11.9 nm. The results show
that the κNWC of SiNWC is insensitive to the temperature.
A similar temperature dependence is also found in other
nanostructured materials with low thermal conductivity, such

FIG. 4. Normalized energy distribution of (a) SiNW and (b)
SiNWC. The length and CSA of SiNW are 6.52 nm and 1.18 nm2,
respectively, which are the same as the bar in SiNWC. (c) The cage
bar picked up from structure in (b). The intensity of the energy in all
three diagrams are depicted according to the color bar on the top right
corner.

as kinked SiNWs [10] and 3D Si PnCs [12]. Noting that the
thermal conductivity of bulk Si is dominated by Umklapp
phonon-phonon scatterings and decreases as ∼T−1 at high
temperature, so the temperature independence is a signature
that the thermal conductivity of SiNWC is dominated by
surface scattering or/and the phonon localization induced by
NCJs.

To show the effect of NCJ clearly, we compare the κNWC

with the thermal conductivity of SiNWs whose length and
CSA are the same as the PL of SiNWC and the CSA of cage
bar, respectively, named as SiNWs.S1. We take the value from
Jiang et al. [10] calculated for SiNWs with CSA of 1.21 nm2,
which is almost the same as that of cage bar, 1.18 nm2.
However, the length is larger than the PL of SiNWC, and
since the thermal conductivity of SiNWs increases linearly
with the length when the length is much smaller than the
mean free path [11]. We estimate the thermal conductivity of
SiNWs.S1 by scaling down the values of SiNWs from Jiang
et al. [10] linearly [results shown in Fig. 2(b)]. Interestingly,
the thermal conductivity of SiNWC is still around one order of
magnitude lower than that of SiNWs.S1. Considering that the
size of SiNWs.S1 is the same as the cage bar, the further
reduction of the κNWC should come from the NCJ effect
instead of surface scatterings and length confinements. As
shown in Fig. 9 in Appendix E, the similar phonon relaxation
time between SiNWs and SiNWC further ensures this point
[4,18,29] (calculation details are given in Appendix D).

The obtained κNWC is around three orders of magnitude
lower than that of bulk Si calculated by EMD. The κNWC

is around 4% of that of SiNWs reported from Yang et al.
[30] and Majumdar et al. [31]. What’s more, the thermal
conductivity of SiNWC is even lower than that of kinked
SiNWs [10] (∼2.6 Wm−1 K−1) and that of Si PnCs [12]
(∼0.22 Wm−1 K−1), which means the NCJ effect is stronger
than the pinching effect in kinked SiNWs and the confinement
of heat transfer in periodic SiPnCs. The κNWC is also lower than
the measured thermal conductivity in Si/Ge NWs superlattice
(∼5.8 Wm−1 K−1), which has intense alloy scatterings [32].

To understand the underlying physical mechanism and
explicitly show the NCJ effect, we carried out a vibrational
eigenmode analysis of phonons in SiNWs and SiNWC [33,34].
As seen in the phonon dispersion relations of SiNWs [Figs. 8(a)
and 8(c) in Appendix D] and SiNWC [Fig. 3(a) and Figs. 8(b)
and 8(d)], there are flat bands across the entire frequency range
in SiNWC (results calculated by Tersoff potential, also shown
in Fig. 8), which is the signature of local resonance [18]. These
resonance modes interact with the propagating modes and form
a hybridization, which reduces the group velocity and hinder
the transport of the propagating modes, i.e. phonon localization
[18]. In comparison with the pillared thin film of Davis and
Hussein [18], SiNWC exhibits more flat bands because the
cross-junction of SiNWs introduces more resonance due to
pillars extending in multiple directions with the larger junction
area, realizing more intensive mode hybridization. (A more
detailed quantitative comparison is given in Appendix J.)

In Fig. 3(b), by using the AGF calculation [35,36], we
show the phonon transmission coefficient of single NCJ and
compare it to SiNWs with the same length (calculation details
are given in Appendix F). The transmission coefficient of the
single NCJ (the red line) is much lower than that of SiNWs
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(the black line) in a wide range of frequency. In addition,
the participation ratio (PR) of SiNWs is smaller than that of
SiNWs in the entire frequency range. These results together
also serve as an evidence for phonon localization in a broad
frequency range. [A localization analysis of the SiNWs and
SiNWC by participation ratio is (PR) given in Appendices G
and H.]

