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Dynamical charge and pseudospin currents in graphene and possible Cooper pair formation
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Based on the quantum kinetic equations for systems with SU(2) structure, regularization-free density and
pseudospin currents are calculated in graphene realized as the infinite-mass limit of electrons with quadratic
dispersion and a proper spin-orbit coupling. Correspondingly the currents possess no quasiparticle part but only
anomalous parts. The intraband and interband conductivities are discussed with respect to magnetic fields and
magnetic domain puddles. It is found that the magnetic field and mean field of domains can be represented by an
effective Zeeman field. For large Zeeman fields the dynamical conductivities become independent of the density
and are universal in this sense. The different limits of vanishing density, relaxation, frequency, and Zeeman
field are not interchangeable. The optical conductivity agrees well with the experimental values using screened
impurity scattering and an effective Zeeman field. The universal value of Hall conductivity is shown to be
modified due to the Zeeman field. The pseudospin current reveals an anomaly since a quasiparticle part appears
though it vanishes for particle currents. The density and pseudospin response functions to an external electric
field are calculated and the dielectric function is discussed with respect to collective excitations. A frequency and
wave-vector range is identified where the dielectric function changes sign and the repulsive Coulomb potential
becomes effectively attractive allowing Cooper pairing.
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I. INTRODUCTION

Graphene has been the topic of tremendous theoretical
activity with many complete reviews published [1-3]. The
question is what one might find new besides these many
excellent investigations. In order to provide a systematic
approach allowing successively better approximation, one aim
is to describe all transport properties and excitation properties
with the help of a single theoretical method which here will
be the quantum kinetic theory. Another goal is to explore
new branches of excitations which might not be treated yet.
Here it will be presented a quantum kinetic approach to
these transport properties including magnetic fields and mean
fields due to magnetic domains. The range of parameters is
explored where the effective Coulomb interaction between
the electrons in graphene might change the sign. This al-
lows us to pair the electrons as a necessary condition for
superconductivity.

In graphene the chiral nature of the charge carriers leads to
a minimal finite conductivity even with a vanishing density of
scatterers. If there are no charge carriers the field has to create
first electron-hole pairs before they can be accelerated. Since
the absolute value of the velocity is fixed, only the direction
can change which provides an anomaly transport [4]. This
remarkable feature of dissipation in an even ideal crystal is
reached in various limiting procedures. The static limit and
vanishing relaxation rate are not interchangeable as it was
noted [5]. If one first takes the static limit and then the collision
free limit one obtains

2

which agrees within 1%—-2% with experiments [6—8] taking
into account the valley degeneracy g = 4. Sample-dependent
prefactors [9] have been attributed to inhomogeneous charge
distributions around the Dirac point [10]. Twice o7 is obtained
if one takes the limit w = A/t [11,12].

This different limiting values have provoked many the-
oretical investigations [3]. Both results have been obtained
by Kubo formula approaches depending on the order of
limits performed. In [13] the result o, was obtained with the
factor of 2 for bilayer graphene and the result for multilayer
graphene was given in [14]. In [15] the minimal conductivity
was analyzed with respect to long- and short-range scatterers
and differing measurements are explained by the dominance
of either of these scatterers. The density matrix approach
[16] discusses the parallels between steady states reached
in graphene and the precession motion in spin-orbit coupled
systems. The surface state of a topological insulator with the
effective Hamiltonian Dp? + AG - p has been treated in [17]
where the limit D — 0 leads to the correct result. It is argued
that the transition between both regimes is due to low and high
density limits. We will use the limit of infinite mass to extract
the specific results for graphene from results of the general
transport theory for SU(2) systems [18].

The tight-binding approach in electric fields [4] provides
essentially the correct expression o, and discusses two
theoretical classes leading to the wrong result . Essentially
there is no small parameter as the usual loffe rule 4/eprt and
diagrammatic approaches miss probably important diagrams.
The second class of treatments leading to o relies on the
Landauer approach and takes the limiting value of finite

o1 = g27i_2h’ (1)  width and length of the ribbon sample. This is performed
by counting evanescent modes [19]. There it was claimed
while the opposite order provides that the appearance of the minimal conductivity is due to
) the topological property of the Berry phase and nature of
oy = ge_’ ) evanescent waves and is not a signal of Zitterbewegung and

16h chiral symmetry as suggested in [20,21]
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The influence of impurity and phonon scattering has been
investigated in high electric fields [22] within a balance
equation approach. It is suggested that the electron-electron
interaction or strains in the sample causes a symmetry breaking
which was modeled by a complex parameter [23] leading
to og.

The expansion around the correct value o(1 + Cay)
in terms of fine structure constant of graphene oy =
e?/(4mhv) ~ 2.2 had raised a controversy. The two loop
interaction correction was calculated in two ways, via density-
density and current-current correlation functions with the help
of dimensional regularization [24]. In [25] it was claimed to
have found the reason for the discrepancy in the first-order
expansion by calculating a tight-binding approach before
reduction to massless Dirac particles. The different results
are dependent on the used regularization schemes. The sharp
momentum cutoff used by [26] leading to C = 25/12 — /2
had been criticized by Mishenko [27] obtaining C = 19/12 —
/2 due to soft cutoff. This has been supported by [28]
which states the importance of charge conservation at all
stages of approximation and completion of Ward identity.
The reason for the discrepancy with the sharp cutoff has
been traced in [29] to be due to breaking of transversality of
the polarization tensor which is a consequence of the spatial
O(2) symmetry. The soft cut-off result has been reproduced
there with a regularization-independent framework discussing
Coulomb corrections [30]. A first-order interaction correction
to the polarization function and dielectric function was treated
in [31] and compared with other renormalization approaches.
We will present a scheme which is free of any regularization.

Recently there has been tremendous effort to modify the
graphene sheets in order to create a gap which is necessary
for optical applications [1,32]. Nanoribbons [33,34], twisted
bilayers [35], disordered graphene [36], or nanofluids [37,38]
are some possibilities. In this context the suggestion was made
that on the surface charge puddles appear [39-41]. Motivated
by this observation magnetic impurities are considered here
to form magnetic domains. We model such domains assuming
that these local magnetic impurities are randomly distributed
on different sites within an angle 6, from the ¢, direction. The
directional average [42] leads then to

= sinf;, - .

DV = VI =en@.n = Vign@.n,
1

P

~- o sing,_  _ _ - IR

Y gV =IVITe 5@ = V@) 5@, 3
B I

where the Fourier transformed, 7 — ¢, time-dependent den-

sity and polarization density are given by

Y fBgn=n@Gn, > §p.gn=5Gn @
4 P

and ), = [d”p/Q2xh)” for D dimensions. The magnetiza-

tion density becomes M@ ,t) = gups(,1).

