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We consider an interacting quantum dot working as a coherent source of single electrons. The dot is tunnel
coupled to a reservoir and capacitively coupled to a gate terminal with an applied ac potential. At low frequencies,
this is the quantum analog of the RC circuit with a purely dynamical response. We investigate the quantized
dynamics as a consequence of ac pulses with large amplitude. Within a Keldysh-Green function formalism we
derive the time-dependent current in the Coulomb blockade regime. Our theory thus extends previous models
that considered either noninteracting electrons in nonlinear response or interacting electrons in the linear regime.
We prove that the electron emission and absorption resonances undergo a splitting when the charging energy is
larger than the tunnel broadening. For very large charging energies, the additional peaks collapse and the original
resonances are recovered, though with a reduced amplitude. Quantization of the charge emitted by the capacitor
is reduced due to Coulomb repulsion and additional plateaus arise. Additionally, we discuss the differential
capacitance and resistance as a function of time. We find that to leading order in driving frequency the current

can be expressed as a weighted sum of noninteracting currents shifted by the charging energy.
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I. INTRODUCTION

Real-time manipulation of electrons is one of the greatest
achievements in modern nanoelectronics [1-3]. The charac-
teristic setup comprises a submicron-sized cavity or quantum
dot tunnel coupled to a reservoir through a quantum point
contact. Then, a time-dependent driving voltage is applied to
a electrostatically coupled metallic gate placed on top of the
dot. As a consequence, dc transport is impossible and the
system response is purely dynamical. The low-frequency ad-
mittance measured with cryogenic low-noise amplifiers can be
understood from the serial combination of a charge relaxation
resistance and a quantum capacitance [4,5]. It turns out that in
the linear regime (small ac amplitudes) the charge relaxation
resistance is quantized for a single spin-polarized channel [6], a
theoretical prediction that was experimentally confirmed [1].
For drivings with larger amplitudes (nonlinear regime), the
system works as an on-demand single-electron source [2],
in analogy with single-photon sources [7,8], with alternate
sequences of electron emission and absorption during a driving
period in the fast (GHz) regime. When the voltage pulse has
a Lorentzian shape [9-12], recent progress has shown that the
holes can be efficiently removed from the stream of excitations
when the pulse is applied to an Ohmic contact [13]. These phe-
nomena imply the observation of quantized currents ensured
by charge quantization, which might be useful in metrology
applications [14] and quantum computation designs [15-17].

Now, tunneling electrons feel repulsive interactions that
yield Coulomb blockade, a prominent effect in small-
capacitance conductors which manifests itself as an increased
resistance of a quantum dot junction at finite bias voltages [18].
In fact, the effect is quite ubiquitous in nanoscale systems and
arises not only in quantum dots but also in carbon nanotubes
[19], molecular transistors [20], and optical lattices [21].
Therefore, it is natural to investigate the role of Coulomb
blockade effects in single-electron sources. This is the goal we
want to accomplish in this work. We begin by noticing that
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electron-electron interactions have been widely analyzed in
the quantum RC circuit [22-39]. However, these works have
mostly focused on the linear regime (for an exception, see
Ref. [35]). The nonlinear regime is interesting because both
the capacitance and the charge relaxation resistance acquire
an explicit time dependence [40]. This result was found for
noninteracting electrons. Here, we give full expressions for
the capacitive and the dissipative parts of the current valid in
the case of strong interactions that lead to Coulomb blockade
effect. We predict that this effect should be visible as a
splitting of the dynamical current peaks for both emitted and
absorbed electrons. Importantly, the simultaneous emission of
pairs of electrons in the non-interacting case is modified to a
subsequent emission of two electrons.

The energy diagram of our system is sketched in Fig. 1. We
consider a single-level quantum dot (energy &y) coupled to a
Fermi sea of electrons (Fermi energy E r). The coupling region
between the dot and the reservoir is typically a pinched-off
quantum point contact that we depict in Fig. 1 with a tunnel
barrier. This part represents the resistive component of the
quantum circuit, through which electrons can hop on and
off the dot. The position of &; can be tuned with a dc gate
potential applied to the point contact [2] (not shown in Fig. 1).
Additionally, the dot is coupled to a nearby gate terminal
with an externally applied harmonic potential &,.(¢). This
is the capacitive part of the RC circuit. Finally, a charging
energy U is required to charge the dot with two electrons
having opposite spins. The situation considered in this paper
is experimentally relevant for small dots. The case of large
dots with many quantum levels was treated in Ref. [22],
where a Hartree-Fock approximation was employed to account
for Coulomb interactions and screening effects. Here, we
consider the Anderson model with a single level and a constant
interaction energy. This model has been successfully applied to
the Fermi liquid limit connected to the Korringa-Shiba relation
[31], unveiling strong departures of the charge relaxation
resistance from universality [32].
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FIG. 1. Schematic representation of a single-electron source
comprising a single-level quantum dot coupled capacitively to an
ac oscillating signal, ¢,.(#). The dot can exchange electrons with an
attached reservoir (Fermi energy Ey) via a tunnel barrier. The dot
energy level is denoted with &y and Coulomb repulsion is given by
the charging energy U.

II. MODEL HAMILTONIAN AND KELDYSH-GREEN
FUNCTION FORMALISM

Our theoretical discussion starts with the Anderson Hamil-
tonian of a mesoscopic capacitor, H = Hg + Hy + Hp,
where Hp describes the single reservoir, Hy is the tunnel
coupling between the reservoir and the quantum dot (QD),
and Hp models the QD:

Hr = ZEkCIL,Ckm (1a)
ko

Hy =Y (Vidlces + Viel,dy), (1b)
ko

Hp = e,()dldy + Unyn,, (Ic)

with n, = d; d, the occupation number operator and &, () =
&s + €40(¢) including both the QD energy level, &, = g9 +
oAyz/2 (here Az denotes the Zeeman splitting due to
interaction with an external magnetic field), and the oscillating
potential applied to the gate, &,.(f) = &, cos ¢, where &,
is the ac amplitude and 2 is the driving frequency. We
emphasize that &y and &,.(¢) can be tuned independently, as
experimentally demonstrated [2], with a dc and ac voltage,
respectively, applied to the quantum point contact and the gate
electrode: gy = —eVgpc and g, = —eV,. This allows us to
treat the position of the QD level relative to the Fermi energy
and the ac amplitude as separate parameters in our calculations.
The sinusoidal drive considered here is convenient because
the derivative of the drive is proportional to the frequency and
thus easily Fourier decomposed. Different drives such as a step
function do not shows this nice property and add mathematical
difficulties to the formalism. Hence, we restrict ourselves to
the monochromatic case.
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In the Hamiltonian H, o labels the electron spin and here-
after we consider the nonmagnetic case (Az = 0). However,
the magnetic (Az # 0) situation can be easily included in our
model but we focus on the spin-degenerate case. This is an
important difference with the samples of Refs. [1,2], which
operate in the quantum Hall regime to achieve single-channel
propagation with no spin degeneracy.