To observe the spatial distribution of localizations, we
calculate the spatial energy distribution for strong localized
eigenmodes [6,33] (calculation details are given in Ap-
pendix G). Figures 4(a) and 4(b) show the normalized energy
distribution of almost localized modes (PR < 0.2) in a SiNW
and a SiNWC, respectively. As shown in Fig. 4(a), the energy
is likely to be localized on the surface, and the distribution
is homogeneous along the longitudinal direction. Therefore,
there is less localization inside the SiNWs, opening a channel
for phonons to propagate from one side to the other in the
longitudinal direction. On the other hand, Fig. 4(b) shows that
in the case of SiNWC, the energy is localized not only on the
surface but also at the NCJ, where the values of thermal energy
Ei are much higher than those on surface, which inhibits the
propagation of phonons. A better view of the localization at
NCJ atoms can be obtained in Fig. 4(c), where we extract only
the cage bar from Fig. 4(b). Interestingly, the NCJ atoms have
a higher localization than the surface atoms. Hence, while
phonons transport mainly inside the NW/cage bar, the high
localization at the NCJ effectively acts as the bottleneck of
thermal transport. (The spatial distribution of localizations
calculated by using the Tersoff potential is given in Fig. 12
in Appendix I.)

The localization is induced by local resonance and occurs
in the junction part (as shown in Fig. 4), so the NCJ effect does
not require the periodic structures, which makes the SiNWC
much easier to fabricate in experiment. To demonstrate this,
we construct another structure, which has the same supercell
length and CSA but a random supercell structure [shown in
Fig. 1(d) and Figs. 7(a), 7(b) in Appendix C]. The thermal
conductivity of this random structure is 0.51 Wm−1 K−1

[shown in Fig. 2(a)]. Comparing with the thermal conductivity
of the corresponding periodic structure, 0.49 Wm−1 K−1, the
deviation is only 4%. In addition, we construct another random
structure, which is consistent with both 2D NCJ and 3D NCJ
(shown in Figs. 7(c) and 7(d)). Its thermal conductivity is
0.14 Wm−1 K−1, which is much lower than that of the peri-
odic structure whose thermal conductivity is 0.49 Wm−1 K−1

[shown in Fig. 2(a)]. This further reduction is due to the
increasing of NCJ numbers. These two results of the random
structure confirm the robustness to the loss of periodicity.
Furthermore, it was confirmed that the transmission function
of the NCJ does not depend on the length of surrounding wires.
As shown in Fig. 3(b), the two NCJ structures (3D atomistic
presentations of these structures are shown in Fig. 10 in Ap-
pendix F), where one is symmetric (the red line) and the other
is random (the blue line), have almost the same transmission
coefficient. These further demonstrated that the localization
effect induced by NCJ does not require the cage to be periodic.

In summary, based on the NCJ, the SiNWC structure we
proposed can turn the 1D SiNWs into a 3D bulk material. By
performing EMD simulations, it is found that the SiNWC
has an ultralow thermal conductivity (lowest obtained as

0.173 Wm−1 K−1), even compared with the extremely short
SiNWs with the same CSA. It is also found that the thermal
conductivity of SiNWC increases with increasing PL and
the CSA of the cage bar. Moreover, we found that the
thermal conductivity was not sensitive to temperature in the
range from 300 K to 1000 K. After comparatively studying
the phonon eigenmodes in SiNWC and SiNWs by lattice
dynamics, we demonstrated that the phonon localization is
induced by phonon local resonance and hybridization at
the junction part. The mechanism is a local effect, so it is
completely different from the traditional periodic phononic
crystal [12,14]. Through the EMD and AGF calculations,
we further demonstrated that this localization effect does
not require the cage to be periodic. The results suggest that
ultralow thermal conductivity can be achieved by the novel
random nanojunction structures, which is much easier to
fabricate and scale up compared with periodic structures.
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APPENDIX A: THE EMD SIMULATION DETAILS

