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General relation between the group delay and dwell time in multicomponent electron systems
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For multicomponent electron scattering states, we derive a general relation between the Wigner group delay
and the Bohmian dwell time. It is found that the definition of group delay should account for the phase of the
spinor wave functions of propagating modes. The difference between the group delay and dwell time comes from
both the interference delay and the decaying modes. For barrier tunneling of helical electrons on a surface of
topological insulators, our calculations including the trigonal-warping term show that the decaying modes can
contribute greatly to the group delay. The derived relation between the group delay and the dwell time is helpful
to unify the two definitions of tunneling time in a quite general situation.
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I. INTRODUCTION

For various quantum tunneling devices, the time scale
of tunneling processes is a key parameter in performance
evaluation. However, the lack of a time operator in quantum
mechanics renders the definition of a physical tunneling
time controversial [1–12]. Several time characteristics [4,5]
have been introduced to describe different or complementary
aspects of electron dynamics and can be extracted from cor-
responding optical or transport measurements [7]. Recently,
the state-of-the-art ultrafast laser technology has been utilized
to measure tunneling time delay during the strong field
ionization of atoms [8–12]. This progress promises to clarify
the applicability or physical regimes of different definitions of
tunneling time.

The Wigner group delay and Bohmian dwell time, as two
definitions of tunneling time, are considered well established
[4]. The group delay (also called phase time) τg is expressed by
the energy derivative of the scattering phase [2,6]. The dwell
time τd represents the time spent by a particle following a
Bohmian trajectory in the scattering region [3,12]. It concerns
the entire wave function in the scattering region and does
not distinguish transmission and reflection. Therefore τd was
found to be related to the lifetime of corresponding resonant
state [12]. For a one-dimensional (1D) barrier tunneling
problem on scalar Schrödinger particles, Winful [6] has
found that the group delay equals the dwell time plus a
self-interference delay. The self-interference effect arises from
the overlap of incident and reflected waves at the entrance of
the scattering region. Recently, the Winful relation has been
generalized to systems made of graphene monolayer [13–18]
or bilayer [19]. It is commonly believed that for Dirac particles
in graphene, the dwell time always equals the group delay
[13–17,19]. However, in Ref. [18] it is shown that τd = τg

holds only for some special cases including Klein tunneling.
In this paper, we explore the general relation between

the dwell time and group delay for multicomponent electron
scattering states. It is found that in multicomponent electron
systems the group delay should be redefined to account for
the uncertainty of scattering phase. The difference τg − τd is
contributed by both the interference delay and the evanescent
modes. To illustrate the contribution of evanescent modes, we
calculate the two tunneling times τg and τd for barrier tunneling

of helical electrons on a surface of topological insulators where
the trigonal-warping term is included.

II. MODEL AND FORMALISM

We begin with a 1D system schematically depicted in Fig. 1,
which is described by the Hamiltonian (under the unit with
� = 1)

Ĥ = A0 +
N∑

r=1

Ar k̂
r
x, (1)

where k̂x = −i∂x is the momentum along the transport direc-
tion, N is the highest order of momentum in the Hamiltonian,
Ar (r = 0,1,...,N ) is a M × M Hermitian matrix, and AN

is invertible. For simplicity, we assume that only A0 varies
with the position x. Our results hold even for the general
situation that all Ar (0 � r � N ) are position dependent.
In the Landauer-Buttiker frame, transport problems in many
systems ranging from nanowires with Majorana fermions
[20,21] to electron waveguides with spin-orbit interaction [22]
or topological edge states [23] can be reduced to solve the
stationary Schrödinger equation Ĥ� = E�. Here � is an
eigenwave function with energy E.

In the left lead (x < 0) where A0(x) = A0(−∞) is
constant, the Hamiltonian has plane-wave-like solutions
(called modes) �(x) = ψ exp(ikx). The momentum k and
related spinor ψ can be determined from an eigenproblem (see
Appendix A). For a propagating mode with real momentum k,
the propagation direction is identified from its mean velocity

vk = ∂E

∂k
= �†v̂�

�†�
, v̂ = ∂Ĥ

∂k̂x

. (2)

Hereafter all propagating modes are normalized to have a unit
velocity, i.e., �†v̂� = ±1 or ψ†ψ = 1/|vk|. We denote the
set of left-decaying modes (with Imk < 0) by LD and send
the left-propagating modes (with Imk = 0 and vk < 0) to
the set LP . For the incidence from a right-propagating mode
�in(x) = ψin exp(ikinx), the wave function in the left lead is
written as

�(x) = �in(x) +
∑

j∈LP∪LD

rjψj exp(ikj x),x < 0. (3)
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FIG. 1. Schematic illustration of the considered system. The
scattering region spans the region 0 < x < L. The incident wave
is depicted by the black thick solid arrow. The D = MN/2 re-
flected (transmitted) waves with amplitude r1,r2,...,rD (t1,t2,...,tD)
are presented as blue (red) arrows. Solid/dotted arrows are for
propagating/evanescent modes.