The angle 6; in (3) allows us to describe different models.
A completely random local magnetic field 6, = 7 is used
for magnetic impurities in a paramagnetic spacer layer and
in a ferromagnetic layer one uses 6; = m /4. The latter one
describes the randomly distributed orientation against the host
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magnet [42]. Therefore the same impurity potential appears as
magnetic impurities. We will see that it adds to the Zeeman
field and we will call it an effective Zeeman field.

The outline of the paper is as follows. First we sketch shortly
the quantum kinetic approach including electric and magnetic
fields and how the known results for particles with quadratic
dispersion can be translated into the specific linear dispersion
of graphene. Then we discuss the currents in Sec. III. From
the linearization of the kinetic equation we get the response
function for the coupled density and pseudospin response with
respect to an external electric field in Sec. IV. In Sec. V we
discuss the intraband and interband conductivity in detail with
various limiting ranges. There we generalize known results
now including magnetic fields, magnetic domains, and mean
fields. The comparison of the longitudinal optical conductivity
is presented and the Hall conductivity is discussed. Section VI
contains the pseudospin conductivity and shows a subtlety in
using the infinite-mass limit in that, contrary to the particle
current, the normal quasiparticle pseudospin current does
not vanish. Finally, Sec. VII explores the region where the
effectively screened Coulomb repulsion between electrons is
changing sign opening the possibility to form Cooper pairs.
The summary concludes the paper.

II. KINETIC THEORY

We consider an effective Hamiltonian possessing a Pauli
structure

Hgi=H+5 -3, Q)

with the Pauli matrices ¢ and the scalar Hamiltonian

2
H=L" 15570+ edF.0 ©6)
2m

consisting of a quadratic dispersion of particles and scalar
mean-field self-energy Xy, the scalar e.m. potential ®, and
the vector potential absorbed in the canonical momentum p =
k — eA. Any spin-orbit coupling » and magnetic field B can
be written compactly as [18]

S = (57,0 + b(p) + g B. (N
The Hartree mean-field self-energies read [18]

So(p.q.1) = n(q,0)Vo(q) +5(g,1) - V(q),
21(p,q.1) = 5(q.0)Vo(q) + n(q.0)V(q), (8)

where V describes the averaged magnetized domains or
magnetic impurities (3) and V| the interaction with scalar
impurities or among the electrons themselves. Together with
(4) and the kinetic equation for f and g, Egs. (8) form a
self-consistent equation system which properties [18] are not
the topic here. We include the mean field to see where it appears
and need it to derive the response function later.

In graphene we can consider the two sublattices described
by the value of the z component of the Pauli matrix [43,44].
Since the two K points are not coupled [44] we account
for the degeneracy g = 2 and an additional factor 2 for spin
degeneracy. For single-layer graphene the above form of spin-
orbit coupling can be considered as pseudospin representing
the linear dispersion for the kinetic energy b= v(px,py,0)and
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the limit of m — oco. We will use this procedure to see how
the results for spin-orbit coupled systems of [18,45] translate
into graphene. The (pseudo)spin-Hall effect in graphene itself
is also investigated [43] reporting the anomalous Hall effect in
single-layer and bilayer graphene [46,47] and which is treated
like a spin-orbit coupled system [48] too.

The Wigner distribution function consists now of a scalar
and a vector part:

0 _’777t =TI'A \IJ+\Il = +6’ .o — ¢ gx_igy)’
b(p.r.1) = Trps f g <&+%y s

with (4) and the spinor creation operator U+ = (\IJ%* , \I—fj) with
the trace over the nonequilibrium statistical operator ps.

The quasiclassical kinetic equations for this mean-field
Hamiltonian consist of two coupled equations [18]:

D.f+A-3=0,
DE+Af=2% x 3, (10)

where D, = (0, + F 8;, + 175,) describes the drift and force of
the scalar and vector part with the velocity

v="L 14,5 11
m
and the effective Lorentz force
F = (¢E + ¢ x B — 3, %). (12)
The coupling between spinor parts is given by the vector drift
A =0,% 0, — 0,5 - 0, + (0,5 x B)-03,. (13)

Remember that we have subsumed in the vector self-energy
(7) the magnetic impurity mean field, the spin-orbit coupling
vector, and the Zeeman term.

The term (13) in the second parts on the left sides of (10)
represents the coupling between the spin parts of the Wigner
distribution. The vector part contains the spin-rotation term on
the right-hand side. One has to consider additionally collision
integrals which have been derived in [49-51]. In the simplest
way we will add a relaxation time with conserving Mermin’s
correction [52,53].

The stationary solution of (10) has the structure [18]

+f—+5_é>f+_f—

2 y S Itoe

=Y Pefi="t
+
(14

with fi = fole, () £ |f§(ﬁ,?)|] and in equilibrium fj is the
Fermi-Dirac distribution. The self-consistent effective spin-
polarization direction [18]

-

== s)
e = ——
|Z]
is given by the vector part of the self-energy (8), the magnetic
field, and the b vector combined into an effective Zeeman field
(7). We obtain obviously a splitting of quasiparticle energies
due to spin-orbit coupling

P’ S

€x = — + Yo% |Z| = Fvp, (16)
2m
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FIG. 1. Realization of linear Dirac dispersion of graphene by
the infinite-mass limit of a spin-orbit coupled system with quadratic
dispersion.

which takes the form of single-layer graphene for m — oo
and vanishing magnetic and mean fields S=b=v p. This
supports the idea to represent the single-layer graphene simply
by the limit of infinite mass as illustrated in Fig. 1 and
used in [17]. Please note that during this limit the bounded
dispersion from below turns into an unbounded Luttinger type
of dispersion. Therefore this limit changes the structure of
equations in an nontrivial way. In fact we will see that various
limits cannot be interchanged with this infinite-mass limit.

III. CURRENTS

Due to the spin-orbit coupling (7) the current possesses
a normal and anomaly part. Using [b(p),x;] = —ihd, b(p)
from elementary quantum mechanics we have

i -
0y = IA.8]=dye+0,b-5 (17)

if the single particle Hamiltonian is given by the quasiparticle
energy €(p). Together with the Wigner function (9) one has

pO; = fOp,€+ & 0p,b+G - (3,,€8 + f0,,b+id,,b x §)
(18)

and the particle and pseudospin current densities read
Ji=Y vl
P

= 22 [fap.fe +g- apjl; +0 (€8 + fap.fl;)]
p

= jj+3-5;. (19)

The scalar part describes the particle current f: ;” + f”
consisting of a normal and anomaly current and the vector
part describes the pseudospin current S;; not to be confused
with the polarization §.

