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Undamped relativistic magnetoplasmons in lossy two-dimensional electron systems
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We address electrodynamic effects in plasma oscillations of a lossy 2D electron system whose dc 2D
conductivity σ0 is comparable to the speed of light c. We argue that the perpendicular constant magnetic
field B causes astonishing features of magnetoplasma dynamics. We show that plasmon-polariton spectra can
be classified using a “relativistic” phase diagram σ0/c versus B. An extraordinarily low damping branch in
magnetoplasmon-polariton spectra emerges at two phases of this diagram. Some magnetoplasmons at these
phases are predicted to be undamped waves.
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I. INTRODUCTION

The typical frequencies of plasma waves in three-
dimensional (3D) solid-state systems (3D plasmons and sur-
face plasmons) are in the visible and ultraviolet range [1]. The
plasmons have found a number of technological applications in
chemical sensing, biomolecular detection, light manipulation,
and information processing [2–4]. On the other hand, plasmons
in 2D electron systems (ESs) have gapless spectra [5–7], which
makes them interesting in the context of the development of
novel microwave and terahertz devices [8–10]. In addition,
2D plasmons have a unique degree of freedom owing to the
ability to easily tune their frequency using external electric and
magnetic fields.

2D plasma oscillations are best studied in traditional semi-
conductor systems such as 2D electron gas in heterostructures
GaAs-AlGaAs [7]. Nevertheless there is a growing interest in
the study of the plasmons in new implementations of 2DESs,
including graphene [11–16] and topological insulators [17].
Unexpected manifestations of 2D plasmons are predicted in
cosmic dusty plasmas [18].

Weakly damped 2D plasmon modes are of particular
interest. The main factor that affects the plasmon damping
rate is electron collisions with impurities and phonons. For
example, consider a lossy 2D system, where the electron
relaxation time τ and, consequently, the plasmon damping rate
Im ωp are finite. In the simplest case (without retardation), the
complex dispersion relation of 2D plasmons has the form

ωp = ω′ + iω′′ =
√

2πne2q/�m − 1/4τ 2 − i/2τ, (1)

where ω′, ω′′ are real and imaginary parts of ωp, n is the 2D
electron concentration, � is the background dielectric constant,
m is the electron effective mass, and q is the 2D wave vector
of the plasmon. Note that at small wave vectors, the plasmons
become overdamped, i.e., Re ωp = 0.

Surprisingly, a weakly damped 2D plasmon mode has been
recently observed [19,20] in the regime when ordinary 2D
plasmons are overdamped. The authors of papers [19,20]
suppose that this puzzling mode is due to electrodynamic
effects.
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When electrodynamic effects are taken into consideration,
plasmons are often called plasmon-polaritons (PPs). Consider
a 2DES with the dc conductivity σ0 in free space (we use
Gaussian units, and therefore σ0 has velocity dimensionality;
for SI units, see Appendix A). What if the 2D conductivity of
the system becomes more than c? The authors of papers [21,22]
studied the properties of 2D plasmons in the relativistic regime
when the dc conductivity σ0 = e2nτ/m is on the order of c/2π .
It was shown [21] that the PPs have low damping, even in a
high-collision limit (ω′τ � 1), if 2πσ0/c > 1.

In the nonretardation limit, the only kind of plasmon decays
slowly even when ω′τ � 1. These are the so-called edge
magnetoplasmons [23–26], which run along the edge of a lossy
2DES placed in a perpendicular magnetic field B. However,
for these plasmons to exist, the magnetic field should be
strong enough to satisfy the condition ωcτ � 1, where ωc =
|e|B/mc is the electron cyclotron frequency (for theoretical
details, see [27,28]). Recently it has been demonstrated that
the edge magnetoplasmon damping in graphene can be lower
than that in GaAs systems [29].

Without a magnetic field, the retardation effects were taken
into account theoretically for PPs in a collisionless (τ → ∞)
2DES in Ref. [5], a lossy 2DES in Ref. [21], and a lossy bilayer
ES in Ref. [30]. For the first time, retardation effects in the
spectra of 2D PPs were observed in GaAs/AlGaAs quantum
wells with a high electron mobility [31].