Here rj is the reflection amplitude of the mode j .
In the right lead (x > L) with A0(x) = A0(+∞), one

can also find NM modes where the right-decaying (right-
propagating) modes comprise the set RD (RP ). The scattering
state � in the right lead admits the form

�(x) =
∑

j∈RP∪RD

tjψj exp[ikj (x − L)], x > L. (4)

Here tj is the transmission amplitude of the mode j . The
conservation of probability current requires

T + R = 1, T =
∑

j∈RP

|tj |2, R =
∑
j∈LP

|rj |2, (5)

where T and R are the transmission and reflection probability
due to the incident wave �in.

Under the normalization �
†
inv̂�in = 1, the Bohmian dwell

time in the scattering region (0 < x < L) is defined as [3,12]

τd =
∫ L

0
�†(x)�(x)dx. (6)

The Wigner group delay is given by the weighted sum of
transmission and reflection group delays [4,6]

τ̃g = Im

⎛
⎝ ∑

j∈LP

r̄j

∂rj

∂E
+

∑
j∈RP

t̄j
∂tj

∂E

⎞
⎠

=
∑
j∈LP

|rj |2 ∂ arg rj

∂E
+

∑
j∈RP

|tj |2 ∂ arg tj

∂E
. (7)

It should be noticed that this definition has a phase-related
uncertainty. Firstly, the scattering state is unchanged when
its wave function is multiplied by a global phase factor, i.e.,
�(x) → �(x) exp(iθ ). Secondly, we can choose arbitrarily
the phase of the spinor wave function of any mode, i.e.,
ψj → ψj exp(−iθj ) for j ∈ LP ∪ RP . Here θ and all θj

depend smoothly on the energy E. To keep the scattering
state unchanged after the two replacements, one has to do
the transformation rj → rj exp[(i(θj + θ )] for j ∈ LP and
tj → tj exp[(i(θj + θ )] for j ∈ RP . It is evident that τg

defined in Eq. (7) will change under this transformation. This
is a reason for the discrepancy between Refs. [13–17] and
Ref. [18]. The definition of the group delay should be free of
the artificial phase choice for either the scattering state or the
spinor wave function of modes. We will show that the proper

definition of group delay appears naturally in the expression
of the dwell time.

A. Bilinear probability current density

To express τd in terms of the scattering amplitudes (rj and
tj ) and the lead information (kj and ψj ), it is useful to introduce
a bilinear function related to the probability current density.
For the Hamiltonian (1) and an eigenstate �, the probability
current density can be written as J (�,�) where the bilinear
function J (�1,�2) reads

J (�1,�2) =
N∑

r=1

r−1∑
s=0

(
k̂s
x�1

)†
Ar

(
k̂r−1−s
x �2

)
. (8)

Two properties of J (proved in Appendix B) will be utilized
hereafter. One is that for any two states �1 and �2, we have

�
†
1(Ĥ�2) − (Ĥ�1)†�2 ≡ k̂xJ (�1,�2). (9)

In Appendix D, we show that even for a spatially-varying
Ar (0 � r � N ) there also exists a complicated bilinear
function J satisfying Eq. (9).

Another useful property of J is that if �1(x) = exp(ik1x)ψ1

and �2(x) = exp(ik2x)ψ2 are two modes in a lead with energy
E1 and E2 and satisfy k2 �= k̄1, then

J (�1,�2) = (E2 − E1)
exp[i(k2 − k̄1)x]

k2 − k̄1
ψ

†
1ψ2. (10)

Following Smith [3] and Winful [6], we differentiate Ĥ� =
E� with respect to E and yield

�†� = �†
(

Ĥ
∂�

∂E

)
− (Ĥ�)†

∂�

∂E
= −i∂xJ

(
�,

∂�

∂E

)
.

Here we have used Eq. (9) with �1 = � and �2 = ∂�
∂E

. This
equation results in

τd = i

[
J

(
�,

∂�

∂E

)∣∣∣∣
x=0

− J

(
�,

∂�

∂E

)∣∣∣∣
x=L

]
, (11)

which relies on the wave function (3) and (4) in the left and
right lead but in a very complicated and implicit way.

B. Expression of the dwell time

To obtain the expression of τd , an alternative approach is
to consider a scattering state �2 very close to �. This state
satisfies Ĥ�2 = (E + �E)�2. Its wave function in the left
and right lead is similar to Eqs. (3) and (4) but with the
replacement kj → k

(2)
j , ψj → ψ

(2)
j , rj → r

(2)
j , and tj → t

(2)
j .

Here we assume that near the energy E the momentums
kj of all modes in a lead differ from each other and vary
smoothly. This restriction can be relaxed if the lead has some
conservation laws.