In the limit of infinite mass €, — 0 and therefore d,,¢ — 0
we obtain that graphene can only possess an anomalous
particle current since the normal one would be of Drude
type vanishing for m — oco. The normal pseudospin current,
however, possesses a finite m — oo limit which is unexpected.
This we will treat in Sec. VI

Let us first consider the particle current. In [18] the
linearized solution of (10) has been derived with respect to
a time-varying electric field. The Fourier transform ¢ — w
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reads in the long-wavelength limit [Ed, = Ew . 5p]

6§(wap) = EEa[’g

1w
4T —o?
1 > -
—2m2 XeEB,,g
1 5 o
~4i—————— (X - eE0,9). 20

From the three terms in (20) we get the symmetric and
asymmetric conductivity [18]. One has according to (19)

8je="09,5-88= 50,05+ Y (G-, 5)-85.
P P P

2

Please note that 8p§3 = 8pl;. Writing j, = o048 Ep we obtain

from the first part of (21) using (20) the interband and the
anomalous Hall conductivity

mter - -
=2¢° Z 2|E|apn - 9p,€,

4|E|2
Hall — 2e2 Z

where the first part of (20) leads to the interband and the second
part of (20) to the Hall conductivity.

The second part of (21) with (20) leads to the intraband
conductivity

(0p,€ X 9p,8), (22

4I2I2

mtra 1262 Z apa (23)

where the first and the third part of (20) contributes. This
intraband contribution had been neglected in [18].

For graphene we have 9,,%; = vd,; and the anomalous
current (21) reads together with the linear response (20) to any
time-dependent electric field

1 ]
8j(t) =2ev Z&g; = —2ev Z/ dfe”~
0
P P

x {cos (QupDE,_i,§ + sin QupDpoE;—d,§

+ [1 = cos QupD](po - Ei-73,81Po}, (24)
with po = p/|p|. Each term from (20) corresponds therefore
to a specific precession motion analogously to the one seen in
the conductivity of a charge in crossed electric and magnetic

fields. If we replace w, = eB/m < 2|X| = 2vp in (24) one
has

- tdi _: - >
edj(t) =00/ —e 7 {cos(wH)E({t — t) + sin(w 1) E(t — 1)
o T

x Bo+ [1 — cos (wDIE(® —T)- BolBo},  (25)

which is just the solution of the Newton equation of motion

-

me = e(® x B)+ eE —m>. (26)
T

It illustrates the threefold orbiting of the electrons with
cyclotron frequency: (i) in the direction of the electric and
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(i1) magnetic field, and (iii) in the direction perpendicular to
the magnetic and electric field.

One can find these three terms also directly solving the
Heisenberg equation for the spinor creation operators from the
free graphene Hamiltonian

Y WG, @7
P
which reads [20]

- -

W, = [cos(vpt) ;22 sin(vpt)] v, (28)

The charge current operator (17) is calculated directly [20]
with (28),

A
j:evZ\I/;rc?\I/,
)

= ev Z W H{cos(2upt)a + [1 — cosupn)](@ - p)p
p

+ sinQupt)(p x 6)}V,. 29)
We use now the ensemble average
TrpsV, 04 Vp = Gap(fodup + Tpa X &0) = 280,  (30)

with the Wigner function (9) and obtain exactly (24) with
8o = eEd,g. There is no reason to call the last term in (29) an
expression of Zitterbewegung as claimed in [20].

IV. RESPONSE FUNCTIONS

If one linearizes the kinetic equation (10) with respect to an
external electric potential ® one obtains the equation system
for density and pseudospin responses [45]

3,% - 88

(1—_L)an:no(52+q>)+ﬁ.ai+zq”—,
wT >

S

55 = M358 + @)+, x 85 + s + 1T - 3%
(31

for any spin-orbit coupling where the different polarization
functions are givenin [45],d =w —p -g/m+i/t, 0 = o +
i/7, and the intrinsic mean field (8) variations read

8% = Vén + Vb5,
8X = V - 85 + Voon. (32)

Here we represent any interaction of electrons with scalar
impurities or among themselves by the potential V and with
magnetic impurities by the potential V. The latter allows us
to include averaged magnetization domains. The term on the
left-hand side of (31) in front of the density variation is a result
of Mermin’s correction [52,53] and crucial for conserving
relaxation time approximation.

For graphene in the infinite-mass limit the response func-

tions are [Ty = IT = 0 and
. 2i%,A . 4a2
H3: L& Ee7xq——Cq,
Vo
> 2i %,
1-[2: 5 '——]:C],
Vo
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<~
IT

_ A -
8% = ——(COE, +C5E2)

2x2

“F6E.q+(q - 82)6‘2) (33)
We used A = v/dh, |f§| =, with I'? = p? + (=, /v)?, and
the effective Zeeman field in z direction

%, = |nV + 5V + ugB|. (34)

The direction of pseudospin is ¢ = (px,py,%)/ I', and the
used integrals read performing angular integrations

P,
A= Z ( 2r2) ; a2/ =P
Z ;g}z = A+427C,

(35)

ZF’
€= Z 1—4x2r2 '

£= Z1“(1

with f' = vo, f. The nontrivial identity in the first line can be
shown from Y p(Z] - 3,)¢ = 0. The forms (35) are convenient
objects for numerical evaluation at finite temperatures. Please
note that these forms are much more rich than the pure mean-
field-free polarizations found in [54].

While A and C seem to be divergent needing a cutoff
due to unbounded hole states, 5 is convergent. However, D
is convergent as seen below which illustrates the delicate
compensation of divergences in .A and C due to the angular
integration. Actually, inspecting (35) it seems that due to f_
the A term is divergent for large momenta. Usually this has
been regularized by an upper momentum cutoff representing
the bandwidth. Let us inspect how this procedure appears in
the density n and polarization s,

(- F)
C_Xp: 1 —42212"°

4z T Z (- 4A2F2)

1
n/s = ;m £ f), (36)

with fy =(14e 7"
diverges. One interprets 1 — f_ = (ew + 17! = f, as the
distribution of holes [55,56] which splits the density into the
baryon density n, — ny,

p;
8w h?
and a part given by the whole momentum sum with the upper

momentum cut-off p,. At zero temperatures we have in two
dimensions

n/s =n,Fn, x (37)

2

8mh?v?’
with the chemical potential (Fermi energy) u.