In Eq. 1(a), & represents the reservoir energy dispersion
with momentum k and c,ta (cro ) creates (annihilates) a conduc-
tion band electron. The tunnel hamiltonian given by Eq. (1b)
contains the tunnel amplitude V; and the fermionic operator
dj, (dy), which creates (annihilates) a localized electron in the
dot. Finally, U = ez/(Cg + Cg) in Eq. (Ic) is the charging
energy, which we also take as a tunable parameter depending
on the capacitive strengths with the coupled gate, C,, and
eventually with the reservoir, Cg.

The time-dependent field ,.(¢) induces a purely dynamical
charge current /(¢) that can be measured at the reservoir. Since
H commutes with the total charge, I is determined from the
change rate of the dot occupation, I(¢):

Ir(t)+ 1(t) =0, 2)

where I(t) = ed; ), (dj,'dc,)(t) and Ig(t) = ed; ), (c,fmckg)
() with e the unit of charge. Here, 9, denotes the time
derivative. Equation (2) thus represents the electronic charge
conservation. In what follows, we focus on I(¢) because it
can be directly expressed in terms of the QD Green’s function
without further manipulation, as shown below. The physical
current Iz (since it amounts to a flux) can then be obtained
immediately from Eq. (2).

Let G5 (t,t') = i(di(t')d, (1)) be the lesser Green’s function
[41,42] for the dot operators. Clearly, the QD occupation
(ny (1)) = (d; (t)d,(t)) can be written in terms of the lesser
Green’s function. The current is hence calculated as

1(0)=ed, ) (ne() = ed, Y (—iG;(1,0))

de
_ 3, Z/ EGie), 3)

where in the last line we express the lesser dot Green’s function
in a mixed time-energy notation [43,44]. This representation
is especially useful for nonstationary scattering problems in
the adiabatic limit [45,46]. Its connection with the original
double time picture and the corresponding Fourier transform
is discussed in Appendix A.

Our regime of interest here is the adiabatic case (small
frequency €2) but arbitrary values of the ac amplitude &,.. In
that case, the Green’s function is expected to display small
deviations around a frozen state in time characterized by a
stationary scattering matrix with time-dependent parameters.
This approximation is good when A2 is the smallest energy
scale of our problem. For a prototypical RC circuit [1], 22 ~
0.2 pneV, which is at least fifty times smaller than the tunnel
coupling I' >~ 10 ueV. Therefore, the electron interacts only
weakly with the ac potential before tunneling into or out of the
QD. The frequency expansion reads

G:(t,e) =GI7(t,e) +hQG:V(t,e) + 0(Q%), (4
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where the superscript f denotes the frozen approximation and
(1) implies the first order in driving frequency 2. Second-
order terms and beyond are neglected, which suffices for the
purposes of this work. (Inductive-like effects have been studied
in Ref. [47]). We stress that the zeroth-order (frozen) term in
Q is still time dependent. No assumption has been made on
the strength of the amplitude, which can be arbitrarily large,
driving the system into the nonlinear regime.

Substituting Eq. (4) into Eq. (3), we find similar expansions
for the occupation and the current,

1(t) ~ e, Z /

=ed Y _((ne()) + (o (1))

(G3/(t,e) + hQG;V(1,9))

= 1Y% 4+ 1%0). 5)

From the definition given by Eq. (3), it follows that the leading
order for the current is first order in 2. To be consistent,
we therefore keep the current terms in Eq. (5) up to second
order in 2. The physical implication says that ) represents
a capacitive-like contribution while /® is understood as a
dissipative component [40].

This interpretation can be substantiated by introducing a
quantum RC circuit model (a capacitor and a resistor in a series
with an applied ac potential) with time-dependent capacitance
and resistance functions,

el (1) = —Cy(1)d;€4c(t) + Ry(t)Cy(1)0:(Cy(1)d;€4c(1)).  (6)

This relation is valid at low frequency for both the linear
and the nonlinear regimes. In Eq. (6) Cy(¢) is the differential
capacitance and Rj(t) the differential resistance. Both depend
on time because they constitute a generalization of the
linear-response quantum capacitance C, and charge relaxation
resistance R, [4] to the nonlinear ac transport regime [40].
Combining Eq. (5) with Eq. (6), we can find expressions
for Cy(t) and Ry(t). Therefore, our goal is first to obtain an
equation for G (¢,¢) in the presence of Coulomb interactions
and oscillating voltages.

III. EQUATION OF MOTION

The temporal evolution of the dot Green’s function is
determined from the commutator of d, with H (Heisen-
berg equation of motion). It is convenient to consider the
time-ordered Green’s function G, (z,t') = ((da,djf))(t,t/) =
—i (Td(,(t)dj,(t/)). After some straightforward steps, we find
that the time-ordered Green’s function satisfies the integral
(Dyson) equation

Golt,) = g, (1.1") + / d—;caa,s)eac(s)go(s,t’)
ds ds’G N (s ,
+/E/? S (1.5 Eo(s',5)g, (5.1)
ds ,
+U/E«dg,d;nﬁ))(t,s)g(,(s,r), )

where 6 = —o. Zo(t,t) = Y, |Vi|*g(t,') is the tunnel
self-energy with gk(a)(t,t’) the isolated reservoir (dot) Green’s
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function in the absence of the ac driving potential. The
retarded/advanced and lesser Green’s functions can then be
obtained from the Langreth’s analytic continuation rules [42].