Using Eq. (9) with �1 = � and this �2 and integrating
both sides over x, we arrive at∫ L

0
�†�2dx = i

�E
[J (�,�2)|x=0 − J (�,�2)|x=L]. (12)

In the limit of �E → 0, the left-hand side of Eq. (12) tends
to τd . The right-hand side of Eq. (12) can be calculated
straightforwardly with the help of Eq. (10). In its expression,
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the terms that diverge (converge) in the limit of �E → 0 are
combined as iQ (iP ), where P and Q are written as

P =
∑

j1 �=j2∈L

r̄j1r
(2)
j2

ψ
†
j1
ψ

(2)
j2

k
(2)
j2

− k̄j1

−
∑

j1 �=j2∈R

t̄j1 t
(2)
j2

ψ
†
j1
ψ

(2)
j2

k
(2)
j2

− k̄j1

+
∑

j∈LD

r̄j r
(2)
j

ψ
†
j ψ

(2)
j

k
(2)
j − k̄j

−
∑

j∈RD

t̄j t
(2)
j

ψ
†
j ψ

(2)
j

k
(2)
j − k̄j

+
∑
j1∈L

[
r̄j1

ψ
†
j1
ψ

(2)
in

k
(2)
in − k̄j1

+ r
(2)
j1

ψ
†
inψ

(2)
j1

k
(2)
j1

− kin

]
, (13)

Q =
∑
j∈LP

r̄j r
(2)
j

ψ
†
j ψ

(2)
j

k
(2)
j − kj

+ ψ
†
inψ

(2)
in

k
(2)
in − kin

−
∑

j∈RP

t̄j t
(2)
j

ψ
†
j ψ

(2)
j

k
(2)
j − kj

. (14)

Here the set L = LD ∪ LP and R = RD ∪ RP . If a general
relation between the dwell time and the group delay exists,
Q should be related to the group delay. The reason is that
the group delay concerns the energy derivative of scattering
phases which can appear only in lim�E→0 Q. The expression
of Q up to O(�E) is derived in Appendix C, which is purely
imaginary. The limit τg = − lim�E→0 ImQ is then obtained,

τg = Im

⎡
⎣ ∑

j∈RP

t̄jψ
†
j (tjψj )′

ψ
†
j ψj

+
∑
j∈LP

r̄jψ
†
j (rjψj )′

ψ
†
j ψj

⎤
⎦−Im

ψ
†
inψ

′
in

ψ
†
inψin

,

(15)

where the prime indicates the derivative with respect to the
energy E.

We define τg as the generalized group delay. In the case that
the spinor parts ψj of all propagating modes have no energy
dependence, τg reduces to Eq. (7). The difference between
Eqs. (7) and (15) comes from the presence of phase in the
spinor wave function of propagating modes. Obviously, τg is
independent of the phase choice for the spinor wave function
of modes. Using Eq. (5), one can also check that the global
phase change of the scattering state does not influence τg . This
feature requires the occurrence of phase information of the
incident wave [the last term in Eq. (15)].

Taking the limit on both sides of Eq. (12), we get the relation
τd = τg − lim�E→0 ImP , which together with Eq. (13) leads
to

τg = τd + τe + τi, (16)

τe =
∑

j∈RD

|tj |2ψ†
j ψj

2|Imkj | +
∑

j∈LD

|rj |2ψ†
j ψj

2|Imkj | , (17)

τi = Im

⎡
⎣∑

j∈L

2rjψ
†
inψj

kj − kin

+
∑

j1 �=j2∈L

r̄j1rj2ψ
†
j1
ψj2

kj2 − k̄j1

−
∑

j1 �=j2∈R

t̄j1 tj2ψ
†
j1
ψj2

kj2 − k̄j1

⎤
⎦. (18)

Equations (15)–(18) are the central results of this paper. Due
to the velocity normalization (and � = 1), ψin, rjψj , and
tjψj in these equations have the same unit as

√
∂kin/∂E.

The difference between the generalized group delay τg and
the dwell time τd equals the interference delay τi plus
τe—the contribution only from evanescent waves. Note that
τe is always nonnegative while τi can be negative. τi arises
not only from the interference between the reflected waves
and the incident wave (self-interference), but also from the
interference among scattered waves. Evanescent waves can
also contribute to τi . The presence of τe indicates that the
escape of the entire wave function through the scattering
region is not only via propagating modes but also by means of
evanescent modes in leads. Note that although the scattering
amplitude rj and tj depend on the phase choice of either the
scattering state or the spinor wave function of propagating
modes, the values of τe and τi in Eqs. (17) and (18) have no
such dependence.

C. Self-interference delay in graphene systems

In the systems [6,13–18] with NM = 2, the evanescent
modes cannot coexist with propagating modes and thus
τe = 0. In these systems, the self-interference delay vanishes
when perfect transmission occurs (rj = 0). One such system
is described by the 1D Schrödinger equation [−k̂2

x/(2m) +
V (x)]� = E� with mass m and scalar potential V (x). For
ψj > 0 the self-interference delay calculated directly from
Eq. (18) is the same as in Ref. [6], i.e., τi = −Imr/[2E −
2V (−∞)].

