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3He on preplated graphite
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By using the diffusion Monte Carlo method, we obtained the full phase diagram of 3He on top of graphite
preplated with a solid layer of 4He. All the 4He atoms of the substrate were explicitly considered and allowed to

move during the simulation. We found that the ground state is a liquid of density 0.007 ± 0.001 Å
−2

, in good
agreement with available experimental data. This is significantly different from the case of 3He on clean graphite,
in which both theory and experiment agree on the existence of a gas-liquid transition at low densities. Upon an
increase in 3He density, we predict a first-order phase transition between a dense liquid and a registered 7/12
phase, the 4/7 phase being found metastable in our calculations. At larger second-layer densities, a final transition
is produced to an incommensurate triangular phase.
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I. INTRODUCTION

Recent heat-capacity studies of 3He on graphite [1–3], both
clean and preplated, have reopened the interest on the phase
diagram of this quasi-two dimensional (quasi-2D) system.
In essence, those results confirm a previous hint about the
existence of a stable 3He liquid at very low densities [4] and
are the continuation of a wealth of experimental work on this
quantum fluid [2,5–12]. On clean graphite, the introduction of
corrugation in the theoretical description of the surface [13,14]
proved to be the necessary ingredient to produce a good match
between those calculations and the experimental results of Sato
et al. [2] that indicated the existence of a gas-liquid transition
at very low densities. When flat substrates were considered,
no liquid was found to be stable in most calculations [15–20],
but not in all of them [21].

When 3He is adsorbed on 4He-preplated graphite, the
experimental data of Ref. [2] shows a linear dependence of
the heat capacity versus the second layer density in the range

ρ ∼ 0–0.007 Å
−2

. This suggests that the ground state of that
3He monolayer is a homogeneous liquid with a density fixed
by the upper bound of the interval. For a smaller number of
atoms on the same surface, the system is fragmented in drops of

0.007 Å
−2

with enough empty space between them to produce
the average 2D helium concentration we consider. This is
different from what happens in the first layer adsorbed directly

on graphite [2,13,14] in which there is a gas of ∼0.006 Å
−2

in equilibrium with a liquid of ∼0.014 Å
−2

. In this second

case, what we have are drops of density 0.014 Å
−2

surrounded

by a gas of 0.006 Å
−2

in the right proportions to produce any

density in that range. When ρ is above 0.007 and 0.014 Å
−2

for
the second and first layers, respectively, we have homogeneous
liquids covering all the surface.

In this work, we calculate the complete phase diagram of
3He on 4He preplated graphite, including the high density solid
region. Given the importance of considering corrugation in
the description of the bare substrate, we considered explicitly
all the 4He atoms on the first layer, allowing them to
move during the simulations. This means that there can be

deviations between the actual positions of those atoms and
their corresponding crystallographical sites. That produced
larger error bars in the statistical sampling than in the case
of a flat surface, but it was found to be necessary to reproduce
the experimental results, both in the low and high density
regimes.

The rest of the paper is organized as follows. In Sec. II,
we discuss the quantum Monte Carlo method used for the
simulations and account for the interaction models and trial
wave functions used as importance sampling. The obtained
results and their comparison with experimental data are
reported in Sec. III. Finally, Sec. IV comprises the main
conclusions of the paper.

II. METHOD

We rely on a microscopic approach to the physical problem
of a second layer of 3He atoms adsorbed on 4He-preplated
graphite. The Hamiltonian is written as

H = − �
2

2m4

N4∑
i=1

∇2
i − �

2

2m3

N3∑
i=1

∇2
i

+
N∑

i=1

Vext(ri) +
N∑

i<j

V (rij ) , (1)

where N3 and N4 are the number of 3He and 4He atoms (N =
N3 + N4), of masses m3 and m4, respectively. Vext(r) is the
total interaction of each helium atom at position r with all the
carbon atoms in the graphite substrate. This term is made up of
a sum of individual C-He interactions, each of them modeled
by the anisotropic Carlos-Cole potential [22,23], even though
no influence of the C-He anisotropy is expected in the behavior
of the second layer, as has been already proved for a second
layer of 4He on the same substrate [23]. As in previous works,
the substrate structure was modeled by a stack of honeycomb
2D lattices separated by 3.35 Å in the typical A-B-A-B graphite
disposition [24–26]. V (r) is the standard Aziz potential for the
helium-helium interaction [27] of two atoms separated by a
distance r .
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We considered unpolarized 3He, i.e., N↑ = N↓ = N3/2.
To solve the N -body Schrödinger equation corresponding to
the Hamiltonian of Eq. (1), we used the fixed-node diffusion
Monte Carlo (FN-DMC) method. This stochastic technique
solves the Schrödinger equation in imaginary time, providing
the exact energy for the ground state of a Bose system and
an upper bound for a Fermi one [28]. This means that our
results are only strictly valid at 0 K. Our system consists of a
mixture of bosons (4He) and fermions (3He), and thus we get
an upper bound to the exact energy whose quality depends on
the proximity of the nodal surface of the trial wave function
(used for importance sampling) to the (unknown) exact one.
Our trial wave function was