To consider the effect of U, we now generate an additional
integral equation for the correlator ({d, ,d;n(—, N(,t")inEq. (7):

({dy,dins))(t,t") = (ns())g, (1)

+ / d_i,;g((dg ,d;n[y>>(I,S)gac(s)ga(s’t/)

d
+3 [ vl

+Vk<<d0'?d Ckads))(t,5)
— VE((do o df dL s ))(t,5))2, (5,1)

+U/dEs<(dg,dgné'»(tvs)ga(svt/)’ (8)

where three new correlation functions arise. Since we are
interested in the Coulomb blockade regime, we can neglect
charge and spin excitations. This truncated equation of motion
approach is good in the weak tunneling regime or for not very
low temperatures, in which case Kondo correlations can be
disregarded [48]. As a consequence, we neglect the spin-flip
correlators in Eq. (8):

({dodldl cis))(t,5) ~ 0, (9a)

((dod] crods))(1,5) = 0. (9b)

Next, we calculate
((dy CLyna))(.1):

the equation of motion for

f ’ ds * i /
(ol no)) (1,1 = f Vs ) 0,515,
+ Z/ —(Villdy el clods))(t,s)

— Vi ({do ]yl ces))(1.9)gi(s.1),
(10)

where we neglect reservoir charge and spin excitations for the
same reason as discussed above,

a))(t,s) =0, (11a)

< (df’ ’ CIJLU Cka

((dych dbcia))(t,5) = 0 (11b)

Combining Egs. (8) and (10) with Egs. (9) and (11) we
obtain a closed expression for ({d, ,dj;n;,>)(t,t’):

({dodlns))(t,1)

/ ds , /
= (ns(1)g, (t,1') + /?((d(,,d;n(;))(t,s)g,,c(s)ga(S,t)
+/d_;/d%<<d0’dlnc‘f))(l‘,s/)Eo(s/,s)ga(s,t’)

+U / X (o L)1), (50, (12)
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We have thus derived two coupled integral equations, namely
Egs. (7) and (12), which must be self-consistently solved
because Eq. (12) depends on (n,(¢)) and to calculate this
quantity we need to know G (¢,t) [see Eq. (7)], which depends
itself on (n, (¢)) via Eq. (12). Further progress can be made by
expanding the equations in powers of driving frequency 2. It
is worthwhile to emphasize that Eq. (7) is exact while Eq. (12)
is a quite reasonable approximation that works fairly well in
the Coulomb blockade regime.

IV. NONINTERACTING CASE

Itis instructive to begin our discussion with the independent
particle approximation. This is easy to accomplish by setting
U =0 in Eq. (7). Thus, we obtain an integral equation that
depends on the dot Green’s function only,

d
Gy (1.1) = g, (1.1) + / G 1.9 )euc(s)es (5.

ds ds/g N , 13
+/E G, (15T g, (5. (13)

Importantly, we have changed our notation G — G in order to
distinguish between the Green’s function corresponding to the
the Coulomb Blockade regime (G) and that for noninteracting
electrons (G). This is done for later convenience since we will
show that interacting results can indeed be expressed using
noninteracting quantities.

A frequency expansion of Eq. (13) yields (we refer the
reader to Appendix B 1 for details)

1
& — & — Sac(t) - Eg/a(S),

Grlad (t,e) = (14a)

i
G/ W(t,e) = §a,eac(r>g:/“’f (t,6)3.G/ (t,6),  (14b)

G (te) = G2 (1,6) 35 ()G (1.8, (14c)
G; V(1) = a8 (1,065 (16)
+G;7(t,6)3.G57 (1.9)], (14d)

where the superscript “r/a” labels the retarded/advanced
Green’s function and the tunnel self-energies read 26/ “(e) =
Fill, X5(e) =2ilf(e). ' = m|Vk|?p is the hybridization
width, which we take as a constant parameter. This is a
good approximation when the tunnel probability |V;|*> and
the lead density of states p depend weakly on energy,
which is the experimentally relevant situation. f(e) = 1/[1 +
exp (¢ — Er)/kpT] denotes the Fermi-Dirac distribution with
Ef the lead Fermi level and T the base temperature.

We consider the spin-degenerate case (A = 0). Therefore,
the dot level fulfills

&y =& = &, (15)
and we can define a total dot occupation (n(t)){; as

(e () = (n () = (n@))] /2. (16)

Here, the subscript 0 means “noninteracting.” Using the
expressions for the noninteracting Green’s functions given by
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Egs. (14), the current and mean occupation implied by Eq. (5)
become

)Nl =2 / def(e)D(t,e), (17a)
1) = —2e f de[—0, f(e)]D(t,£)0,£4e(1), (17b)
(n(0)y = h f de[—d. f(e)ID(1,8)8,84c(1), (17¢)

1P(t) = eh f de[—0. f()10:[D*(1,)de0c(1)],  (17d)

where D(t,e) = D4(t,e) = D, (t,¢) is the density of states,
written as

1 r
Da(tvg) =

T [8 — & — 8ac(t)]2 + F2 . (18)

Equation (18) is a Breit-Wigner-like density of states which
instantaneously changes with time. This is a physically trans-
parent result—in the adiabatic regime the dot spectral function
is given by the stationary density of states replacing the dot
level gy with the instantaneous variation of the dot potential
as a function of time, i.e., &g — &9 + £4.(¢). In other words,
the electron adjusts its dynamics to the slow ac potential. As a
consequence, the frozen occupation [Eq. (17a)] is simply given
by the integral of the local density states convoluted with the
Fermi function. The next order in the 2 expansion [Eq. (17¢)]
depends on the derivative of ¢,.(¢), as it should. For small
frequencies, this is a small correction to the frozen occupation.
Finally, the capacitive and dissipative currents [Eqgs. (17b) and
(17d)] are just given by time derivatives of the frozen and the
first-order occupations, respectively. At very low temperatures,
the main contribution to both current contributions arises from
the electrons around the Fermi energy due to the —ad, f term
in the equations.