Figure 1(c) shows the simulation cell in EMD. The periodic
boundary condition is applied in all three directions in
simulations. For the force field of covalently bonded Si, we
use the SW potential, which includes both two-body and
three-body potential terms. The SW potential has been used
widely to study the thermal property of SiNWs and Si bulk
material for its best fit to experimental results of the thermal
expansion coefficients. The heat flux is defined as

�Jl(t) =
∑

i

�viεi + 1

2

∑
ij (i �=j )

�rij ( �Fij · �vij )+
∑
ijk

�rij ( �Fj (ijk) · �vj ),

(A1)
where �Fij and �Fj (ijk) denote the two-body and three-body
forces, respectively. The thermal conductivity is obtained from
the Green-Kubo formula:

κ = 1

3V kBT 2

∫ ∞

0
〈 �J (0) · �J (τ )〉dτ , (A2)

where V is the volume of all the Si atoms (solid part of SiNWC
excluding the void), kB is the Boltzmann constant, �J (τ ) is the
heat flux, T is the temperature, and the angular bracket denotes
an ensemble average.

The velocity Verlet algorithm is employed in integrating
equations of motion, and the time step is 0.25 fs. Initially, the
system is equilibrated under the canonical ensemble (NVT)
with the Langevin heat reservoir at the target temperature
for 0.1 ns, followed by relaxation under a microcanonical
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FIG. 5. (a) Normalized HCACF versus time τ for SiNWC with different size at 300 K. The CSA and PL of S1, S2, and S3 are 7.37 ×
4.89 nm3, 1.18 × 10.86 nm3, and 0.29 × 4.89 nm3, respectively. This figure shows that heat flux correlation rapidly decays to zero in 10 ps.
(b) Thermal conductivity calculated by integrating the correlation function in (a) versus time τ . The curve of thermal conductivity converges
beyond 10 ps, which is consistent with the decay of heat current autocorrelation in (a).

ensemble (NVE) for 0.12 ns. The heat current is then recorded
with the NVE ensemble for 1.2 ns to calculate the thermal
conductivity. The value of thermal conductivity is the mean
value of 12 simulations with different initial conditions.

Thermal conductivity is derived from the Green-Kubo
formula [Eq. (A1)]. Figure 6(a) in Appendix B shows a typical
normalized heat current autocorrelation function (HCACF),
which is used in the Green-Kubo formula to calculate
thermal conductivity of the SiNWC. The size of SiNWCs is
7.37 × 4.89 nm3 (CSA × PL), 1.18 × 10.86 nm3, and 0.29 ×
4.89 nm3, respectively; the temperature is 300 K. Due to the
short relaxation time, the heat current autocorrelation curve
decays rapidly at a few picoseconds and is then followed
by a slower decay to zero within 10 ps approximately. This
means that the noise is comparable to the signal. Figure 6(b)
shows the thermal conductivity, which is an integration of
HCACF. The thermal conductivity converges to 1.93, 0.69,
and 0.173 Wm−1 K−1, respectively.

For the convenience of comparison with the measurement
results, we also present the thermal conductivity, calculated
by adopting from Eq. (A2) the entire volume (including the
void) of SiNWC. The obtained values of thermal conductivity
are 0.078, 1.20, and 0.038 Wm−1 K−1, corresponding to PL =
4.89 nm, CSA = 1.18 nm2; PL = 4.89 nm, CSA = 7.37 nm2;
and PL = 8.85 nm, CSA = 1.18 nm2, respectively. It is worth
noting that for SiNWC (PL = 4.89 nm, CSA = 0.29 nm2),
the thermal conductivity is 0.0095 Wm−1 K−1, which is only
0.06‰ of the bulk thermal conductivity of silicon.

APPENDIX B: FINITE SIZE EFFECT IN SIMULATIONS

When using the Green Kubo formula to calculate thermal
conductivity, the finite size effect could arise if the simulation
cell is not sufficiently large. As shown in Fig. 5 in Appendix A,
we calculate the thermal conductivity of SiNWCs with
different sizes by EMD method at room temperature. We fix
PL and CSA as 4.89 nm and 1.18 nm2, respectively. The values
of thermal conductivity change little when the side length of

the simulation cell is larger than 4.89 nm. It shows that our
simulation cell is large enough to overcome the finite size effect
on calculating thermal conductivity. In all of the simulations
of SiNWC, we use 9.78 nm as the side length of simulation
cell and 4.89 nm as the PL.