�(r1,r2, . . . ,rN ) = �3
(
r1,r2, . . . ,rN3 )

×�4
(
rN3+1,rN3+2, . . . ,rN

)
(2)

with r1,r2, . . . ,rN3 the coordinates of the N3
3He atoms in

the second layer, and rN3+1,rN3+2, . . . ,rN the ones for the
N4 remaining 4He atoms in the first layer, in direct contact
with graphite. This means that, by construction, the two
helium layers are separated from each other, what we think a
reasonable approximation in light of the available experimental
results. Following Ref. [14], we defined

�3
(
r1,r2, . . . ,rN3

) = D↑D↓
N3∏
i

u3(ri)

×
N3∏
i<j

exp

[
−1

2

(
b3

rij

)5
]
, (3)

where D↑ and D↓ are the Slater determinants of the two-
dimensional system defined by our simulation cell that depend
on the coordinates of the spin-up and spin-down 3He fermions.
The one-body function u3(r) is the numerical solution of
the Schrödinger equation that describes a single 3He atom
on top of a triangular lattice formed by 4He atoms located
in the crystallographic positions (xsite,ysite) corresponding to
an incommensurate triangular phase. To solve this equation,
we used the same technique as in Ref. [14] and neglected
the influence of the underlying graphite structure. In the
present work, we used two triangular 4He lattices at different

densities: 0.112 Å
−2

(corresponding to a separation of 3.2 Å)

and 0.12 Å
−2

(with a He-He lattice constant of 3.1 Å). The
first density corresponds to the 4He promotion to the second
layer [11,29], while the latter is the upper experimental limit
given in Ref. [2], a limit slightly larger than the one given

in Ref. [11] (ρ ∼ 0.116 Å
−2

). The parameter b3 in Eq. (3) is
variationally optimized; its value is set to b3 = 2.96 Å, as in
Refs. [14,19]. The coordinates in the Slater determinants were
corrected by backflow terms in the standard way,

x̃i = xi + λ
∑
j �=i

exp[−(rij − rb)2/ω2](xi − xj ) (4)

ỹi = yi + λ
∑
j �=i

exp[−(rij − rb)2/ω2](yi − yj ). (5)

The optimal values for the parameters in the backflow term
were those of the bulk three-dimensional system [30], i.e.,

λ = 0.35, ω = 1.38 Å, and rb = 1.89 Å, since they were
proved to give lower energies [14] that those corresponding
to a pure 2D system [19].

The part of the trial wave function corresponding to the first
4He layer is taken as

�4
(
rN3+1,rN3+2, . . . ,rN

)
=

N4∏
i

u4(ri)
N4∏
i<j

exp

[
−1

2

(
b4

rij

)5
]

×
N4∏
i

exp{−a4[(xi − xsite)2 + (yi − ysite)2]}. (6)

The last (Nosanov) term in the equation pines the atoms around
their crystallographic positions. The free parameters in �4 are:
b4 = 3.07 Å (as in Refs. [24,29]), and a4 has the same value
as that in a previous study of the second layer of 4He on 4He

(0.55 Å
−2

) [29]. As before, u4(ri) is the numerical solution of
the one-body Schrödinger equation for one 4He atom on top
of graphite.

Equation (2) defines adequately the 3He layer when it is a
liquid or a gas. If this is not so, we have to introduce a Nosanov
term to confine the 3He atoms,∏

i

exp{−a3[(xi − xsite)2 + (yi − ysite)2]} , (7)

in which we used the same a3 parameter for all the solid phases

and densities (a3 = 0.24 Å
−2

). [14] We checked that neither
an increase or a decrease of up to 50% in a3 varies the stability
ranges of the solids described. The trial wave function (2) is
factorized in a term depending only on the 3He coordinates and
another only on the 4He ones. Simulations including a Jastrow
term relating atoms in both layers produced no significant
change in the obtained results.

III. RESULTS

In Fig. 1 we show the FN-DMC results for the energy per
3He atom as a function of the second-layer density. The upper
(lower) curve corresponds to a fixed first-layer density of 0.112

(0.12) Å
−2

. We chose those densities as lower and upper limits
to the magnitude at hand and used these two set of simulations
to test the effect of a possible compression of the 4He solid
structure upon an increase of the number of 3He atoms on top
of it. The curves displayed are third-order degree polynomials
obtained by least-squares fitting to the shown data.