The total current Iy(t) = I(()l)(t) + Iéz)(t) is plotted in
Fig. 2(a) as a function of time for different ¢,, amplitudes. The
results are calculated for zero temperature and very small ac
frequencies. In the large amplitude case (green dashed-dotted
line), we observe a current peak (dip) in the first (second) half
cycle since in the first (second) half cycle an electron is ad-
sorbed (emitted) by the dot. This occurs when the ac modulated
dot level aligns with the Fermi level, ¢y + ¢, cos Qt = Ep
(hereafter we set Er = 0). The amplitude of the current peak
(dip) is proportional to &,., as shown in Eqgs. (17b) and (17d).
Therefore, the ac amplitude should be larger than I' for the
single-electron source to produce well defined current peaks.
This is within experimental reach since g,. >~ 100 peV [2]
and I' >~ 10 peV. On the other hand, the ac frequency should
be 72 =0.02T ~ 0.2 peV and the resulting current peak,
given in Fig. 2(a) in units of e€2, attains values of the order of
Iy >~ 0.3 nA, which is experimentally measurable.

At nonzero temperatures, the peaks broaden due to thermal
smearing [see Fig. 2(b)]. The reason is clear—for large
temperatures (larger than I') and fixed ac amplitude the current
pulse is distributed among electronic states within k5 7 around
the Fermi energy and the pulse is not sharply peaked as in the
kpT = 0 case. As a consequence, low temperatures smaller
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FIG. 2. Noninteracting charge current (up to second order in the
ac frequency) as a function time for different ac amplitudes (a) and
temperatures (b). Parameters: &g = 0,22 = 0.02T", (a) kT = 0, and
(b) 40 = 10T".

than 7 ~ 100 mK (= 8.62 peV) for I' ~ 10 pueV are needed
to observe single-electron injection into the Fermi sea.

Figure 3 shows the total current for a fixed ¢, as a function
of time (horizontal axis) and the dot level position (vertical
axis). The peak and dip found in Fig. 2 are also visible in
Fig. 3 within a value range of &,. The current resonances
shift with time in order to satisfy the resonant condition &y +
&ac €08 2t = Ep. Notably, for dot levels such that |gg| > |e,|

8
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4
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= 0 0 >
w 2
-4
-10
-8

0 0.5 1 1.5 2
Qt/m

FIG. 3. Noninteracting charge current (up to second order in the
ac frequency) as a function of dot energy level (vertical axis) and time
(horizontal). Parameters: ¢,. = 10I", A2 = 0.02T", and k3T = 0.
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FIG. 4. Differential capacitance (a) and differential resistance
(b) as a function of time for different ac amplitudes. Parameters:
g0 =0,hQ2 =0.02T", and kg T = 0.

the current is identically zero independently of time, since at
those energies the resonant condition is never met.

Now, using Egs. (6), (17b), and (17d) we derive the
following expressions for the differential capacitance and
resistance:

Cl(t) =2¢° / de(—d, f)D(1,¢), (19)

0 h fdg(_asf)at (’Dz(t’g)atgac(t))
Ra(t) = 47 s
e? [de(—0, f)D(t.¢) [de(—0; f),(D(t,6)d;£4c(1))
(20)

where the dot density of states D(¢,¢) is given by Eq. (18).
Clearly, Eq. (19) can be interpreted as an instantaneous
quantum capacitance. The physical meaning of the resistance
of Eq. (20) is less obvious. Only in linear response does Rg(t)
reduce to the charge relaxation resistance [40].

Figure 4(a) shows Cg(t) for three specific cases: g, = 0.1T
(solid black line), I' (dashed blue line) and 10I" (dotted red
line). In the first case, C} is nearly time independent and takes
on its maximum value as a constant times e?/ I". This occurs
because in the low ¢, limit the dot density of states has a
constant value for any time. As the ac amplitude increases, a
strong time dependence becomes apparent in terms of two well
defined peaks when the aforementioned resonant condition is
fulfilled. We observe that the minima of the dashed blue line
never reaches zero since for intermediate values of &, the dot
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energy level is close to Er and can therefore be populated.
In the strongly nonlinear case (dotted red line) the two peaks
become clearly resolved inasmuch as for large ¢,. the dot
level gets fully depopulated (populated) after electron emission
(injection).

In the linear regime (¢, — 0) and zero temperature the
quantum capacitance given by Eq. (19) takes a simpler
form, Cg = 2¢%D, which is time independent and provides
information about the dot density of states as we tune . In fact,
the static density of states becomes D = (I'/z)/[(EF — g0)* +
['?], i.e., a Lorentzian curve centered at Er with half-width T.
Hence, the value marked by the solid black line of Fig. 4(a)
is not universal and depends on the position of gy with
respect to Er [23]. In particular, for ¢g = 0 the capacitance is
Cg =2¢?/nT =~ 0.64¢*/ T as shown in Fig. 4(a). In contrast,
the resistance in the linear regime and for k37 = 0 is not
sample specific. Rg becomes time and energy independent
[see the solid black line of Fig. 4(b)], taking the universal
value Rg = h/4e®> = 0.25h/e> (we recall that we have two
independent channels, one per spin). This quantization of the
resistance was earlier predicted by Biittiker ef al. in 1993 [4]
and later demonstrated experimentally for the spin-polarized
case by Gabelli ef al. in 2006 [1]. This resistance can be also
connected with an instantaneous Joule law for the dissipated
heat in the reservoir [49,50].

GoI(t,6) = (1 — (ns (O))GE (1,6) + (ns () Gyl (t,8),
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Away from linear response [dashed blue line and dotted red
line in Fig. 4(b)], the resistance quickly deviates from the
quantized value and becomes both time and energy dependent.
With increasing &, Rg shows two peaks as a result of the
resonant condition but, unlike the capacitance, the resistance
peaks get higher and more broadened as the ac amplitude
increases. Therefore, the dissipation enhances as &,. grows,
which is naturally expected. The enhancement rate is, however,
nonlinear and not easily derived from Eq. (20).