APPENDIX C: SCHEMATICS OF THE TWO RANDOM
SUPERCELL STRUCTURES

FIG. 6. (a)–(d) The SiNWC (CSA = 1.18 nm2, PL = 4.89 nm)
simulation cell with different side length as 4.89, 9.78, 14.67, and
19.56 nm. (e) The thermal conductivity of SiNWC versus side length
of simulation.
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FIG. 7. (a), (b) Two different views of the first random supercell
structure constructed by 3D NCJs. The number of the 3D NCJs in
this supercell is eight. (c), (d) Two different views of the second
random supercell structure constructed by 2D NCJs and 3D NCJs.
The number of 2D NCJs and 3D NCJs in a supercell are eight and
three, respectively.

APPENDIX D: THE PHONON DISPERSION RELATIONS
OF SiNWS AND SiNWC BY SW AND TERSOFF POTENTIAL

APPENDIX E: THE CALCULATION DETAILS
OF PHONON RELAXATION TIME

The methodology named normal mode analysis (NMA) can
also be found in Henry and Chen’s work [37]. Based on LD
calculations, the atomic trajectories generated by EMD sim-
ulations are transformed to normal mode coordinates, which
can be expressed as a sum over the displacements of the atoms
(labelled as the j th atom in the lth unit cell) in a system as

Q(k,ν,t) = 1

N1/2

∑
j,l

m
1/2
j exp

(−ik · rl
j,0

) · e∗
j (k,ν) · ul

j (t),

(E1)
where N is the number of unit cells in the crystal, mj is the
mass of the atom j , k is the wave vector, ν corresponds to
the mode polarization, e∗

j denotes the complex conjugate of
eigenvector obtained from LD, rl

j,0 and ul
j are the equilibrium

position and relative displacement from equilibrium position
of atom j in unit cell l, respectively.

Under the harmonic approximation, the normal mode
energy of a classical system can be written as

E(k,ν,t) = ω2(k,ν)Q(k,ν,t) · Q∗(k,ν,t)

2

+ Q̇(k,ν,t) · Q̇∗(k,ν,t)

2
, (E2)

FIG. 8. The phonon dispersion relation of SiNWs by the SW potential (the blue line) and Tersoff potential (the red line) from 0∼3 THz (a)
and 5∼6 THz (c). And the phonon dispersion relationship of SiNWC by SW potential (the blue line) and Tersoff potential (the red line) from
0∼1.5 THz (b) and 5∼5.5 THz (d).
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FIG. 9. The relaxation time of bulk silicon (black dot), SiNWs
(red dot), and SiNWC (blue dot).

where the first term corresponds to the potential energy and
the second term to the kinetic energy.

The phonon mode energy autocorrelation describes the
temporal amplitude attenuation, and the frequency of the mode
can be identified via the Fourier transform. Then, by fitting the
peaks of the normalized autocorrelation with an exponential
function, one can obtain the decay time constant, namely the
relaxation time of corresponding phonon mode, which can be
written as

τ (k,ν) =
∫ ∞

0 〈δE(k,ν,0) · δE(k,ν,t)〉dt

〈δE2(k,ν,0)〉 , (E3)

where the angular bracket denotes an ensemble average.
In this paper, we calculate the relaxation time by using

NMA; details are described below. In EMD simulations and
LD calculations, we use the SW potential to describe the
interaction between Si atoms, and the periodic boundary
conditions are applied in all three dimensions. To record the
displacement and velocity, the simulations are conducted at the
temperature of 300 K for 12 ns and 8 ns; time steps are chosen
as 1 fs and 0.25 fs for bulk silicon and SiNWC, respectively.
In addition, 12 independent simulations with different initial
conditions were conducted to get better average.

The phonon relaxation time of SiNWs is taken from the
work of Martin et al. [4]. In our simulation the roughness
is small, so we choose the SiNWs in which the roughness
root-mean-square (rms) value equals to 1 nm. As shown in
Fig. 9, though the cross section of the chosen SiNW is equal
to a circle with 115 nm diameter, the relaxation time is on the
order of the SiNWC, especially the low frequency phonons.
The one order reduction of thermal conductivity from bulk
silicon to SiNWs comes from surface scatterings and length
confinements; therefore, the relaxation time has an obvious
decline. All of those is evidence that the reduction of thermal
conductivity from SiNW to SiNWC should not come from the
surface scatterings but from the NCJ effect.