Another such system is graphene-based devices where the
leads are described by the massless Dirac Hamiltonian [13–18]

Ĥlead = vF (σxk̂x + σyk̂y).

Here vF > 0 is the Fermi velocity, σx , σy together with σz are
three Pauli matrices, and the transverse momentum k̂y = −i∂y

is conserved. We write the incident, reflected, and transmitted
waves as the same in Ref. [13] (but with a unit velocity)

�in(x) = [1,seiφ]T eikinx/
√

2vin,

�re(x) = r[1, − se−iφ]T e−ikinx/
√

2vin, (19)

�tr (x) = t[1,seiφ]T eikin(x−L)/
√

2vin,

where s = sign(E), kin + iky = |E| exp(iφ)/vF , and vin =
vF cos φ. The group delay is given by τg = Im(rr ′ + t t ′) −
|r|2φ′. The dwell time is derived directly from Eq. (11) and
reads τd = τg − Re(re−iφ)φ′/ cos φ. From Eq. (18) we get

τi = − sin φ

|E| cos2 φ
Re(re−iφ). (20)

This expression is similar to that in Ref. [18] and satisfies
τg = τd + τi .

For a rectangular barrier with height V0 and width L, the
reflection amplitude r for the incident and reflected waves (19)
can be written as [24]

r = −eiφEV0 sin φ sin(kmL)/
(
kmzv2

F

)
. (21)

Here km = √
(E − V0)2 − k2

y and z = kin cos(kmL) − i(k2
in −

EV0v
−2
F ) sin(kmL)/km. Substituting Eq. (21) into (20), we
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yield

τi = EV0 sin2 φ

v2
F |z|2 cos φ

sin(kmL)

kmvF

cos(kmL). (22)

We see that under the rectangular barrier τi is generally finite.
It vanishes only at reflection zeros (where φ = 0 or kmL/π is
integer) or in the case that kmL/π is half integer.

III. TUNNELING TIME OF ELECTRONS IN
TOPOLOGICAL SURFACE STATES

We take helical electrons in topological surface states [25]
as an example to examine numerically the effect of evanescent
modes on the tunneling time. The considered topological
insulator (Bi2Te3 or Bi2Se3) has only one gapless Dirac cone in
its surface bands and can exhibit a hexagonal snowflake Fermi
surface [26–29]. Near the Dirac point, the effective surface
Hamiltonian including the trigonal warping term [26] and a
rectangular barrier is written as

Ĥ = vF (σyk̂x − σxk̂y) + λ
(
k̂3
x − 3k̂x k̂

2
y

)
σz + V (r)σ0. (23)

Here the momentum k̂y = −i∂y is along the 
-M direction,
λ is the warping parameter, and σ0 is a unit matrix. For sim-
plicity, the term (k̂2

x + k̂2
y)/2m is neglected. In the numerical

calculation, the two material parameters for Bi2Te3 are taken
as [26,27] vF = 255 meV nm and λ = 250 meV nm3.

The potential barrier has a width L and height V0. Due to the
anisotropy of the warping term, we consider two orientations
of the applied barrier: (1) the x direction where V = V (x)
and the momentum q = ky is conserved; (2) the y direction
where V = V (y) and the momentum q = kx is a good
quantum number. Here V (x) = V0�(x)�(L − x) with �(x)
the Heaviside step function. For the two barrier orientations,
an effective 1D Hamiltonian Ĥ (q) is obtained from Eq. (23)
by the replacement k̂y → q or k̂x → q. The scattering matrix
method [30] is adopted to obtain the scattering states of Ĥ (q)
and then the transmission probability T and the tunneling time.
Note that one of the operator σx and σy transforms Ĥ (q) into
Ĥ (−q). As a result, both the transmission probability and the
tunneling time determined by Ĥ (q) are even functions of q.
We calculate the dwell time directly from the definition Eq. (6)
and indirectly from Eq. (16). Our numerical results confirm the
agreement of the two methods.

For a small energy E such as E = 180 meV, the constant-
energy surface in leads looks like a circle or hexagon [31]. For
either the barrier V (x) or V (y), only a single ingoing mode
can exist in leads. In Fig. 2, we plot the transmission T , the
group delay τg , and the interference delay τi as a function
of conserved momentum q. The barrier parameters are V0 =
300 meV and L = 10 nm. In comparison with the results
for the linear-in-momentum Hamiltonian (λ = 0), one can see
that the warping term can enhance (suppress) the transmission
and shorten (extend) the group delay as the transport is along
the x (y) direction. For λ = 0, Eq. (23) is equivalent to the
graphene Hamiltonian and thus the interference delay is given
in Eq. (22). τi is noticeable only for |q| near E/vF due to
the factor sin2 φ/ cos φ. For the barrier V (x) the warping term
changes slightly the value of τi . In contrast, along the transport
y direction τi can be altered drastically. When q is near the