V. COULOMB BLOCKADE REGIME

Our aim now is to include Coulomb repulsion between
electrons in the quantum dot and to investigate how the
noninteracting results discussed in the previous section change
in the presence of interactions. In the Coulomb blockade
regime, the charging energy is typically a large energy scale
in the problem and for small dots one has U > = T" [18]. We
start from the main results of the equation-of-motion method
[Egs. (7) and (12)]. The frequency expansion can be performed
after somewhat lengthy calculations detailed in Appendix B 2.
We find the frozen and dynamic (to leading order in €2) lesser
and retarded Green’s functions,

(21a)

G W(t,e) = {U ns)VGrL(t,8) + éatsmm[(l — (N3G (1,6) + (1 + U Gyl (1,6)) <n(-,<t>>fasg;;§<r,s)]}g;f (t.8),

G/ (te) = (1 — (ns )G (1,6) + (ns (D) G (1,8),

Gy M) = (ns()V(G57 (t.e) — G5 (1.0)) + éat‘gac(r)([l — (ns ) 1[G5 7 (1,6)3:G57 (1,8) + G/ (1,6)0:G;7 (1,6)]

+ (s () [G8 (1,6)3.G57 (1.6) + G (1,6)3.G,7 (1,6)]).

Here, we express the interacting Green’s functions (denoted
by G) in terms of the noninteracting Green’s functions
[denoted by G and explicitly written in Eqs. (14)]. We indicate
with the subscript U that Gy, is the noninteracting Green’s
function with the replacement g9 — &9 + U.

We focus on the nonmagnetic case as in Sec. IV.
Notably, we find that the interacting occupations derived
from Egs. (21c) and (21d) can be also connected with the
noninteracting densities of Egs. (17a) and (17¢):

2 (n(1)})
2+ () — (n(®)gy
() (2 — (n()Yy) + ()5, (n()}
2+ ()] — (n()y)?

(n()’ = (22)

()M =2

(23)

where the subscript U again designates the substitution gy —
&0 + U. From the latter equations we can immediately derive

(21b)
(21¢)
(21d)
{
the capacitive and dissipative currents,
10 = 2 1) (2 - (n(t))gu) + 15})(:)(;(;))5, o
2+ (@) — (n)y)
19(t) = €3, (n(1))", (25)

These are the central results of our paper. In particular, Eq. (24)
states that the leading-order current for interacting electrons is
given by a weighted sum of the noninteracting expressions
[Eq. (17b)] corresponding to two resonances, namely, &g
and &y + U. This finding is particularly appealing since it
anticipates the main transformation of the noninteracting
results—the current pulses, for moderate values of U, will split
into two separate peaks. We will now confirm our expectation
with exact numerical results.

Figure 5 shows the behavior of total charge current,
IO@) + I1P(r), as a function of time for gy =0, &4 =
10T, and different values of the charging energy U at zero
temperature. For U = 0 (solid black line) we reproduce the
curve from Fig. 2 for comparison with the nonzero U results.
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FIG. 5. Interacting charge current (Coulomb blockade regime)
as a function of time for different values of the charging energy U.
Parameters: gy = 0, g, = 10I", A2 = 0.02T", and k3T = 0.

Strikingly enough, for U = 4I" (dashed blue line) both the
peak and the dip split into two resonances each. Therefore,
we have rwo consecutive electron emissions (absorptions)
whenever g) and gy + U cross above (below) the lead Fermi
level thus satisfying the resonant condition. Furthermore, the
amplitude of each resonance becomes reduced as compared
with the noninteracting case. This can be understood if
one recalls that in the noninteracting case the dot level is
spin-degenerate while for interacting electrons each resonance
can be occupied with at most one electron due to Pauli
blocking. The splitting gradually increases as U is enhanced
[see the transition to the dotted red line (U = 8T") and the
dashed-dotted green line (U = 10I')] because the second
resonance shifts to higher (lower) times as compared with the
peak (dip) originally present for U = 0. This second resonance
decreases its amplitude until it vanishes for U > ¢,, = 10I"
(dashed-dotted orange curve). This effect can be explained if
we notice that the resonance &y + U never crosses the Fermi
level if U > &,.. In other words, the two resonances can be
occupied (at least partially) only if U < Efp + &4 — €o.

€o/T

-15

0 0.5 1 1.5
Qt/m

FIG. 6. Interacting charge current (Coulomb blockade regime) as
a function of the dot energy level (vertical axis) and time (horizonal
axis). Parameters: ¢, = 10I", U = 4I", k2 = 0.02T", and k3T = 0.
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FIG. 7. Charge (Coulomb blockade regime) as a function of the
ac amplitude g,.. Parameters: &g = 0, A2 = 0.02T", and kg T = 0.

In Fig. 6 we present the total current as a function of
time and the dot energy level position for a fixed charging
energy (U = 4I') and ac amplitude (g, = 10I"). We see clear
signatures of the peak splitting for a wide range of energy
levels since as we tune g the resonant condition is satisfied at
different times, as explained above.

Importantly, electron-electron interactions affect the charge
quantization in a mesoscopic capacitor. From the total charge
current we can obtain the charge Q emitted for a half of a
period in terms of the occupation:

/2
0= /0 dil(t) = e((n(t = 7/2)) — (n(t =0))), (26)

where T =27/ is the ac period and (n(r)) = (n(t))’ +
(n(1))! is the total occupation given by the sum of Egs. (22)
and (23) to lowest order in frequency. Figure 7 shows Q
as a function of the ac amplitude for different values of the
Coulomb strength, U. For U = 0 we recover a full charge
quantization at large values of the harmonic potential [40].
With increasing electron-electron interactions, a new plateau
emerges for intermediate values of &,.. This phenomenon
is exclusively due to Coulomb repulsion effects since when
U > T the dot energy level is split into two resonances, &g
and gy + U, which are occupied sequentially as &, grows. It
is worth noting that the transition between plateaus shifts to
larger values of energy as U increases because when U > ¢,
only the resonance at & is able to fulfill the resonant condition
and the second plateau ceases to be visible. Therefore, it is
crucial to take into account electron-electron interactions to
give precise predictions on the charge quantization amplitude
and its domain.