APPENDIX F: THE CALCULATION DETAILS
OF THE AGF METHOD

The targeted system contains three coupled subsystems:
two semi-infinite leads connected through the scattering region
according to scattering theory. The heat flux flowing in along
the system axis shows

J =
∫

BZ
�ωkνg,kz (nL − nR)tk

d3k

(2π )3 , (F1)

where �ωk is the energy quantum of the phonon mode k, νg,kz

is the phonon group velocity of the phonon mode kz, nL,R is
the phonon number on the left and right reservoir following the
Bose-Einstein distribution n = [(exp(�ω/kBT ) − 1)]−1, and
tk is the transmission probability of the phonon mode k.
The integration goes through all the phonon modes in the
irreducible Brillouin Zone (BZ). In the linear regime, the
phonon population undergoes small perturbations, and thus
the thermal conductance shows

G = J/	T =
∫

BZ
�ωkνg,kz

∂n

∂T
tk

d3k

(2π )3 . (F2)

We note that d3k = dkxdkydkz and νg,kzdkz = ∂ω/∂kzdkz =
dω. Equation (F2) reduces to

G = J/	T =
∫

BZ
�ωk

∂

∂T
(e

�w
kB T − 1)

−1
[tωdkxdky]

dω

(2π )3 .

(F3)
Hence we identify the spectral phonon transmission func-

tion �(ω) = tωg(ω), where g(ω) = dkxdky is the projected
phonon density of states in the periodic directions of the
system.

We probe the spectral phonon transmission function �(ω)
by AGF, and the thermal conductance can be obtained by
following the Landauer formula:

G =
∫ ωmax

0
�(ω)

∂

∂T
(e

�ω
kB T − 1)

−1
�ω

dω

2π
, (F4)

where �ωk and ωmax are the energy and the maximum
frequency in the system. The T refers to the mean temperature
of the system, and kB and � represent the Boltzmann and
the reduced Planck constants, respectively. The transmission
�(ω) is obtained from a nonequilibrium Green’s function
approach as Tr[�LGs�RG+

s ]. The advanced and retarded

FIG. 10. (a) The symmetric NCJ structure and (b) the random
NCJ structure. The transmission coefficient is calculated in the
direction shown by the red arrows.

165434-7



MA, DING, MENG, FENG, WU, SHIOMI, AND YANG PHYSICAL REVIEW B 94, 165434 (2016)

FIG. 11. The PR of each eigenmode for SiNWs (blue dots) and SiNWC (red dots) calculated by (a) SW and (b) Tersoff potential. The LR
values are also shown according to the definition.

Green functions G+
s and Gs can be deduced from

Gs = [(ω + i	)2I − Ks − L − R]−1, (F5)

where 	 is an infinitesimal imaginary part that maintains the
causality of the Green’s function and L = KabgLK+

ab and
R = KabgRK+

ab are the self-energies of the left and right
leads, the + exponent indicating the Hermitian conjugation.
Finally, gL and gR refer to the surface Green’s functions
of the left and right leads, while Ks and Kab are the
force constant matrices derived from the potential for the
scattering region and between neighboring atoms in the leads,
respectively. The expression of the transmission also includes
�L = i(L − +

L ) and �R = i(R − +
R ).

APPENDIX G: THE CALCULATION DETAILS OF PR
AND ENERGY DISTRIBUTION

The localization of each eigenmode, λ, can be quantitatively
characterized by PR, Pλ, which is defined as

P −1
λ = N

∑
i

(∑
α

ε∗
iα,λεiα,λ

)2

, (G1)

where N is the total number of atoms, εiα,λ is the αth
eigenvector component of λ for atom i. The PR measures
the fraction of atoms participating in a given mode. The value
of Pλ corresponds to a localized mode with O(1/N ) and a
delocalized mode with O(1).

The spatial distribution of energy is calculated as

Ei =
∑

ω

∑
λ

∑
α

(n + 1/2)�ωε∗
iα λεiα λδ(ω − ωλ), (G2)

where n is the phonon occupation number given by the Bose-
Einstein distribution.