λ≠0, V(x)
λ≠0, V(y)
λ=0

0.1

q (1/nm)
0.0 0.30.2 0.4 0.60.5 0.7
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(b)
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g
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i
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−0.02
0.00
0.02
0.04

T

qc

L=10 nm
V  =300 meV0

FIG. 2. Transmission (a), group delay τg (b), and interference
delay τi (c) plotted as a function of conserved momentum q, for helical
electrons described by Eq. (23) in the single-mode transport regime.
The red solid and blue dotted lines are for the barrier along the x

and y direction. The results for the linear-in-momentum Hamiltonian
(λ = 0) is presented as black dashed lines. The parameters are E =
180 meV, V0 = 300 meV, and L = 10 nm.

critical value qc above which propagating modes disappear,
τi can approach −0.35 ps while τg can be up to 0.36 ps. In
the transmission-blocked regime, τd (not shown here) changes
slightly. This observation indicates that τe = τg − τd − τi is
remarkable (up to 0.7 ps) for q near qc.

When the incident energy meets E > 1.45
√

v3
F /λ ≈

373 meV, the number of ingoing modes Nm in a lead can
approach three (two) for the transport x (y) direction [31].
In Fig. 3 (Fig. 4) we take a high energy E = 500 meV
to illustrate the features of tunneling time in the case of

0.5
q (1/nm)
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 k
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τ  d
τ  g

(a)

(b)

 τ  e
τ  i

L=10 nm
V  =300 meV0

FIG. 3. Transmission (a) and tunneling time (b) as a function of
conserved momentum q for helical electrons described by Eq. (23)
incident from the mode with the largest momentum kin. The transport
is along the x direction. The number of right-propagating modes
Nm and kin in the left lead are plotted in (a) for convenience. The
parameters are E = 500 meV, V0 = 300 meV, and L = 10 nm.
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FIG. 4. Same as Fig. 3 but for the potential barrier along the y

direction.

multichannel transport along the x (y) direction. The incident
wave has the largest momentum kin among ingoing modes
in leads. In the region with T > 0.5 (and Nm = 1), the
τd − q curve almost coincides with the τg − q curve. For
q near E/vF no transmission channel is open in the barrier
region. Accordingly, the group delay goes up quickly which
is mainly contributed by the interference delay. In the region
with Nm > 1, no evanescent mode appears in leads and thus
τe = 0. More interesting features are seen near the onset
of new ongoing modes. Here a sharp peak of the group
delay forms, while the dwell time changes smoothly. Their
difference is mainly caused by the evanescent waves. This
can be understood qualitatively as follows. To remove the
effect of evanescent waves in the left lead with decaying
length Ld , one can extend the scattering boundary x = 0 to
x = −xL < 0 with xL ∝ Ld which is equivalent to increase
the original reflection phase by kinxL. Near the onset of a
new ongoing mode, xL increases quickly with the energy
while kin varies slowly. Therefore, these evanescent waves
can contribute remarkably to τg . Another transition point of
Nm is shown in Fig. 3(a), where a sudden drop occurs in
the kin − q curve. This variation arises from the concave
hexagrams in the snowflake equal-energy surface [26,31]. Near
this transition, τd jumps with a small step while τg has a sharp
peak. Their difference are caused both by the evanescent waves
and interference delay.

IV. CONCLUSIONS AND REMARKS

In summary, for electron scattering states with many
components we have derived a general relation between the
Wigner group delay τg and Bohmian dwell time τd . Because
the phase of scattering amplitudes is related to the spinor wave
functions of corresponding propagating modes, it is necessary
to redefine the group delay τg . The difference between τg and
τd comes from both the interference delay and the evanescent
modes. For electrons in topological surface states transporting
through an electric barrier, we have examined the effect of
trigonal warping on the tunneling time. The system with
trigonal warping term can be in the multimode transport
regime. It is found that near the onset of new modes, τg

increases quickly and is contributed mainly by the evanescent
modes.

For many quasi-1D systems like quantum waveguides with
spin-orbit interaction [22] and quantum spin-Hall bars [23],
we can represent their Hamiltonian in terms of a common set
of orthogonal basis functions [30] and yield Eq. (1) after a
proper truncation. The relation between τg and τd in our work
can be used to study the tunneling time in these systems.
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APPENDIX A: PLANE-WAVE SOLUTIONS IN A LEAD

In a lead with constant Ar (0 � r � N ), a plane-wave
solution ψ exp(ikx) satisfies

[A0 − EIM ]ψ +
N∑

r=1

krArψ = 0. (A1)

Here IM is the M × M unit matrix. Equation (A1) can be
transformed into an equivalent eigenproblem BX = kX with

B =

⎛
⎜⎜⎜⎝

0 IM 0 ... 0
0 0 IM ... 0
. . . . .

0 0 0 ... IM

BN1 BN2 BN3 ... BNN

⎞
⎟⎟⎟⎠,

(A2)

X =

⎛
⎜⎝

ψ

kψ

...

kN−1ψ

⎞
⎟⎠.