This regularization seems to be applicable to the expression
A as done in the literature. However, there is a delicate balance
rendering this integral finite without regularization due to the

n(lf=0)=n,=s5= (38)
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identity expressing .4 by the obviously converging expression
D. Let us inspect the structure of this term by splitting off a
convergent magnetic-field-dependent part

2

UV P
D:z _zsf

3
:_Zaf— Z /

P
v 2 O f
_—Eaﬂn—ggp:ﬁ. (39)

This shows that the divergent part is represented by the

compressibility. Assuming that this momentum cutoff is solely

given by the bandwidth and not dependent on the density, i.e.,

chemical potential, we get the first part of (39) analytically
sinh Z

v 1
o= — 1 T
2 ult 4nh2{ ncosh% +cosh%

+71n|2( cosh 2 + cosh = (40)
n coshn — cosn — .
T T

One learns here that the cancellation of the divergence comes
from the angular integration.

V. CONDUCTIVITY

A. Longitudinal conductivity

The interband and intraband (22) conductivities provide
both parts of the longitudinal conductivity

Oy = —ie?20M(B+ D), 41)

where the first part is the interband and the second part is the
intraband contribution. We will discuss both parts separately.

First we prove the internal consistency of the theory by
deriving the conductivity from the response function. The
conductivity is defined as the response with respect to the
true internal electric field E in contrast to the e€pE field
having external sources. This means we have to consider the
response without mean fields, i.e., the polarization function
IT = én(X = 0)/®. Then (31) reduces to

(1 - _L>Sn = Aj - 85,
ot

85 = T, @, (42)

which yields with (33) exactly the current (24). As a cross-
check we use for V; the Coulomb potential. From the Maxwell
equation the longitudinal conductivity is expressed as

Oxx = —€ow VoImIl (43)
and from (42)
Opp = —eOa)VOIm(—4_A3_Cq;) = 4*1pCo°Im(iT]), (44)
with T
Ty = (l—rTr) 45)
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and /p = 1 for three dimensions and [, = ¢ /2h for quasi-two
dimensions [57]. For the static limit one gets exactly the result
from the current formula (41) since B+ D = B — A = 4)°C.
This illustrates the necessity to include Mermin’s corrections
[52,53] represented by the subtracted terms on the left sides in
(31) or (42).

1. Interband conductivity

The zero-temperature limit of the interband part considered
in [18] reads for particles with quadratic dispersion

2 2
B ) e 4e,2:7,/h
Tax =T HC 8nh{2evu+23
| 43272 4e,T,h
LRI R R+ 4(2e,n + 22)72 | )

(46)

with €, = mv?/h. This conductivity represents a contribution
in the direction of the applied electric field and is caused
by collisional correlations. This dynamical result is different
from the pseudospin accumulation found in [58] basically
by the arctan term and therefore no sharp resonance feature.
Expanding, however, in small spin-orbit coupling
e? €Ty

ol = ok T3 4w + o(e7) 47)
shows that the static limit agrees with [58,59]. Please note that
if one sets X, — 0 before expanding, a factor 1/2 appears
which illustrates the symmetry breaking by the effective
Zeeman term.

To translate (46) into the formula for graphene we perform
the limit of infinite mass or €, — 0o. The order of limits
now becomes essential as illustrated in Table I including the
vanishing Zeeman field ¥, — 0, the static limit, the infinite-
mass limit, and the zero—density limit u — 0. If we apply the
limit of vanishing friction t=! — 0 before the infinite-mass
limit we obtain 02 = 0 and if we perform the static limit
even afterward we obtam the negative result of the expected
one (2). Since we translate the results of spin-orbit coupled
systems to graphene with the help of the infinite-mass limit,
the latter one should be correctly performed first before any
other specifications. Performing first the infinite-mass limit we

TABLE 1. Results for different orders of limits.

Order of limits ol = (e
5 4 3 2 1 ¢
uw—0 w—0 -0 m—00 T— 00 -1
nw—0 T—>00 X—0 m—-oo w—0 0
T—>00 u—0 >—-0 m—00 w—0 1
uw—0 X—0 T—>0 m—o0o w—0 1
u—0 T—>00 m—oo xX—0 w—0 1
nw—0 T—>00 w—0 m—o00 X—0 1
u—-0 XT>0 m—oo T—>00 w—0 0
nw—0 m—-oo T—00 xX—0 w—0 0
u—>0 m—soo T—-0 w—0 T— 00 0
u—>0 -0 w—0 m—>00 T— 00 0
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get for zero temperature

2%27,

AT
oB — e hu + (1 - TR )arCCOt e w>x
xx = it
8h 2yn 4 (] — 43 @)arccot22%, p < 3.
(43)

Since (45) the limits of infinite frequency @ — oo, vanishing
scattering T — oo, and vanishing density u — O are not
interchangeable as well. In fact, if we neglect the Zeeman
field ¥, = 0 in (48) we get

-1 - inhw + O( )
2 1 - ﬁwﬂrl + O(Mz)
—1—i2 4 o(u®) +o(1), (49)
0+ o(a)) + 0(—)
1+ 0( ) + o(w).
Only the second limiting procedure leads to the right result.
One obtains even zero value if the static limit is used after
vanishing scattering which is different from interchanging both
limits. This illustrates the care one has to take when integrating
zero-temperature values.

The finite-temperature interband conductivity can be writ-
ten with B3 from (35) as

s ETr, [ 1+(2) 1 1
Oy = 2 dx 4 2T —x—p T ’
4 h /T 1+ 2 e % e 7 +1 T

(50)

o'xx:@

which is plotted in Fig. 2.

Please note that the frequency dependence is solely due to
(45). We see that the interband conductivity approaches the
universal value o, of (2) in the case of no Zeeman field and
T = 0 as can be seen in (49). For finite Zeeman fields even at
zero temperature this universal value is different which raises
doubts to call it universal value. As seen in Fig. 2 from (48)
the finite Zeeman field introduces a density threshold below
which the interband conductivity is nearly constant.

The real part of interband conductivity can be given
analytically for small scattering T—' — 0 where one uses
1/(w+i€) = P/w — ind(w). One obtains a nonzero result
only for hw > 2%, which reads

Reg e’ <1+423>< 1 1 )
eol = ——— —
xx 2.2 ho _, _ho_,
16h h*w e ?TT + 1 2; + 1

e’ (1 N 432 ) sinh 22
"~ 16k h?w? ) cosh & + cosh 22

C (14250 qon 12 2u> T. (51)
N — an , > .

6h\ " we?)or T
The last expression without Zeeman field X, has been given by
[60] with a misprint of 1/4 in the argument. The second line was
found in [61,62] within a Kubo formalism also without ¥,,. An
extension of this result towards trigonal-warping corrections
and bilayer graphene can be found in [63].