APPENDIX H: THE PR CALCULATED BY SW
AND TERSOFF POTENTIAL

The phonon eigenfrequencies and eigenvectors are obtained
by LD. When using the general utility lattice program (GULP),
the periodic boundary condition and free boundary condition
are applied in the longitudinal direction and lateral direction
of both SiNWs and SiNWC, respectively. The boundary

conditions are consistent with those in our EMD simulations
so that the phonon eigenmodes obtained by LD becomes
consistent with those existing in EMD.

To show the phonon localization in bulk SiNWC, in
Fig. 11(a) we compare the PR (P ) of each eigenmode for
infinite length SiNWs (blue dots) with those for the SiNWC
(red dots). The PL and CSA of SiNWs are 6.52 nm and
1.18 nm2, respectively, which are the same as the size of cage
bar of the SiNWC. It shows a clear reduction of PR in SiNWC
for both low and high frequency phonons. For the SiNWs, most
of the P values are larger than 0.5, which indicates delocalized
phonon modes. While, for the SiNWC most of the P values
are less than 0.5, which means these modes are likely to be
localized.

To quantitatively analyze the phonon localization, we define
the localization ratio (LR) as the number of localized modes,
whose P value is less than 0.5, divided by the total number
of modes. According to the definition, a larger LR value
corresponds to more localized phonon modes. Also shown
in Fig. 11(a), the LR value of SiNWC is 78.4%, which is more
than two times larger than that of SiNWs (33.1%). This means
that the introduction of cross-junction drastically makes more

FIG. 12. Normalized energy distribution of (a) SiNW and (b)
SiNWC calculated by Tersoff potential. The length and CSA of SiNW
are 6.52 nm and 1.18 nm2, respectively, which are the same as the
bar in SiNWC. (c) The cage bar picked up from structure in (b). The
intensity of the energy in all three diagrams are depicted according
to the color bar on the top right corner.
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FIG. 13. (a) The phonon dispersion relations of UTF and PTF calculated by Davis and Hussein. (b) The phonon dispersion relations of
UTF and PTF calculated by us. (c) The PR of UTF and PTF calculated by us, and LR values are also shown according to the definition.

phonon modes localized, which gives rise to the ultralow and
temperature-independent thermal conductivity.

APPENDIX I: THE NORMALIZED ENERGY
DISTRIBUTION OF SiNWS AND SiNWC CALCULATED

BY TERSOFF POTENTIAL

APPENDIX J: A COMPARISON WITH THE WORK
OF DAVIS AND HUSSEIN

According to the data of Davis and Hussein [18], we
construct the same uniform thin film (UTF) and pillared
thin film (PTF) structure. Based on Tersoff potential, the

corresponding side length a = 0.543 nm, which is similar to
Davis and Hussein’s (a = 0.54 nm). The phonon dispersion
relations of UTF and PTF calculated [shown in Fig. 13(b)] by
Tersoff potential is almost the same as the work of Davis and
Hussein [shown in Fig. 13(a)].

Then, we calculated the PR of UTF and PTF [shown in
Fig. 13(b)]. The PR of PTF shows a clear reduction in low
frequency phonons, while in other frequencies, only few modes
show a reduction in PR. A more detailed calculation shows
that, in Davis and Hussein’s work, the LR value increases
from 12.5% (UTF) to 20.1% (PTF), while in our structures
(as shown in Fig. 11), the LR value increases from 30.5%
(SiNWs) to 80.2% (SiNWC).
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[37] A. S. Henry and G. Chen, J. Comput. Theor. NanoS. 5, 141

(2008).