Here BN1 = −A−1
N (A0 − EIM ), BNr = −A−1

N Ar−1(r =
2,...,N ). The matrix B has NM eigenvectors X1, X2,..., XNM

with corresponding eigenvalues k1, k2,..., kNM . The first M

components of Xj comprise a vector ψj .

APPENDIX B: PROBABILITY CURRENT DENSITY IN
THE CONSIDERED ONE-DIMENSIONAL SYSTEMS

The time-dependent Schrödinger equation for the wave
function � and its Hermitian conjugate �† reads

A0� +
N∑

r=1

Ar k̂
r
x� = i∂t�, (B1)

�†A0 +
N∑

r=1

(
k̂r
x�

)†
Ar = −i∂t�

†. (B2)

We multiply Eq. (B1) with �† from the left and multiply
Eq. (B2) with � from the right. After some algebra, one gets

i∂t (�
†�) =

N∑
r=1

[
�†Ar

(
k̂r
x�

) − (
k̂r
x�

)†
Ar�

]
= k̂xJ (�,�), (B3)
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where J (�,�) is the probability current density, and the
function J (�1,�2) is defined in Eq. (8) in the text.

The first property of J , Eq. (9) in the text, can be checked
by using the identity

k̂x

[(
k̂s
x�1

)†
Ar

(
k̂r−1−s
x �2

)] = (
k̂s
x�1

)†
Ar

(
k̂r−s
x �2

)
− (

k̂s+1
x �1

)†
Ar

(
k̂r−1−s
x �2

)
.

The second property of J , Eq. (10) in the text, is proved as

J (�1,�2) =
N∑

r=1

r−1∑
s=0

k̄s
1k

r−1−s
2 ψ

†
1Arψ2 exp[i(k2 − k̄1)x]

= exp[i(k2 − k̄1)x]
N∑

r=1

kr
2 − k̄r

1

k2 − k̄1
ψ

†
1Arψ2

= F

N∑
r=0

[
ψ

†
1

(
Ark

r
2ψ2

) − (
ψ

†
1Ar k̄

r
1

)
ψ2

]
= F [ψ†

1(E2ψ2) − (E1ψ
†
1)ψ2]

= (E2 − E1)Fψ
†
1ψ2.

Here the factor F = exp[i(k2 − k̄1)x]/(k2 − k̄1). In the third
line we have used

∑N
r=0 Ark

r
jψj = Ejψj for the mode

�j (j = 1,2).
In the case of k2 = k̄1, J (�1,�2) becomes

N∑
r=1

rkr−1
2 ψ

†
1Arψ2 = �

†
1(υ̂�2),

where the velocity operator

v̂ = ∂Ĥ

∂k̂x

=
N∑

r=1

rAr k̂
r−1
x .

Thus for a propagating mode �(x) = ψ exp(ikx) in a lead, the
mean velocity vk equals J (�,�)/(�†�).

For N = 2, one has

J (�,�) = i∂x�
†A2� − i�†A2∂x� + �†A1�.

In this case the probability current density J (�,�) can be
expressed as Re(�†v̂�). Note that [32] when the relation
J (�,�) = Re(�†υ̂�) holds for any state �, one must have
N � 2.

APPENDIX C: EXPRESSION OF THE GENERALIZED
GROUP DELAY τg

To calculate the limit of Q in Eq. (14), we expand all
quantities of the state �2 up to the second order of �E,

f (E + �E) = f (E) + f ′(E)�E + f
′′
(E)

(�E)2

2
+ ....,

(C1)

where the prime denotes the derivative with respect to the
energy E. We get

Q =
∑
j∈LP

r̄j (rj + r ′
j�E + ...)

ψ
†
j (ψj + ψ ′

j�E + ...)

�E(k′
j + ...)

+ ψ
†
in(ψin + ψ ′

in�E + ...)

�E(k′
in + ...)

−
∑

j∈RP

t̄j (tj + t ′j�E + ...)
ψ

†
j (ψj + ψ ′

j�E + ...)

�E(k′
j + ...)

=
∑
j∈LP

|rj |2ψ†
j ψj

�E(k′
j + ...)

−
∑

j∈RP

|tj |2ψ†
j ψj

�E(k′
j + ...)

+ ψ
†
inψin

�E(k′
in + ...)

+
∑
j∈LP

r̄jψ
†
j (rjψj )′

k′
j

−
∑

j∈RP

t̄jψ
†
j (tjψj )′

k′
j

+ ψ
†
inψ

′
in

k′
in

+ O(�E). (C2)

The sum of the first three terms in the last equation is further
calculated as

∑
j∈LP

|rj |2ψ+
j ψj

(
1 − k′′

j

2k′
j

�E
)

�Ek′
j

+
ψ+

inψin

(
1 − k′′

in

2k′
in

�E
)

�Ek′
in

−
∑

j∈RP

|tj |2ψ+
j ψj

(
1 − k′′

j

2k′
j

�E
)

�Ek′
j

+ O(�E)

=
∑
j∈LP

|rj |2k′′
j

2k′
j

+
∑

j∈RP

|tj |2k′′
j

2k′
j

− k′′
in

2k′
in

+ O(�E).