Due to the abbreviated dynamical relaxation time (45)
we can now discuss the frequency dependence. For zero
temperature we use from (48) the case of © > X, since in the

165415-6



DYNAMICAL CHARGE AND PSEUDOSPIN CURRENTS IN ...

B [ 9¢?
ol ) .
1.0 T;ob
0.8 T=2
0.6}
0.4
0.2
T
T=0
T=0.2
T=0.7
T=2
2 4 6 8 10"

FIG. 2. Temperature dependence (in arbitrary energy units EU)
of static interband (50) conductivity with ¥, = 0 (above) and X, =
1EU (below) with T = h/EU versus the chemical potential in units
EU.

opposite limit one simply replaces u — %, in the expression
and obtains

s € [ 2%2i N i(l_F 4%2 )
o, =——F|—F/""+—<+= S EE—
* o 8mh ;,Lh(a)+ ’;) 2 hz(w+ %)2
2M—Mw+9}

X In .
2u+ hw+ 1)

(52)

If we neglect the Zeeman field ¥, — 0 and consider the limit
of vanishing collisions T — co we obtain the result

B &> i how — 21
0. = h |:®(ha) 2u) + - In ' ho T 21 H (53)
which is exactly the result reviewed in [64] with a misprint
of missing i and which has been first derived by [65] and
within RPA in [66]. It was extended by self-consistent Born
approximation in [67] and including circularly polarized light
[68]. The Kubo formalism leads to the same expression [69].
The interband conductivity (53) shows a singularity at the
interband transition energy hw = 2u which is damped by
collisions and finite temperatures.

Here we have extended the known expressions by the ef-
fective Zeeman field including the magnetic field, magnetized
domains, and mean fields.

2. Intraband contribution

We have seen that the interband contribution leads to the
universal low-density conductivity at zero temperature and

PHYSICAL REVIEW B 94, 165415 (2016)

D [9¢®
XX w_h]
] e -
e ~
K], - T=0
L - T=0.2
2 T=0.7
1 T=2
n H
1 2 3 4
D [9¢®
XX w_h]
st
af T
| S - T=0
2 — T=0.2
T=0.7
1t T=2
> b .
e a a a ”
1 2 3 4

FIG. 3. Temperature dependence (in arbitrary energy units EU)
of the static intraband (54) conductivity with X, = 0 (above) and
¥, =1EU (below) and v = A/EU versus chemical potential in
units EU.

decreases with higher densities. Now we will discuss the
interband contribution which vanishes for zero temperature
and low densities. In [18] we have neglected this term (23)
corresponding to the D intraband conductivity in (41). This is
not justified for graphene since this term is just the intraband
scattering and will lead to the linear density dependence.

The finite-temperature expression of the part (41) of
conductivity reads explicitly

ol =—ie’2aD

2T, /“’O dx (X2 5
4 k2 nox T?

2
z (54)

ié()(!)
= i.

Consequently, this intraband contribution can be written in
the form of the frequency-dependent Drude conductivity
with a collective frequency w,[u,T,%,] dependent on the
chemical potential, temperature, and effective Zeeman field.
It is illustrated in Fig. 3 for different temperatures versus
chemical potential. Except the factor 7€) Fig. 3 therefore also
gives the collective mode squared. One sees that the mode is
excited for zero temperature only for u > X, which provides
a threshold for densities by the effective Zeeman field. In fact,
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we have for zero temperature

2 2 2
p €Ty u— X

= — 0O -, 55
0= (1= %) (55)

starting at chemical potentials (Fermi energies) larger than the
effective Zeeman field X, seen in Fig. 3.

If we neglect the effective Zeeman field X, — 0, the ex-
pression (54) takes exactly the form of intraband contribution
discussed in [60]. Therefore we can consider the expression
(54) as generalization of the known result including now the
magnetic field and the mean fields.

One sees that for finite temperatures the intraband con-
ductivity is approaching a finite value for low densities.
However for zero temperature this limit vanishes. Therefore
the “universal” limit discussed in the literature concerns
solely the intraband contribution. We can state that any finite
temperature will blur this universal result since contributions
start to contribute from the interband scattering.

The limit of vanishing effective Zeeman field can be given
analytically as well and reads

D e’t, "
0, (Z, =0=—=[2TIn(1 +e7) — u]

4 h?
et T w? w\?

= 8In2 + — —
16nh2< f +T2>+0<T)
eszﬂ/ o

= i +o(Te 7) (56)

plotted in Fig. 3. The expansion of the last line (56) agrees
with Eq. 4.4 of [70] and the second line with Eq. 75 of [71].

The limit of high frequencies

Ty=—— - (57)
l—ivt o

and small densities u <« T have been first given in the
framework of 3D graphite by [72] with a corresponding
additional factor 2/d of inverse distance between the graphite
layers. As a special case of (56) without effective Zeeman
fields, the high-frequency limit coincides with the result of
[60].

In Fig. 4 we finally plot the complete static conductivity as
a sum of (50) and (54). For zero temperature the universal
finite value at low densities comes exclusively from the
interband conductivity as discussed above. The intraband
conductivity has a threshold at the effective Zeeman field.
Higher temperatures mixes both components and waves the
threshold of intraband conductivity.

3. Optical conductivity: Comparison with experiment

The optical conductivity o (w) is important to know if one
wants to calculate the optical transparency [73]

o(w) i| -2

2€0C

Hw) = |:1 + (58)

We plot the optical conductivity at zero temperature as the
sum of the interband (52) and intraband (55) conductivity and
remember that the frequency dependence is given by (45). In
Fig. 5 we see that the imaginary part of the optical conductivity
possesses a minimum at the interband threshold corresponding
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FIG. 4. Temperature dependence (in arbitrary energy units EU)
of the total (41) static graphene conductivity with 3, = 0 (above) and
¥, = 1EU (below) and T = h/EU versus the chemical potential in
units EU.

to a steplike behavior of the real part of the conductivity. This
feature is smeared out by scattering represented by a finite
relaxation time. At high frequencies the optical conductivity
approaches the universal value due to interband transitions
(52).

If the effective Zeeman field becomes larger than the
chemical potential (Fermi energy) then the conductivity is
exclusively due to intraband transitions and independent of
density according to (52)

T (Z >u)—62[ aL +i<1+ 2 )

axion T87h| lw+ L) 7w YN

8rhlh(w+1L) =« W (w+ L)
22,,—(w+§)}

n—:—

2%, + (0 + £)

seen in Fig. 6. The real part of the conductivity starts at
the threshold fiw = 2%, accompanied by a minimum in the
imaginary part. The finite scattering smears this steplike
behavior and leads in the strong scattering limit to a constant
real conductivity of universal value. The astonishing fact is
that not only a universal value appears for small densities due
to the chiral nature of particles but that a whole universal
optical conductivity appears independent of density and solely
determined by strong effective Zeeman fields.