Let us turn now to the differential capacitance and resis-
tance. In Egs. (19) and (20) we obtained their full expressions
for noninteracting electrons. When interactions are present,
we should combine Eq. (6) together with Eqs. (24) and (25) to
arrive at the following relation:

CU)(2 = () y) + COn) i)}

Cy(t)y=2 - -
' 2+ ()] — (o))

27
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FIG. 8. Differential capacitance (a) differential resistance (b) as
a function of time for different values of the charging energy U.
Parameters: ¢g = 0, &, = 10I", and kzT = 0.

Remarkably, we again find the nice result that the Coulomb-
blockaded capacitance Cj(t) can be written in terms of a
weighted sum of noninteracting capacitances renormalized by
interactions. The weight factors depend themselves on shifted
occupations calculated in the absence [(n(t)){; ] and in the

presence [(n(t)){;U] of interactions. Nevertheless, the analytic
expression for the resistance is too lengthy to be included here.
For the numerical calculations we shall use the definition

Ry (1) A (28)
=e .
? Co(1)3,(Co(1)[3,€ac(1)])

In Fig. 8 we plot Egs. (27) and (28) as a function of time for
different Coulomb strengths. In the top panel [Fig. 8(a)], we
depict Cy(¢) in units of e?/T. As expected, the capacitance,
which mimics the instantaneous density of states, undergoes
a double splitting for finite charging energies (cf. the case
U = 0 showed in solid black line with the case U = 8I" in
dashed blue line). The four-peak structure arises from multiple
passings (upward and downward) of the resonances gy and
€0+ U across the Fermi energy. Our calculations predict
that four peaks (two in each half cycle) will appear in the
Coulomb blockade regime (U > ") and for sufficiently low
temperature. Further increase of U leads to a recovery of
the two peaks but with reduced amplitude. In general, for
energiesU > Ep + g, — &9 (Withgy > 0) the resonance lying
at &g + U is not able to fulfill the resonant condition and we

PHYSICAL REVIEW B 94, 165425 (2016)

recover the U = 0 case but with half-height peaks due to the
1/2 occupation (on average) of each spin level.

We show the differential resistance R; in Fig. 8(b).
Already for U =0 we find departures from the universal
charge relaxation resistance value h/4e?. These deviations
are stronger as U increases and lead to negative values of
R, for certain values of time. Therefore, we cannot identify
the product Cy Ry with a delay time since this interpretation
is physically meaningful in linear response only. In fact, at
some points the resistance diverges. Analogous resistance
divergences have been found in the thermoelectric transport
[37] but here the effect is purely electric. Equation (28) dictates
that the differential resistance is inversely proportional to the
derivative of the differential capacitance. As a consequence, R;
diverges whenever this derivative vanishes. This implies that
the resistance divergences are correlated with the maxima or
minima of Cj, as can be easily inferred from a close inspection
of Figs. 8(a) and 8(b).

A natural question is then whether the strong fluctuations of
the nonlinear resistance away from its quantized value persist
in the linear regime. To examine this, we take the limit e, — 0
in Egs. (27) and (28). We find for kg T = 0 the expressions

_ S f
¢, =42 W‘;") FDuliho 29)
(2 + (n)o — (")ov)
_ h D2 (n)gy) + Dy (n)g
8¢ (D(2 — (m)fy) + Dum)f)’
x (24 i — i) (30)

where D =T'/[(Er — &)> +T'?] and Dy = T'/[(EF — &0 —
U)? + I'?]. Interestingly, Eqs. (29) and (30) depend on the
mean frozen occupation. The capacitance is a weighted sum
of densities of states and will therefore show two peaks at
g0~ Ep and g9 ~ Er — U [see Fig. 9(a) where we depict
the capacitance as a function of the dot level]. Even in the
presence of interactions the capacitance can be traced back to
a spectroscopic measure of the dot spectral function. However,
the charge relaxation resistance is no longer constant as in
the noninteracting case. In Fig. 9(b) we observe a strong
energy dependence of R; with gy. Only when the dot level
is clearly off resonance (either ¢y > I' or ¢yp < I') do we
recover the universal value 4 /4e?. In both cases the reason
is clear—either for ¢, well above Ep or for a deep level
configuration, interactions play no role and the noninterating
result is restored. In the electron-hole symmetry point [gg =
(Er — U)/2] the system behaves effectively as a single-
channel conductor because the occupation per spin is 1/2.
For dot energies in between the electron-hole symmetry point
and the off-resonant situation, the charge relaxation resistance
acquires its maximum value, which is sample-dependent.
We attribute this resistance increase to the maximal charge
fluctuations that operate around the point gy >~ —I" and its
symmetric counterpart &g >~ U — I". We notice that significant
enhancements of R; have been previously reported in the
literature for interacting RC circuits [31,32].
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FIG. 9. Quantum capacitance (a) and charge relaxation resistance
resistance (b) as a function of dot energy level in the linear regime,
€sc — 0, and for interacting electrons in the Coulomb-blockade
regime. Parameters: U = 10I" and k3T = 0.

VI. CONCLUSIONS

In summary, we have investigated Coulomb blockade
effects in a coherent source of single electrons driven by a
monochromatic excitation. Using a nonequilibrium Green’s
function approach valid for arbitrarily large amplitudes of the
ac potential, we have found that the current peaks associated to
electron emission and absorption become split in the Coulomb
blockade regime. The effect is particularly intense for the
emitted charge, with additional quantization steps as a function
of the ac forcing. Our model is capable of describing the
noninteracting case (U = 0) up to strong interactions (U —
o0) within the Coulomb blockade regime. While for U = 0 our
theory produces two-electron or two-hole pulses, for U — 0o
our model predicts single-electron or single-hole pulses. For
intermediate values of U one may have two single-electron or
single-hole pulses separated in time. Our model system is a
mesoscopic capacitor but our results are equally relevant for
different single-electron sources such as those formed with
dopant atoms in silicon [51-53] or dots embedded in coplanar
cavities [54-57].