An external magnetic field may modify significantly
a microwave response of the system. For example, ob-
servations [32] of microwave-induced resistance magneto-
oscillations in high-mobility 2DESs have attracted a lot of
interest; for a review, see [33].

If a constant magnetic field is applied perpendicular to the
2DES plane, the dispersion relation of 2D magnetoplasmons
in nonretardation and collisionless limits becomes ωmp =√

ω2
c + 2πne2q/�m. 2D magnetoplasmons interact strongly

with terahertz waves and microwaves. As a result, an ul-
trastrong 2D magnetoplasmon–radiation coupling has been
observed in the microwave [34] and terahertz [35] range. A
giant photoresistivity response was observed [36,37] under
microwave irradiation of a 2DES in the vicinity of the second
cyclotron resonance harmonic. This effect has been recently
explained [38] by an instability of irradiated magnetoplasma.

The retardation effect on magnetoplasmon-polariton spec-
tra was studied by Chiu and Quinn [39], but only in
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collisionless 2DESs. In an external constant magnetic field,
the conductivity tensor is of nondiagonal components, and
one needs to take into account retardation of Hall currents
(∼ σxy/c) as well. It results in an interaction of TM (longi-
tudinal) and TE (transverse) waves, and the physics of the
plasma waves in lossy 2DESs becomes complicated. This,
probably, explains the fact that the results of Ref. [21] were
not generalized to the lossy 2D magnetoplasma up to now.
Here, we investigate PP spectra in the lossy 2DES placed in
the perpendicular classical constant magnetic field.

We found that retardation effects in the magnetoplasmon-
polariton spectra are controlled not only by the retardation
factor (∼ σ0/c) but also by the Hall factor (∼ ωcτ ) with a
strong interplay between them.

Let us define the dimensionless cyclotron frequency
�c = ωcτ and the dc conductivity at zero magnetic field
σ̃ = 2πσ0/(c

√
�). We represent the results of the above-

mentioned interplay on phase diagram σ̃ vs �c; Fig. 1.
There are four phases. Each phase corresponds to the char-
acteristic type of PP spectra; see Figs. 2–5 and insets in
Fig. 1.

Let us now consider the most interesting phases S1 and S2,
in which an extraordinarily low damping PP branch emerges;
see Figs. 2 and 3. S phases are defined by the conditions σ̃ < 1
and σ̃ 2 + �2

c > 1; see Appendix A for these conditions written
in SI units. In these phases the PPs have two branches with ω′ 	=
0. At zero wave vector, branch 1 has zero frequency. Another
branch 2 has frequency �c. One of the branches contains a
termination point (ks,�s). Damping ω′′ at this point equals
zero and the PP quality factor Q ∼ ω′/ω′′ is infinite; therefore
this PP is not damped. In phases S1 and S2, the point with
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FIG. 1. Magnetoplasmon-polariton phase diagram in space of
dimensionless parameters: 2D dc conductivity σ̃ = 2πσ0/(c

√
�) vs

cyclotron frequency �c = ωcτ . The characteristic spectra ω(q) of
high-quality PPs in each phase are presented schematically in the
insets (red dash-dotted line corresponds to the 2D light cone); for
details, see Figs. 2–5. In the low-conductivity phase L (light red)
and high-conductivity phase H (green) the spectra ω(q) consist of
two branches, but one branch is overdamped. In phases S1 (blue)
and S2 (dark blue), an additional extraordinarily low damping branch
appears. This branch is gapless in phase S1, gapped in phase S2, and
contains a termination point, imaged by a bullet in the insets. The PP
damping at this point is zero. The phase boundary L-S1 is defined by
the following equation: �2

c + σ̃ 2 = 1.
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FIG. 2. Plasmon-polariton spectra at phase S1 for the following
parameters on the phase diagram (Fig. 1): σ̃ = 0.8 and �c = 0.9. The
real, Re �(k), and imaginary, Im �(k), parts of the dimensionless
complex PP frequency � as a function of the dimensionless wave
vector k are shown, where � = ωτ and k = qcτ/

√
�. The gapless

high-quality branch 1 has a termination point (ks,�s), denoted by the
bullet, where Im �s = 0. The values ks and �s are defined by Eqs. (5).
The red dash-dotted line Re � = k corresponds to a 2D light cone.
Inset: Enlarged plot of Im �(k) for branch 1.

infinite Q is situated on branches 1 and 2, respectively. The
boundary S1-S2 has asymptotic behavior σ̃ → 1 − �2

c/6 at
�c � 1 and σ̃ ∝ 1/

√
�c at �c � 1.