In Fig. 7 we compare with the experimental data of [75]. We
find the best fit with the help of fitting the relaxation time and
the effective Zeeman field presented in Fig. 8. One sees that
the relaxation time decreases with increasing density and the
effective Zeeman field increases. The found relaxation time is

x 1 (59)
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FIG. 5. Real (solid) and imaginary (dashed) optical conductiv-
ity versus frequency for t = 20h/eV (above) and t = 2000h/eV
(below). The vertical dotted lines indicate the interband threshold
fuw = 2. The applied voltage induces a density n = <2U = 7.3 x
10"°cm=2V~'U for graphene on typical SiO, substrates [74,75].
The density is linked to the chemical potential n =
1010 cm™2(1/eV)>.
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in agreement with the theoretical value of screened charged
impurities of density n;. The relaxation time reads [76]

h ngk s + cos 0

2 1
- = doV?(g)(1 — cos ) ———,
. 271h2v/0 (@)1 = cos0)——

(60)

with &t = vk and the scattering wave vector g = 2k cos6/2.
The angular expressions come from the wave-vector depen-

2 L
1 L
NJS ! ae=—— :
g -1 Tl - tonev
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- 7=20007%/eV
_3t -
0 2000 4000 6000 8000 10000 12000
wlem™]

FIG. 6. Real (solid) and imaginary (dashed) optical conductivity
versus frequency for different relaxation times which is independent
of density (universal) for ¥, = 0.35eV > pu = 0.1eV. The vertical
dotted lines indicate the interband threshold hw = 2%,,.
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FIG. 7. Real (above) and imaginary (below) optical conductivity
versus frequency for different applied voltages compared with the
experimental data (dashed) of [75]. The parameters are given in Fig. 5.

dence of the relative phase of graphene Bloch band wave
functions [76]. Since g < 2k; we have for the polarization
[77]1 T1(0,q) = —g—; and for the dielectric function
_ _ gky

€0,9) =1-V(I0,9) =1 +avg, (61)

with the fine structure constant of graphene ay = e?/4mephv
and the degeneracy g = 4. The screened Coulomb potential in

uleV]
0.1 0.17 0.22 0.26

10.015

r[#H/eV]
ZyleV]

10.01

10.005
70

U[V]

FIG. 8. Fitting effective Zeeman field and relaxation time to
reproduce the experimental data in Fig. 7. The best fit only
with relaxation time (dashed) is compared to the relaxation time
for screened Coulomb impurities (thick black) together with the
analytical (red thick) result of (63). The effective Zeeman field (green)
is given with the units on the right axis.
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FIG. 9. Comparison of best fit to real (thin) and imaginary (thick)
experimental data (green) of Fig. 7 for U = 28V using once the
relaxation time and the effective Zeeman field (solid) and once only
the relaxation time (dashed).

quasi-2D reads therefore [77]
e? h

Vg = ————. (62)
q 2¢€0 q+ay %
Using this potential in (60) one gets
8
w8 n (s, 63)
h wgoy Ry 4
with the constant
8
c(a) = .
142a2(9—60a2+56a*) + 16a3(4 — 7a®)v/a? — 1
(64)

For the unscreened potential we have c¢(0) = 8 and for the
screened one c(ay g/4) ~ 74 such that the the relaxation time
would be 9 times smaller for unscreened potentials. The
relaxation time for the screened potential is also plotted in
Fig. 8. Here we have assumed that the ratio of density to
impurities n/ng &~ 1/4 according to valley degeneracy and
charge neutrality. It is visible that the unscreened potential
is ruled out and the relaxation time from screened potential
agrees with the best-fitted one. If we had used the analytical
result (63) directly and fitted only the effective Zeeman field,
visibly the same Fig. 7 would have appeared. This shows that
the actual relaxation time from impurity concentration is quite
realistic.

In the theoretical approach [78] it was found that
the conductivity is still underestimated even taking into
account the effect of optical and acoustic phonons as
well as charged impurities and midgap states. We find
a slight overestimate when allowing an effective Zeeman
field.

To illustrate the relevance of the effective Zeeman field
we plot in Fig. 9 the curves with and without Zeeman
field. We find a fairly good description of the experimental
optical conductivity with a simple relaxation time assuming
only charged impurities. The Zeeman field leads to a bet-
ter agreement of the dissipative part of conductivity with
experiments.

The influence of finite temperatures is marginal as seen in
Fig. 10 while the effective Zeeman field leads to appreciable

PHYSICAL REVIEW B 94, 165415 (2016)
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FIG. 10. The influence of finite temperatures (above) and the
effective Zeeman field (below).

modifications. The extension of the optical conductivity
including the gap can be found in [79]. Here we consider only
the quasiclassical approximation which results into an effective
Zeeman field and therefore only the first quantum-Hall level
which can be extended [80].

B. Hall conductivity

Let us assume the magnetic field in z direction and the
electric field in x direction. Then we have for graphene from
Eq. (22) with (35)

by
Oy =2¢%22 Tn E

o (E) ()
T 2nh\ T I
00 —x—p 71_ X—p -1
x/ PG Ml G I (65)
> L da?(Te)’

The Hall conductivity for particles with p?/2m dispersion at
zero temperature and & > X reads [18]

4e,7,/h
|: 2 2 2]’ (66)
h +4(26UM+2n)‘L’w

with the energy €, = mv? and the chemical potential (Fermi
energy) (. The dynamical result is given by the frequency
dependence (45) in (66) and (65). We see that the anomalous
Hall effect vanishes with vanishing effective Zeeman field (34).
The latter one being an external magnetic field or an effective
magnetized domain.

2
e
Oyy = —— X, T, arctan
4 h?
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FIG. 11. Temperature dependence (in arbitrary energy units EU)
of the static Hall conductivity (65) versus effective Zeeman field with
w =2EU fort = 0.2h/EU (above) and T = 1A/ EU (below) where
the universal limit in these units is 2 /7.

The infinite-mass limit reads now

2 2ut,

o — e . arccot=72, w>x,,
T 42 7" |arccot 2R,y < B,

To(t,D) w> T,
1 + 0(1’;1), /“L < Enﬂ (67)
5 TR

&2

% —
8mh

which is nothing but the zero-temperature limit of (65). One
sees that a steplike structure appears if the chemical potential
exceeds the effective magnetic field X,,. Remarkably, for larger
effective Zeeman field X,, we obtain a result independent of the
chemical potential and therefore independent on the density.
Even in the limit of vanishing scattering the universal value
0yy — €% /8mh appears.