From those fits, we can state that the energy per 3He atom
on 4He-preplated graphite in the infinite dilution limit, E0,
is −24.45 ± 0.04 K in the first case and −24.74 ± 0.07 K
for the denser preplating, values much smaller in absolute
value than the same magnitude for 3He on bare graphite,
−135.771 ± 0.001 K [14]. In both cases, we used a simulation
cell that comprised 14 × 8 incommensurate triangular lattice
cells. Those rectangular unit cells contain two 4He atoms and
have a surface dHe × √

3dHe, dHe being the distance between
two atoms in the first layer. This means that for the upper curve

the simulation cell was 44.8 × 44.34 Å
2
, and for the lower one,

43.4 × 42.95 Å
2
. In both cases, that means 224 4He atoms on
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FIG. 1. Energy per 3He atom (E/N ) on the second layer of 3He
on graphite as a function of the second-layer density. Upper curve,

underlying 4He density 0.112 Å
−2

; lower curve, first layer density

0.12 Å
−2

). The curves are third-order polynomial fits to the data
displayed.

the lower layer and enough 3He atoms to produce the densities
shown. This means up to 102 3He atoms in the case of the
second-layer liquids discussed below. In all the simulations,
standard finite-size corrections to the fermionic wave function
were applied. As indicated in the preceding section, all the
4He atoms on the first layer were allowed to move during the
simulations, i.e., we solve the full Hamiltonian (1).

Our results, reported in Fig. 1, show the second layer is
a liquid, since in both cases we have self-bound structures

of densities 0.007 ± 0.001 Å
−2

(upper curve) and 0.017 ±
0.001 Å

−2
(lower one). Those values were obtained from

the fits displayed. Different from the first layer on bare
graphite structure, no gas-liquid transition was found. To our
knowledge, the only experimental set of available data to
compare our results to are those of Ref. [2]. As indicated above,
at very low densities, the experimental heat capacity depends

linearly on the second layer density in the range 0–0.007 Å
−2

.
This would indicate a phase separation between a clean surface

and a homogeneous liquid of 0.007 Å
−2

. This is exactly what
can be deduced from the upper curve of Fig. 1. From that,
we can conclude that a model with a preplated density of

0.112 Å
−2

is a good description of the experimental setup.
Our results are different from the results of a previous

theoretical calculation on this same system [13]. In that work,
the authors found a gas-liquid transition of the same type as
the one for the first layer on bare graphite. To explain that
discrepancy, we use the results displayed in Fig. 2. There,
the lower set of data is the one in the previous figure after
having subtracted the energy in the infinity dilution limit,
E0. On the other hand, the open circles correspond to a
calculation in which the effect of the first 4He layer and the
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FIG. 2. Same as in the previous figure, but after subtracting the
infinite dilution limit energies (E0’s). Lower open squares with error
bars, our simulation results for 3He on top of an active first 4He layer;
upper full squares without error bars, same but for a fixed 4He layer
with atoms located in their crystallographic positions; open circles,
results for a second 3He layer on a first averaged over potential. The
lower line corresponds to the same third-order polynomial fit of the
previous figure, and the upper one, to the pure 2D result of Ref. [19].

graphite surface below it have been described by a laterally
z-averaged potential, something similar to the description
made in Ref. [13]. In this flat case, E0 = −26.313 ± 0.001 K.
Even though the results in Ref. [13] are not exactly the same
as the ones in Fig. 2 since the helium-helium potentials are
slightly different, both sets of data look pretty similar to each
other. At the same time, both of them are noticeably different
from the simulations made with the full Hamiltonian (1). The
error bars of those results are of the size of the symbols and
not displayed for simplicity.

The missing ingredient is the corrugation of the 4He
substrate, as in the bare graphite case. To check that, we
repeated our calculations but without allowing the movement
of the 4He atoms in the first layer. What we see is that
those results are within the (rather large) error bars of those
corresponding to the full 4He-moving calculation and present
a minimum at approximately the same density. In our opinion,
this indicates that the introduction of a 3He effective mass,
used in the Ref. [13] calculations, is not enough to compensate
for the use of a z-averaged potential. The error bars of these
last results are comparable, though somewhat smaller than the
ones for the full calculation, and again were not displayed for
simplicity.