The absence of the PP damping at the termination point
(ks,�s) can be qualitatively understood by the following.
The PP becomes delocalized in the direction perpendicular to
the 2DES plane; i.e., electric and magnetic fields oscillate
in space without decreasing. Therefore, PP energy is stored
in the whole infinite space. The PP quality factor Q equals
2πW/�W , where W is the energy stored in PP, and �W is
the energy loss per period of PP oscillation due to the Joule
heat released in the 2DES. �W has finite value due to the finite
values of PP fields and conductivity of 2DES, whereas W is
infinite as PP is delocalized. That is why Q becomes infinite
and ω′′ ∼ 1/Q equals zero.

Note that one of the dispersion curves in phases S1, S2, and
H has abnormally large derivative dω′/dq > c/

√
� at small
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FIG. 3. Plasmon-polariton spectra at phase S2 for the following
parameters on the phase diagram (Fig. 1): σ̃ = 0.98 and �c = 0.9.
The designations are the same as in Fig. 2. The gapped extraordinarily
low damping branch 2 has a termination point (ks,�s), where Im �s =
0 [see Eqs. (5)]. Inset: Enlarged plots Im �(k) for branches 1 and 2.
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2D wave vector q. This peculiarity should not be surprising
since dω′/dq does not describe the group velocity as the PPs
not only run along the 2DES [in the (x,y) plane] but also move
perpendicular to the 2DES (along the z axis). The latter makes
a valuable contribution to the group velocity (see Eq. (15) from
Ref. [21]).

The paper is organized as follows. First, we recall the
dispersion equation for 2D magnetoplasmon-polaritons. Sec-
ond, we analyze the plasmon spectra for different regions
in the phase space of dimensionless parameters conductivity
σ̃ vs cyclotron frequency �c. Finally, we draw our conclu-
sions. In Appendix A characteristic values of conductivity,
magnetic field, etc., are rewritten in SI units. The Drude
model for conductivities is presented in Appendix B. We
determine the field structure and the velocity of the PPs in
Appendix C, and Appendix D is devoted to PPs in gated
2DESs.

II. ANALYSIS OF DISPERSION EQUATION

Consider a 2DES positioned in plane z = 0 and placed in a
perpendicular magnetic field B. One can derive a PP dispersion
equation using the Maxwell equations, the continuity equation
for the electron charge density ∂tρ + div j = 0, and Ohm’s
law j = σ̂E. Here ρ is the charge density, j is the electron
density current, and σ̂ is the 2D conductivity tensor (σxx = σyy ,
σxy = −σyx).

We look for solutions in the form exp(−iωt + iqr), where
r = (x,y) is the 2D coordinate, q is a 2D PP wave vector, ω

is complex frequency, and ω′′ � 0. We look for the normal
modes that do not grow at z → ±∞. The normal modes
have the form exp(−β|z|), where β =

√
q2 − �ω2/c2, and

the condition Re β � 0 should be held.
Now one can obtain the well-known general dispersion

equation for magnetoplasmon-polaritons (see, for example,
Eq. (58) from Ref. [39] or Eq. (10) from Ref. [40]):(

1 + 2πσxxβ

−iω�

)(
1 − 2πσxxiω

c2β

)
= −4π2

c2�
σ 2

xy. (2)

If B = 0 (σxy = 0) Eq. (2) decays into two equations. The first
equation describes a TM wave, i.e., wave with two electric
field components (Ex,0,Ez) and a single magnetic component
(0,Hy,0), where we direct the wave vector along the x axis:
q = (q,0). If retardation effects are neglected, the TM wave
corresponds to the usual 2D plasmon with spectrum (1).
The second equation describes a TE wave with the field
components (Hx,Ey,Hz). The spectra of both waves were
analyzed in detail in Ref. [21]. When the magnetic field is
nonzero, the TM and TE waves mix to yield new modes.