Further investigations should address the role of cotunnel-
ing processes which are dominant in the Coulomb blockade
valley at temperatures kg T < I". One possibility is to relax the
conditions given by Egs. (9) and (11) and to make a step further
in the equation-of-motion hierarchy. In particular, spin-flip
cotunneling processes would lead to Kondo correlations that
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would alter the picture discussed here. In general, we expect
the minimum between current peaks (dips) to rise (lower) due
to the buildup of a many-body Kondo resonance pinned at
the Fermi energy. An additional peak should then appear in
the quantum capacitance since it is proportional to the local
density of states. However, a new energy scale (kgTx with
Tx the Kondo temperature) would arise and a more careful
analysis should be carried out.

Another assumption of our model is the spin degeneracy in
both the dot level and the coupled reservoir [cf. Eq. (15)].
Introducing a Zeeman splitting A, would lead to extra
splittings that would compete with the existing ones depending
on the strength of Az as compared with I', U and kpT. We
note that the original experiments by Feve et al. [2] applied a
strong magnetic field that drove the system into the quantum
Hall regime. Moreover, the dot coupled to a gate with a large
capacitance and charging effects were then negligible. To test
our predictions, we would need a smaller dot in the absence
of magnetic fields (or with Zeeman fields smaller than the
characteristic energy scales).

Finally, we have focused on the adiabatic regime (low
frequencies). This approximation is valid if one is interested in
the capacitance and the charge relaxation resistance. Arbitrary
frequencies are beyond the scope of the present work but
are certainly interesting (for U = O see, e.g., Refs. [58,59]).
In fact, for larger frequencies (larger than the GHz scale
considered in this work) photon-assisted tunneling takes place
[60,61] and our frequency expansion breaks down. It would
be highly desirable to take into account large frequencies and
amplitudes in a unified framework for the purely ac transport
of electrons in nanostructures.
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APPENDIX A: FOURIER TRANSFORM AND MIXED
TIME-ENERGY REPRESENTATION

The double Fourier transformation and its inverse are
defined as

de _, . ,
g(l,l/) — } :/ 5 e—t(8+mh§2)t/hel(8+nhﬂ)t /hg(m o }’l,Sn),
g

| (A1)
Ydr (dt ; )
g(m _ }’l,Sn)Z ?/?et(8+mh§2)t/hefl(s+nhﬂ)t /hg(t,l‘/),
0
(A2)

where m and n are intergers, T = 27/ is the ac period,
and ¢, = ¢ + nhS2. Notice that only the states whose energies
differ by interger times /£2 can be coupled. It is convenient to
employ the mixed time-energy representation

Gt.e)=> e "¥G(n,e). (A3)
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The Fourier transform can then be written in the form

d : ’

Gt = [ Soe i) (A4
2

and the corresponding inverse Fourier transforms are given by

dt’ ew—iyingg, o

g(t,e) = 76 g1, (AS)

tdt
Gn,e) = / —e"G(1,), (A6)

o T

respectively.

APPENDIX B: FREQUENCY EXPANSION
We begin by applying the double Fourier transform Eq. (A2) to Eqgs. (7) and (12):

Go(n.e) = g,(1.8) + Y _ Go(n — p.ep)[eacg, 1(p:8) + Y _ Goln — p.£)To(p — 4.84)8,(q.€)

p p.q
+U Y ({do,dins))(n — p,e,)g, (p.e), (B1)
P
((dydins))(n,6) = [(n5)g,100,6) + Y_((dy,dns))(n = p,p)Eace, ()
P
+ D Ao, ding))(n = p.ep)o(p — 4.60)2,(q,6) + U Y_{(do,dins))(n — p.ep)g, (p.e).  (B2)
p.q p

The retarded/advanced and lesser Green’s functions then follow from Eqgs. (B1) and (B2) by applying the Langreth’s rules
[42].

1. Noninteracting case

In the noninteracting case, we set U = 0 and therefore ((d(,,d;n(—,))(n,e) in Egs. (B1) and (B2) is neglected.

a. Retarded and advanced Green’s function

The retarded/advanced dot Green’s function is given by

Gl n.e) = g/ (ne) + Y G5/ = p.ep)[eacedJ(p.e) + Y G/ — p.ep) Ty (p — q.60)2(q.€) (B3)
p p.q
with
r/a(p,6) = o r/a(g) (B4a)
B e —e, £i0r 08 (&)
S0 m — n,6) = Fidmal(En) = Smn Ty (), (B4b)
&
[eacg“1(n,8) = %(8,“ + 8,102/ (o), (Bdc)

where I'(s,,) = 27| Vi|*p(e,) and p(e,) = > 8(e, — &) is the reservoir density of states.
Introducing Eq. (B4) into Eq. (B3), we find

SGC

Gy/“ne) = | uo + = > Gl — pep) |9, (B3)

p==£1
where
1

—a (B6)
£—¢&; — Xy (&)

grl(e) =
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We now expand in powers of hS2,
G(n = p.ey) = G (n = p.e) + hQpd.G' (n — p.e) + GV — p.e)) + -+, (B7)

and substitute it in Eq. (B5) to find

o/ (n,e) = [ 800 + % Y Gl —p.e) | %), B8
p==£l1
Gr/*O(n,e) = % Y (P3G (= p.e) + G/ Vn — p.e) %/ o). B9

p==1

Using Eq. (A3) and taking into account the wide band limit I'(¢) = I", which is a good approximation for reservoirs with flat
densities of states, we arrive at Eqs. (14a) and (14b) of the main text.

b. Lesser Green’s function

The lesser Green’s function for the quantum dot electrons can be obtained as

g;(nag) = 5n,0g;(na€) + Z (g;(n - p78p)[sacg;](pa8) + g:(” - P’Ep)[??acg(ay](l’,??))
P

+ Z (g;(l’l - pvgp)z(};(p - qﬁgt])g;(qsé‘) + g:;(n - p78p)20<(p - qvgq)g:;(qsg)
P-q

+G;(n — p.ep)EG(p — 4.60)85(q,8)), (B10)
where
g5 (n,e) = 2mid, 08(e — &5) f(&5) = 8n,085 (&), (B11a)
E()<(m - n98n) = 21.5,;1,”1—‘(8")]“(8,1) = 8m,112()<(8n)7 (Bllb)
Eac <
[eacg; 1(n.e) = 7(5,1,1 + 8, —1)g; (&). (Bllc)