The temperature dependence of the static Hall conductivity
is seen in Fig. 11. For large effective Zeeman fields the
universal limit is approached. The finite-temperature results
versus chemical potential are seen in Fig. 12 which shows the
appearance of the threshold at chemical potentials in the order
of the Zeeman energy above which the conductivity decreases
while below it is constant and determined uniquely by the
Zeeman energy.

The dynamical conductivity according to (45) is shown in
Fig. 13. The real part has a sharp maximum at the interband
transition frequency where the imaginary part starts. This
feature is smeared out by collisions.
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FIG. 12. Temperature dependence (in arbitrary energy units EU)
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FIG. 13. Dynamical Hall conductivity (67) of graphene with
¥, =0.35eV and U =10V for different relaxation times.
The dashed vertical line gives the interband transition energy
max[2/u,2%,].

165415-11



K. MORAWETZ

C. Expansion in fine structure constant

The different conductivities can be expanded in terms of the
graphene fine structure constant oy . This expansion is also not
interchangeable with the small-density expansion. The results
are identical with and without screening in lowest order in oy
and read

.[2 s 4
ge? {7[; — Zray +o@®)], w> I,
= 2
T

O‘xy = ul
_ T n 4 6
167 %52 v t o),

o (68)

The second line appears as well if we first expand up to orders
o(u?) which agrees with the universal limit.
For the longitudinal conductivity we obtain

64(u>—x2 —
gez (Mz_z ")4_1105\/2 + 0(05?/)’ n> X,
=2 wem ns (69)
Ox 164 Ko ong 2 4 D
123,72 m% + O(O‘v)a M < 2y,

which is in contrast to the expansion first in density and then
in fine structure constant

ge? (1 8162°

T 3n2n b

ay® +o(u’) + o(av4)>, (70)
which agrees with the universal limit. One sees completely
different expansion schemes depending on whether we expand
first with respect to the density or with respect to the fine
structure constant.

VI. PSEUDOSPIN CONDUCTIVITY

Now we consider the pseudospin current according to (19)

S; =2 (8,,€88 +810,,b). @)
p

where the first part is the normal and the second part is the
anomaly part. For graphene in the limit of infinite mass we
would not expect a normal part since 9, € = p;/m — O ata
first glance. However there is a subtle problem here. In [18]
we have calculated this first normal part as

- et . o

Sy =——F5E, s Ep. 72

m(l —iwr) o o (72)

The normal spin-Hall coefficient consists analogously as the
anomalous Hall effect (22) of a symmetric and an asymmetric
part (w - w +1i/7)

~as o = -
U:y‘fn} I {%e “Ime (73
p mo 1— 4“"7‘2 i0y,e

with the explicit integration in zero temperature and linear
Rashba coupling [18]

. e h? +4%272 . 4he,t,
0l =——|1—— 22 arctan ,
Y 8mh 4e,7,h h2—|—4ra2)(26vu+2,%)
2
lop =7 PO LN (74)

with 7, = /(1 —iwt) and €, = mv>. Neglecting the self-
energy and using the static limit it is just the result of [81,82].
For the Dresselhaus linear spin-orbit coupling one has (74)
with opposite sign.
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TABLE II. Different orders of limits in o7, .

Order of limits U;.x = 8;211

3 2 1 ¢
m— 0o 1

m— 00 w—0 1

m— o0 ¥—-0 w—0 1
m — o0 un—0 w—0 !
T — 00 n—0 o—>0 0
w—0 T—> 00 0

m— 00 T—> 1

For graphene we perform the limit of infinite mass of (74).
Amazingly we obtain just the universal limit

. . _ €

i s = g
contrary to the expectation at the beginning of this section
that these normal parts of pseudospin current should vanish.
This shows the highly nontrivial transition from quadratic
dispersion with spin-orbit coupling towards the Luttinger-type
dispersion of Dirac particles. The infinite-mass limit of the
normal spin-Hall conductivity leads to a finite result though
the quasiparticle velocity 9, € vanishes and we would have
expected no result from the normal current. One obtains such
a zero effect if one performs first the limit of vanishing density
and then the absence of collisions T — co. The same is true
if we first perform the limit of vanishing collisions and then
the static limit. We illustrate some orders of limits in Table II.
The conclusion is that the limits of infinite mass to let the
quasiparticle velocity vanish cannot be interchanged with the
static limit.

The universal constant e¢/8m h has been described by [83]
and raised an intensive discussion. It was shown that the
vertex corrections cancel this constant [84,85]. A suppression
of Rashba spin-orbit coupling has been obtained due to
disorder [86], or electron-electron interaction [87] and found to
disappear in the self-consistent Born approximation [88]. The
conclusion was that the two-dimensional Rashba spin-orbit
coupling does not lead to a spin-Hall effect as soon as there are
relaxation mechanisms present which damp the pseudospins
towards a constant value. Beyond the mean field, in relaxation
time approximation by including vertex corrections [89] or
treating collision integrals [44,49] lead to vanishing spin-Hall
current. The spin-Hall effect does not vanish with magnetic
fields or spin-dependent scattering processes [82]. This was
discussed by kinetic theory [90] for the dirty and clean regime
and the Kubo formula [91] where it was shown that the Zeeman
field gives a nonvanishing spin-Hall current. In [92] magnetic
impurities were treated in a tight-binding approximation and
the importance of the order of large scattering time and small
frequencies were pointed out.

Please note that the universal constant in (74) is necessary
to obtain the correct small spin-orbit coupling result

e wt?

: — 2
— ; ) 76
Oyx ah(1—iwt)? _'_42’%1_26 + O(GU) (76)
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Without the Zeeman term ¥, — 0 and for small spin-orbit
coupling this agrees with the dynamical result of [58] where
the definition of pseudospin current has been employed in
terms of physical argumentation. Again the result here differs
from the resonant structure found in [58] by the arctan
term but the static limit agrees with the result of [81,82].
The dynamical density-density response of graphene beyond
the Dirac cone approximation can be found in [93] and
the dielectric properties including spin-orbit interactions are
discussed in [44]. An overview about different scattering
mechanisms can be found in [94].