165434-10

https://doi.org/10.1021/nl102918q
https://doi.org/10.1021/nl102918q
https://doi.org/10.1021/nl102918q
https://doi.org/10.1021/nl102918q
https://doi.org/10.1038/nnano.2010.149
https://doi.org/10.1038/nnano.2010.149
https://doi.org/10.1038/nnano.2010.149
https://doi.org/10.1038/nnano.2010.149
https://doi.org/10.1103/PhysRevB.91.205422
https://doi.org/10.1103/PhysRevB.91.205422
https://doi.org/10.1103/PhysRevB.91.205422
https://doi.org/10.1103/PhysRevB.91.205422
https://doi.org/10.1299/jtst.2016jtst0001
https://doi.org/10.1299/jtst.2016jtst0001
https://doi.org/10.1299/jtst.2016jtst0001
https://doi.org/10.1299/jtst.2016jtst0001
http://arxiv.org/abs/arXiv:1508.04574
https://doi.org/10.1103/PhysRevLett.112.055505
https://doi.org/10.1103/PhysRevLett.112.055505
https://doi.org/10.1103/PhysRevLett.112.055505
https://doi.org/10.1103/PhysRevLett.112.055505
https://doi.org/10.1103/PhysRevB.89.180301
https://doi.org/10.1103/PhysRevB.89.180301
https://doi.org/10.1103/PhysRevB.89.180301
https://doi.org/10.1103/PhysRevB.89.180301
https://doi.org/10.1557/mrs2003.144
https://doi.org/10.1557/mrs2003.144
https://doi.org/10.1557/mrs2003.144
https://doi.org/10.1557/mrs2003.144
https://doi.org/10.1021/nl049728u
https://doi.org/10.1021/nl049728u
https://doi.org/10.1021/nl049728u
https://doi.org/10.1021/nl049728u
https://doi.org/10.1038/nmat3404
https://doi.org/10.1038/nmat3404
https://doi.org/10.1038/nmat3404
https://doi.org/10.1038/nmat3404
https://doi.org/10.1021/nl301327d
https://doi.org/10.1021/nl301327d
https://doi.org/10.1021/nl301327d
https://doi.org/10.1021/nl301327d
https://doi.org/10.1021/nl504624r
https://doi.org/10.1021/nl504624r
https://doi.org/10.1021/nl504624r
https://doi.org/10.1021/nl504624r
https://doi.org/10.1002/adma.201304363
https://doi.org/10.1002/adma.201304363
https://doi.org/10.1002/adma.201304363
https://doi.org/10.1002/adma.201304363
https://doi.org/10.1002/adma.201400924
https://doi.org/10.1002/adma.201400924
https://doi.org/10.1002/adma.201400924
https://doi.org/10.1002/adma.201400924
https://doi.org/10.1103/PhysRevLett.56.632
https://doi.org/10.1103/PhysRevLett.56.632
https://doi.org/10.1103/PhysRevLett.56.632
https://doi.org/10.1103/PhysRevLett.56.632
https://doi.org/10.1103/PhysRevB.37.6991
https://doi.org/10.1103/PhysRevB.37.6991
https://doi.org/10.1103/PhysRevB.37.6991
https://doi.org/10.1103/PhysRevB.37.6991
https://doi.org/10.1103/PhysRevLett.114.095501
https://doi.org/10.1103/PhysRevLett.114.095501
https://doi.org/10.1103/PhysRevLett.114.095501
https://doi.org/10.1103/PhysRevLett.114.095501
https://doi.org/10.1038/nature06381
https://doi.org/10.1038/nature06381
https://doi.org/10.1038/nature06381
https://doi.org/10.1038/nature06381
https://doi.org/10.1021/nl101671r
https://doi.org/10.1021/nl101671r
https://doi.org/10.1021/nl101671r
https://doi.org/10.1021/nl101671r
https://doi.org/10.1063/1.1619221
https://doi.org/10.1063/1.1619221
https://doi.org/10.1063/1.1619221
https://doi.org/10.1063/1.1619221
https://doi.org/10.1103/PhysRevB.74.245207
https://doi.org/10.1103/PhysRevB.74.245207
https://doi.org/10.1103/PhysRevB.74.245207
https://doi.org/10.1103/PhysRevB.74.245207
https://doi.org/10.1039/a606455h
https://doi.org/10.1039/a606455h
https://doi.org/10.1039/a606455h
https://doi.org/10.1039/a606455h
https://doi.org/10.1080/10407790601144755
https://doi.org/10.1080/10407790601144755
https://doi.org/10.1080/10407790601144755
https://doi.org/10.1080/10407790601144755
https://doi.org/10.1140/epjb/e2008-00195-8
https://doi.org/10.1140/epjb/e2008-00195-8
https://doi.org/10.1140/epjb/e2008-00195-8
https://doi.org/10.1140/epjb/e2008-00195-8