Here we have used
∑

j∈LP |rj |2 + ∑
j∈RP |tj |2 = 1 and the ve-

locity normalization for propagating modes, ψ†
j ψj = ±k′

j (E).

Replacing k′
j and k′′

j with ±ψ
†
j ψj and ±[(ψ+

j )
′
ψj + ψ+

j ψ ′
j ],

we find the full expression of Q,

Q =
∑
j∈LP

[
|rj |2

(ψ+
j )

′
ψj − ψ+

j ψ ′
j

2ψ
†
j ψj

− r̄j r
′
j

]

+
∑

j∈RP

[
|tj |2

(ψ+
j )

′
ψj − ψ+

j ψ ′
j

2ψ
†
j ψj

− t̄j t
′
j

]

+ ψ+
inψ

′
in − (ψ+

in)
′
ψin

2ψ
†
inψin

+ O(�E). (C3)

From Eqs. (C3) and (13) one can check that both lim�E→0 Q

and lim�E→0 P are purely imaginary. After some algebra, we
yield Eq. (15) in the text from Eq. (C3).

APPENDIX D: PROBABILITY CURRENT DENSITY OF
GENERAL ONE-DIMENSIONAL SYSTEMS

When the matrix Ar (r � 1) is position dependent, the
term Ar k̂

r
x in Eq. (1) should be symmetrized to ensure the

Hermiticity of the Hamiltonian Ĥ . The symmetrized form of

165426-6
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Ar k̂
r
x is chosen as

Ĥr ≡ k̂t
xAr k̂

t
x (D1)

if r is an even number r = 2t and

Ĥr ≡ (
k̂t
xAr k̂

t−1
x + k̂t−1

x Ar k̂
t
x

)
/2 (D2)

when r is an odd number r = 2t − 1, which has the mini-
mum requirement of the smoothness of Ar (x) [k̂t−1

x Ar (x) is
piecewise continuous].

There exists a bilinear function J (�1,�2) satisfying

�
†
1(Ĥ�2) − (Ĥ�1)†�2 ≡ k̂xJ (�1,�2). (D3)

We write J = J1 + J2 + ... + JN where the probability cur-
rent density Jr is due to the Hamiltonian Ĥr for r = 1,2,...,N .
Equation (D3) holds when every Ĵr meets

k̂xJr (�1,�2) = �
†
1(Ĥr�2) − (Ĥr�1)†�2. (D4)

For an even number r = 2t , we find

Jr = i

t−1∑
s=0

(−1)s+t
[
∂s
x�

†
1∂

t−1−s
x

(
Ar∂

t
x�2

)
− ∂t−1−s

x

(
∂t
x�

†
1Ar

)
∂s
x�2

]
= i

∑
s,p�0

(−1)s+tC
p

t−1−s

(
∂s
x�

†
1∂

p
x Ar∂

r−1−s−p
x �2

− ∂r−1−s−p
x �

†
1∂

p
x Ar∂

s
x�2

)
. (D5)

We check Eq. (D4) by calculating DJ ≡ (−1)t k̂xJr as

DJ =
∑

s,p�0

(−1)sCp

t−1−s

[
∂s+1
x �

†
1∂

p
x Ar∂

r−1−s−p
x �2

− ∂r−1−s−p
x �

†
1∂

p
x Ar∂

s+1
x �2

]
+

∑
s,p�0

(−1)sCp

t−1−s

[
∂s
x�

†
1∂

p+1
x Ar∂

r−s−p−1
x �2

− ∂r−1−s−p
x �

†
1∂

p+1
x Ar∂

s
x�2

]
+

∑
s,p�0

(−1)sCp

t−1−s

[
∂s
x�

†
1∂

p
x Ar∂

r−s−p
x �2

− ∂r−s−p
x �

†
1∂

p
x Ar∂

s
x�2

]
. (D6)

The first line of Eq. (D6) after substituting s + 1 → s becomes∑
p�0,s�1

(−1)s−1C
p
t−s

[
∂s
x�

†
1∂

p
x Ar∂

r−s−p
x �2

− ∂r−s−p
x �

†
1∂

p
x Ar∂

s
x�2

]
. (D7)

The second line of Eq. (D6) after substituting p + 1 → p turns
to ∑

s,p�0

(−1)sCp−1
t−1−s

[
∂s
x�

†
1∂

p
x Ar∂

r−s−p
x �2

− ∂r−s−p
x �

†
1∂

p
x Ar∂

s
x�2

]
. (D8)

After these procedures, we get

DJ =
∑

s,p�0

(−1)s
[
C

p

t−1−s − C
p
t−s + C

p−1
t−1−s

]

× ∂s
x�

†
1∂

p
x Ar∂

r−s−p
x �2

+
∑

s,p�0

(−1)s
[ − C

p

t−1−s + C
p
t−s − C

p−1
t−1−s

]

× ∂r−s−p
x �

†
1∂

p
x Ar∂

s
x�2

+
∑
p�0

C
p
t

[
�

†
1∂

p
x Ar∂

r−p
x �2 − ∂r−p

x �
†
1∂

p
x Ar�2

]
.