Introducing Egs. (B4) and (B11) into Eq. (B10) and using gf;’l(s)gg (¢) = 0 we find
< Eac < r < a
Go(n,e) = > Z G,y (n— p,ep)+ G (n,6)55(e) |9, (e). (B12)
p==1

This is the starting point for a series expansion in powers of 2. The procedure is analogous to Eq. (B7). Then, the frozen and
first order terms in 2 become, respectively,

G o) =[5 Y G5 0 = pe) + Gy ()T (e) | o), (B13)
p==£1
Gy Dne) = 87 Y (P3G (n = p.e)+ GV — p.e)) + Gy V(n.6) 55 () | o), (B14)
p==1

As discussed earlier, we can again use Eq. (A3) and consider the wide band limit, which leads to Eqs. (14c) and (14d).

2. Interacting case (Coulomb blockade regime)

In order to describe the Coulomb blockade regime, we consider the nonzero U case. Hence, Eq. (B2) must be taken into
account.
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a. Retarded and advanced Green’s function

The retarded/advanced Green’s functions are simply derived from Eq. (B1) and (B2), yielding

G/(n.e) = g/"(n.e) + Z G — p.ep)eacg))(p.6) + D G — p.e) Sy (p — q.60)8(q.€)

P9
+ U ((dy.ding))""(n — p.ep)g/*(p.e). (B15)
P
((dydins))""(n,6) = [(ns)g/)(n.6) + Y ((dodns))""(n — p.&p)[€acey*] ()
p
+ Y (doding)) " (n = p.e) Ty (p — .62/ (q.6) + U Y _({dydlng))"(n — p.e,)gl " (p.e),
p.q p
(B16)
with
[(ns)g/“](n.6) = (n5), 27" ), (B17)
where we have used the Fourier expansion
(ns () =Y (ng),e ", (B18)
We substitute Egs. (B4) and (B17) into Egs. (B15) and (B16) and find
G/(ne) = | 8u0+ 7 Y Gl — p.gy) + Ullds,ding))" (n,)g)* (&) | 5/ (e), (B19)
p==1
((dy,dins))""(ne) = | (ns), + 87 > Udoding)y " (n — p.ey) |95/ — U, (B20)
p==%l1

where &,/ is given by (B6). The solution has poles at ¢, and &, + U such that it properly describes the Coulomb blockade.
Let us now expand in powers of 7€2. The expansion is based upon Eq. (B7), which leads to

Eac -
G/ (n,e) = | 80 + > > G — p.e) + Ulldy.ding )" (n.e) |91/ @), (B21)
p==1
G/* D (n,e) = % D (P0G (n = p.&)+ G V(n = p.&)] + Ulldodins))" Vn.e) |47 (o), (B22)
p==l

where

(doding))"*! (n,e) = | (no)] + 2

5 D Mdoding)) ' (= p.e) | /e — U), (B23)

p==1

(do-dfng)) " Vin.e) = | (1)) + 5= 37 [p2((do-ding))/* (0 = po&) + ((drdfna)) "V = p.e)] |45/ = ).
p==l
(B24)

Expressing Eqs. (B21) and (B22) in the mixed time-energy representation leads to Eqgs. (21a) and Egs. (21b).

b. Lesser Green’s function

Applying Langreth’s rules again, the lesser Green’s functions become

G5 (n.8) = 8,085 (.8) + Y _ (Gh(n — p.&p)leacgs [(p.e) + G5 (n — p.ep)[eacgs|(p.e))

p

+U Z ((do-dlns)) (1 = poep)es (poe) + ((doding))~(n — p.e,)gt (p.e)
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+ Y (Gon— p.ep)Z(p — 469025 (q.8) + Gh(n — p.e,)E5 (P — q.84)82(q.)

p.q

+ G;(i’l - pagp)z(()l(p - qvgq)gg(q’g))v

(B25)

(dy.dins))s (n.6) = [(ns)g5 n.8) + Y (({do.dins))y(n = poep)eacgs (p.€) + ((do-ding)) 5 (n = pep)[eacgs](p.e))
P

+U Y ((do.dins)) (n — p.ey)gs (p.e) + ({do.dins))=(n — p.e,)gs(p.e))

P
+ D (((dodins))p(n = pep)Z4(p — 4,805 () + ({dy,dins)) o (0 — g5 (P — 4,64)25(q.8)
p.q

+ ({dy.dins)) 5 (n — pep) TP — 4.8)22(q.8)).

with

Inserting Eqs. (B4), (B11), and (B27) into Egs. (B25) and (B26), and recalling that gg‘l(s)gj(s) =0, we get

p==%l1

p==%l1

The expansion in 2 yields

Sac

(B26)

[(ns)gs 1(n.e) = (ns),g; (€). (B27)

Gi(ne) = 87 D Gy — p.ep)+ Ulldy.ding))~(n.e) + Gl (n,e) %5 (e) | Fe (o), (B28)
((dydfns)); (n,6) = 87 D Udoding))s(n = poep) + ((do,ding)), (n,6) 25 (e) |92 (e — U). (B29)
(B30)

Gyl o)== D G5l (n = p.e) + Ulldo ding)); 7 (n,0) + Gol (n,0)%5 (e) | G2,

p==%l1

G;V(n,e) =
2 p==%l1

and

SllL‘

(doding));(ne) = | 5= 3 Wdoding)); (1 = &) + {(do d]na))5! (n,8) 25 (0) | % (e = U),

p=%£1

({do,dlns)) s V(n,e) = | ({dy,dins))2V(n,e)E5(e) + 87

x e —U).
Equations (21c) and (21d) then follow easily.

G2V (n,e) 25 () + < Y [p3:G5 (= p.e)+ GV = p.e)] + Ulldedins)) 5 Vln.e) |92 (), (B31)

(B32)

> [Po:lldsdins)) s (n — p.e) + ({dy.dins)); Vn — p.e)]
p==1

(B33)
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