Figure 3 shows the high density end of the T = 0 isotherm

for a 0.112 Å
−2

underlying density. There, we have displayed
the energies per 3He atom corresponding to a liquid phase
(full squares), incommensurate triangular solid (open squares),
and two standard commensurate structures on second-layer-
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FIG. 3. Energy per 3He atom (E/N ) on the second layer of helium

on graphite on top of a 0.112 Å
−2 4He layer, as a function of the

inverse of the second layer density. Solid squares, liquid phase; open
squares, triangular incommensurate structure; full circle, 7/12 phase;
open circle, 4/7 commensurate solid. Solid lines are mere guides to
the eye. Dotted lines correspond to Maxwell constructions between
the different stable phases.

helium structures: 4/7 (open circle), and 7/12 (full circle). By
a simple inspection, we can see that there is practically no
difference between the energies of the 4/7 lattice, of density

0.064 Å
−2

, and that of an incommensurate triangular structure
of the same density. In addition, the energy per particle of a
7/12 structure is lower than both the one corresponding to
the 4/7 commensurate solid and that of the incommensurate

arrangement of equal density (0.066 Å
−2

). This means that
we can draw a double-tangent Maxwell construction line that

starts in a liquid of density 0.047 ± 0.002 Å
−2

and ends in the
energy corresponding to that 7/12 structure, i.e., those phases
are in equilibrium with each other. When the density increases
further, another Maxwell construction shows that the 7/12
solid is in equilibrium with an incommensurate triangular one

of density 0.072 ± 0.004 Å
−2

that is probably stable up to the
third layer promotion.

In the same way as before, to check for the influence of
the first layer density on the phase diagram of the second
layer, we performed another series of calculations for a 4He

density of 0.12 Å
−2

. The results are displayed in Fig. 4,
where the symbols and lines have the same meaning as in
the previous figure. The main differences are the densities
at which the different transitions are produced: The liquid is

now stable up to 0.054 ± 0.002 Å
−2

, and it is in equilibrium

with a 7/12 commensurate solid of 0.070 Å
−2

that undergoes
a first-order phase transition to a triangular solid of ρ =
0.074 ± 0.002 Å

−2
. If, as suggested in Ref. [11], the density of

the first 4He layer in a real setup is between those considered
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FIG. 4. Same as in the previous figure, but for a 4He density of

0.12 Å
−2

.

here, one would expect density limits for the stable phases in
between those reported for the two sets of simulation results.

With that in mind, we can say that our results compare
favorably with the available experimental data. In particular,
a solid is found for second layer densities larger than [10]

0.072 Å
−2

, a density which is well within the error bars of our
results in both series of simulation data. This would correspond
to the lower stability limit of the triangular phase. In addition,
magnetization [31] and heat-capacity [9] measurements on a
double 3He layer give a solid-solid transition region similar
to the one that we see from a commensurate structure to the
lower density for which the incommensurate phase is stable

(total density in the range 0.179 and 0.185 Å
−2

). However, even
though those data are close to our results, they are not directly
comparable to them, since it is well known that the density of
the first layer of the system 3He/3He/graphite is ∼5% smaller
than the 3He/4He/graphite one [32]. Finally, the experimental
upper second layer density for a liquid in equilibrium with the
commensurate phase (7/12 in our case, but 4/7 in virtually

all the previous literature) is [11] 0.058 ± 0.005 Å
−2

. This is

comparable to our 0.12 Å
−2

result, which would support a
compression of the first layer upon population of the first one.

IV. DISCUSSION

In this work, we have calculated the complete phase
diagram of a 3He layer on top of 4He-preplated graphite at
0 K. The main difference with previous theoretical approaches
is that we have considered a full three-dimensional system
and allowed the 4He atoms of the first layer to move. This
produces a low-density phase diagram that is appreciably
different from that for a flat [19] or z-averaged [13] substrate.
This result is not surprising, since corrugation [33,34] and
disorder [29,35] have been found to be important in double
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layer 4He simulations. However, the fact that our results are
comparable to the experimental data of Ref. [2] confirms the
quality of our approximations. The rest of the phase diagram is
pretty close to the experimental data, with phases and stability
ranges that are in good agreement each other.

However, there is a significant difference. The commen-
surate phase that we found to be in equilibrium with the
dense liquid and the triangular solid is a 7/12, not the 4/7,
as it appears in the literature. To try to understand this,
we should have in mind that the difference in densities
between those two phases is very small (∼3%, expressed as
density of the second layer only). This means that it could be
experimentally difficult to distinguish them, especially taking

into account that the first layer densities can vary. On the other
hand, our Hamiltonian does not include any ferromagnetic or
antiferromagnetic spin-spin interaction, something that could
be important and eventually change the relative stability of the
4/7 and 7/12 phases.
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