For simplicity, we use the Drude model for conductiv-
ities; see Appendix B. Then we define the dimensionless
magnetoplasmon-polariton frequency and wave vector as
follows: � = ωτ and k = qcτ/

√
�. The solutions of the

dispersion equation strongly depend on the values of the
magnetic field and 2D dc conductivity. This is why we consider
four different phases of parameters �c and σ̃ (see Fig. 1).

Phase L corresponds to the case of low conductivities and
weak magnetic fields (0 < σ̃ 2 < 1 − �2

c). In the absence of
a magnetic field, we observe TM and TE waves, denoted by
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FIG. 4. Plasmon-polariton spectra at phase L (see Fig. 1) at
conductivity σ̃ = 0.6. The axes are the same as in Fig. 2. The
dashed lines denote branches with Re � = 0. The colors correspond
to different values of the cyclotron frequency �c: �c = 0 (black and
green), �c = 0.05 (blue), and �c = 0.1 (orange).

green and black lines in Fig. 4. Both waves are overdamped
(�′ = 0) at small k. At a nonzero magnetic field, one branch
remains overdamped at small k (see dashed blue and dashed
orange lines in Fig. 4). The other branch (solid blue and solid
orange lines in Fig. 4) has asymptotics at k → 0 as follows:

� = �c − i(1 − σ̃ ) + −σ̃ (̃σ − i�c)

8�c[�c − i(1 − σ̃ )]4
k4. (3)

At k → ∞, one branch (see dashed lines in Fig. 4) is
overdamped (� → −i) and the other branch (solid lines
in Fig. 4) has asymptotics of the usual magnetoplasmons:
� → √

�2
c + σ̃ k − 1/4 − i/2.

Phases S1 and S2 correspond to the case of low 2D
conductivity, but a large interval of magnetic fields (1 − �2

c <

σ̃ 2 < 1). In this regime, an extraordinarily high quality branch
appears in PP spectra (branch 1 in Fig. 2). Branch 2 in Fig. 2
originates from the usual magnetoplasmon in phase L (see
solid orange line in Fig. 4). The third branch (it is not denoted
in Fig. 2) also exists, but it is overdamped at any k. This branch
has behavior similar to that of the dashed orange line in Fig. 4.

Low-frequency branch 1 has the following asymptotic
behavior at k → 0:

� = k

√√√√1

2
+ 1

2

σ̃ 2 + �2
c + 1√(

σ̃ 2 + �2
c + 1

)2 − 4σ̃ 2

− ik2σ̃ 2 σ̃ 2 + �2
c − 1[(

σ̃ 2 + �2
c + 1

)2 − 4σ̃ 2
]3/2 . (4)

Branch 1 subsides weakly at small k, even if the condition
�′ � 1 (i.e., ω′τ � 1) takes place. High-frequency branch 2
is described at k → 0 by Eq. (3).

An unexpected result is that in S phases, a point of infinite
quality factor (�′′ = 0) emerges in magnetoplasmon-polariton
spectra. The extraordinarily high quality branch terminates
at this point; the position of this point (ks,�s) is defined as
follows:

�2
s = σ̃ 2 + �2

c − 1, k2
s = 2

(
σ̃ 2 + �2

c − 1
)

1 +
√

1/(1 − σ̃ 2)
. (5)
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FIG. 5. Plasmon-polariton spectra at phase H (see Fig. 1) at σ̃ =
1.2. The designations are the same as in Fig. 2. Green and orange
colors correspond to different values of the cyclotron frequency, i.e.,
�c = 0 (orange) and �c = 0.9 (green). At �c = 0, only the TM wave
is plotted.

This point is situated on branch 1 at phase S1. However,
as the magnetic field or conductivity increases, we intersect
phase boundary S1-S2, and the termination point moves to
branch 2; see Fig. 3. As σ̃ tends to unity, ks tends to zero [see
Eq. (5)], branch 2 in Fig. 3 vanishes, and phase S2 transitions
to phase H (see Fig. 1).

Phase H corresponds to 2DES with high conductivity (̃σ >

1). Note that the asymptotics σ̃ � 1 corresponds to the limit
considered by Chiu and Quinn [39].