We consider now the anomalous part as the second part of
(71). Calculating explicitly for graphene with b = v(p,, p,,0)
one obtains

$4=2Y 6f0,b=2v8né;, (77)
P

which shows that the pseudospin current follows the spinor
direction. From the mean-field-free response functions (31),
as it should be for conductivity, we obtain the density variation

sn="25.5% (78)
w

and using (20) one gets after performing the angular integration
S e i - Xpoe o
q-8s=eq- [— —(D + B)e, + 2_—2<E'ez X eai|Eo,. (79)
@ @

Using the electric field again in x direction the anomalous
pseudospin current conductivity reads

N vV, | O Oy
5o, = —&; [— g + — qy], (80)
w e e

with the anomalous current conductivities (41) and (65) and
the two possible directions j = x,y providing pseudospin-
Hall and pseudospin conductivity. We see that the anomaly
pseudospin conductivity is wavelength dependent and vanishes
in the long-wavelength limit.

VII. DIELECTRIC FUNCTION

The induced density is related to the external potential by
the response function 6n = x ®. The screened potential V* is
given by the external potential @ and the interacting one Vj
by V* = Vyén + ®. The ratio of the screened to the external
potential is the inverse dielectric function

VS
= @Sxt

: — 1+ Vox. @®1)
In other words, the electrons feel the effective potential Vj/e.
Though the Coulomb interaction is repulsive a change in sign
of the dielectric function indicates an effective attraction as it
is the mechanism for Cooper pairing due to phonon coupling.
It is interesting to search for such regions as a possible range
where Cooper pairing can occur in graphene.

The response can be calculated straightforwardly from the
linear equation system (31). The result is a lengthy expression.
Only special expansions are needed here. In the optical regime
the coupling velocity v of graphene is about 1/300 of the speed
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of light and one has the small parameter
_vg 1

= % = ﬁ.
Expanding the response function one obtains in the optical
regime

n (82)

0, .0 na
—=1- - —i—
€ 0} 0o 16
with the dimensionless conductivity & = 16hi0,,/ge* from
(41) and the fine structure constant o =~ 1/137. We see that
the deviation of the inverse dielectric function in the optical
regime is only in orders of 10~ and cannot lead to any sign
change.

This is different if we consider the nonoptical regime, where
hw # cq. Then 7 is no small parameter anymore and we can
only expand with respect to the fine structure constant leading
to

n’ +o(n*), (83)

. o To
e=1 +ZWE + 0(0[2), (84)

wh*@d’w

where F from (35) reads for T = 0,

O — %) @’ - 52

F=— .
4w h?v? 1+ 4t2u?

(85)

The collective modes are visible at places where the real
part becomes zero and a small imaginary part of € represents
the damping. This is best visualized by the excitation function
of density fluctuations —Ime~!, as plotted in Fig. 14. We
see that with increasing magnetic domain strength V the
collective peak becomes sharpened and shifted towards lower
frequencies. The second peak around nV = 0.1 eV is at the
line u < ¥, where F vanishes. In [45] negative excitations
indicating spin-separation instabilities have been found for
certain polarizations. Here in graphene no such regions are
observed.

In Fig. 15 we plot the contours of the excitation functions
indicating the small damping together with the area where the
real part of the dielectric function changes sign. We see that
the lower part of the collective excitation is accompanied by a
negative area. Since this comes together with small damping,
i.e., with a small imaginary part of €, we can consider this range
as the one where the repulsive interaction changes effectively
into attractive interaction and pairing is possible.

This range of attractive interaction is dependent on the
wave vector and the magnetic domain mean field as illustrated
in Fig. 16. The magnetic domain allows this sign change
at smaller wavelengths though the frequency range shrinks
with increasing magnetic domain strength. The sign change
reported here is a prerequisite for Cooper pairing. A detailed
analysis of the possibility to have superfluidity and supercon-
ductivity in graphene can be found in [95-97].

VIII. SUMMARY

The quantum kinetic equations for systems with SU(2)
structure have been employed to describe the coupling between
the Wigner distributions for charge and for pseudospin
polarization. The used many-body approximation is on the
level of random phase approximation (RPA). This comes about
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FIG. 15. The contour lines of Fig. 14 together with the range
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FIG. 16. The range of sign change of interaction potential for
different magnetic domain mean fields; from left to right: nV =
0,0.02,0.06,0.07,0.09 eV. The straight line illustrates hw = gv.

by linearizing the mean-field kinetic equation and using the
relaxation time for screened Coulomb interaction.

Using the results from electrons with quadratic mass
dispersion and spin-orbit coupling, one can obtain the linear
Dirac dispersion of electrons in graphene by the infinite-mass
limit. This allows us to translate many results obtained for
spin-polarized systems with spin-orbit coupling directly to
graphene. We discuss here the density and pseudospin currents.
For the density currents no quasiparticle part appears only
anomalous ones. The anomalous currents lead to intra- and in-
terband longitudinal conductivities and the Hall conductivity.

We have analyzed the conductivities with respect to the
influence of magnetic fields and magnetic domain puddles as
well as mean fields which can be recast into an effective Zee-
man field. A density-independent universal behavior appears
for large Zeeman fields or for small densities. The experimental
optical conductivity is well reproduced by an intrinsic effective
Zeeman field and a proper relaxation time calculated in RPA.
Various limits are found not to be interchangeable like the
limit of vanishing scattering and the static limit. Only the
systematic expansion with respect to vanishing density leads
to the universal value. The pseudospin current shows a subtlety
in that the infinite-mass limit leads nontrivially to a universal
value for the quasiparticle part though the quasiparticle
velocity vanishes itself. This is certainly a consequence of
the nontrivial change of quadratic dispersion towards the
unbounded one of Dirac particles, but the deep reason behind
this requires more investigations.

The dynamical density and pseudospin response func-
tions are derived as a coupled linear equations system. By
linearization of the mean-field kinetic equations for density
and pseudospin, the response in random phase approximation
(RPA) with relaxation time approximation is obtained. Though

165415-14
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the standard RPA-Lindhard polarization function vanishes for
graphene, the anomalous coupling to the spin polarization
induces different forms of polarization functions which are
presented explicitly. The resulting dielectric function is dis-
cussed with respect to the expansion in orders of the fine
structure constant. It is found that the effective Zeeman field is
enhancing and sharpening the collective mode until some criti-
cal value. This is accompanied by a frequency and wavelength

PHYSICAL REVIEW B 94, 165415 (2016)

range where the screened interaction changes the sign allowing
the electrons to form Cooper pairs. Though the used level of
RPA should be extended to better approximations in order
to achieve quantitative predictions for pairing, the qualitative
region is believed to maintain. Finally, we should emphasize
that we have considered all quantities up to fourth order in
wavelength expansion which can be overcome by mean-field-
free approximations of the polarization function [54].
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