The first and second lines of this equation vanish due to

C
p
t−s = C

p

t−1−s + C
p−1
t−1−s . (D9)

Comparing the last expression of DJ with

�
†
1

(
k̂t
xAr k̂

t
x�2

) − (
k̂t
xAr k̂

t
x�1

)†
�2

= (−1)t
∑
p�0

C
p
t

[
�

†
1∂

p
x Ar∂

r−p
x �2 − ∂r−p

x �
†
1∂

p
x Ar�2

]
,

we get k̂xJ2t = �
†
1(k̂t

xAr k̂
t
x�2) − (k̂t

xAr k̂
t
x�1)†�2.

For an odd number r = 2t − 1, we can take I ≡ 2Jr (−1)t−1

as

I =
2∑

p=1

t−p∑
s=0

(−1)s
[
∂s
x�

†
1∂

t−p−s
x

(
Ar∂

t+p−2
x �2

)

+ ∂t−p−s
x

(
∂t+p−2
x �

†
1Ar

)(
∂s
x�2

)]
=

∑
s,p,q

(−1)sCq
t−p−s

[
∂s
x�

†
1∂

q
x Ar∂

2t−2−s−q
x �2

+ ∂2t−2−s−q
x �

†
1∂

q
x Ar∂

s
x�2

]
. (D10)

Then we get DI ≡ ∂xI = T1 + T2 + T3 with

T1 =
∑
s,p,q

(−1)sCq
t−p−s

[
∂s+1
x �

†
1∂

q
x Ar∂

2t−2−s−q
x �2

+ ∂2t−2−s−q
x �

†
1∂

q
x Ar∂

s+1
x �2

]
=

∑
p,q,s�1

(−1)s−1C
q

t−p−s+1

[
∂s
x�

†
1∂

q
x Ar∂

r−s−q
x �2

+ ∂r−s−q
x �

†
1∂

q
x Ar∂

s
x�2

]
,

T2 =
∑
s,p,q

(−1)sCq
t−p−s

[
∂s
x�

†
1∂

q
x Ar∂

r−s−q
x �2

+ ∂r−s−q
x �

†
1∂

q
x Ar∂

s
x�2

]
,

T3 =
∑
s,p,q

(−1)sCq
t−p−s

[
∂s
x�

†
1∂

q+1
x Ar∂

2t−2−s−q
x �2

+ ∂2t−2−s−q
x �

†
1∂

q+1
x Ar∂

s
x�2

]
=

∑
s,p,q

(−1)sCq−1
t−p−s

[
∂s
x�

†
1∂

q
x Ar∂

r−s−q
x �2

+ ∂r−s−q
x �

†
1∂

q
x Ar∂

s
x�2

]
.
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Repeating the same procedure as before, we yield

DI =
∑
s,p,q

(−1)s
[
C

q
t−p−s − C

q

t−p−s+1 + C
q−1
t−p−s

]

× (
∂s
x�

†
1∂

q
x Ar∂

r−s−q
x �2 + ∂r−s−q

x �
†
1∂

q
x Ar∂

s
x�2

)
+

∑
p,q

C
q

t−p+1

[
�

†
1∂

q
x Ar∂

r−q
x �2 + ∂r−q

x �
†
1∂

q
x Ar�2

]
,

where the first term vanishes due to Eq. (D9). The right-hand
side of Eq. (D4) for r = 2t − 1 is expanded as

�
†
1(Ĥr�2) − (Ĥr�1)†�2

= (−i)r

2

∑
p,q

C
q

t−p+1

× (
�

†
1∂

q
x Ar∂

r−q
x �2 + ∂r−q

x �
†
1∂

q
x Ar�2

)
,

which together with the last expression of DI gives Eq. (D4).
From Eq. (D3) we know that the probability cur-

rent density for a given state � is J (�,�) = ∑N
r=1 J (r)

with J (r) = Jr (�,�). From Eq. (D5) and Eq. (D10) one
gets

J (2t) = 2Re
t−1∑
s=0

(
k̂s
x�

)†
k̂t−1−s
x

(
A2t k̂

t
x�

)
,

J (2t−1) = Re

[
t−1∑
s=0

(
k̂s
x�

)†
k̂t−1−s
x

(
A2t−1k̂

t−1
x �

)

+
t−2∑
s=0

(
k̂s
x�

)†
k̂t−2−s
x

(
A2t−1k̂

t
x�

)]
.
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