The PP spectra without/with the magnetic field are pre-
sented in Fig. 5. There are two branches in phase H. One
branch is overdamped at any k (it is not denoted in Fig. 5) and
has behavior similar to those of the dashed orange line in Fig. 4.
Another one stems from the branch 1 in Fig. 3. The branch has
at k → 0 asymptotic behavior described by Eq. (4), and a high
Q factor (|�′′| � �′). At k → ∞, this branch behaves like a
usual magnetoplasmon: � → √

�2
c + σ̃ k − 1/4 − i/2.

Now let us consider the PP field structure in the z direction.
Note once again that we find solutions that do not increase at
|z| → ∞, i.e., Re β = Re

√
q2 − �ω2/c2 � 0. The imaginary

part of β defines the direction of the PP phase velocity along
the z axis. It turns out that all the above considered PPs
have phase velocity directed to the 2DES. PPs without a
magnetic field [21] demonstrate similar behavior. Note that
one cannot evaluate the group velocity of 2D PPs as dω/dq

even in dissipationless 2DES. This is because the PP is a
nonuniform wave, and it moves along the z direction to the
plane z = 0 from both half spaces z < 0 and z > 0. One should
use a more accurate relation (see Eq. (15) from Ref. [21]) to
determine the PP group velocity. In the case of lossy systems,
the velocity of signal propagation can be characterized (see,
for example, Ref. [41]) by the velocity of energy transfer
V = N/w, where N = c[E × H]/4π is the Poynting vector
and w = (�E2 + H2)/8π is the energy density of the wave.
Components Vx and Vy define the signal velocity along 2DES.

The polarization and the velocity of PPs are considered in
Appendix C. Let us discuss the velocity of energy transfer V
at the termination point (ks,�s). It turns out that energy travels
from infinity to 2DES and then dissipates in 2DES due to finite
value of τ . Moreover, the velocity of energy transfer modulus

at the termination point is equal to the speed of light in the
medium: |V| = c/

√
�.

III. DISCUSSION AND CONCLUSIONS

To describe the dynamics of 2DES, we use the simplest
classic approach (the Drude model for conductivities; see
Appendix B). In general, the Drude model works well in
semiconductor systems. For instance, its reliability up to
frequencies of several GHz was demonstrated in paper [42].
However, the Drude model does not take into account the
strong electron correlations, which are responsible for the
appearance of shear and magnetoshear modes [43–46] in dusty
plasmas.

We do not take into consideration quantum effects. That is
why, strictly speaking, the conditions �ωc < T , �ωc � EF ,
and �ω < EF should be held for our results to be correct
(here EF is the Fermi energy). Nevertheless, the following
should be mentioned. In Ref. [39] the magnetoplasmon-
polariton spectrum in a clean (τ → ∞) 2DES was derived
in the random phase approximation (RPA) taking into account
Landau quantization. In the long-wavelength limit q � R−1

c

and q � kF (here Rc = vF /ωc is the electron cyclotron radius,
�kF and vF are the Fermi momentum and velocity), the
calculated spectra coincide with those achieved using the
Drude model in the collisionless limit. Our PP branch and
the point of infinite quality factor are just situated at small
wave vector q, where the Drude model is applicable; see
Appendix B.

In conclusion, we analyzed and classified the spectra of
PPs in a lossy 2DES in a transverse classical magnetic field.
We showed that the frequency and damping rate of PPs are
described by the interplay of three factors: retardation of
longitudinal and transverse (Hall) currents, and collisional
processes. The characteristic PP spectra can be classified
using a phase diagram in magnetoplasma parameter space,
i.e., dimensionless conductivity σ̃ vs dimensionless magnetic
field �c. A relativistic extraordinarily low damping branch
of PPs emerged in the two S phases, when the condition
1 − �2

c < σ̃ 2 < 1 is satisfied.
This branch is gapless in phase S1 (but has a gap in

phase S2) and is described by an unusual dispersion curve
that is situated inside the 2D light cone. Nevertheless, the
velocity of energy transfer (an analog of group velocity) does
not exceed the speed of light. This is due to the fact that
the electric and magnetic fields of these PPs oscillate in all
three directions, including the direction perpendicular to the
2DES plane. Finally, we demonstrate that the above mentioned
branch contains a termination point. The damping at this point
is zero and the velocity of the energy transfer modulus is equal
to the speed of light.

In experiments [19,20], a weakly damped PP mode was
observed in gated 2DES. In the absence of an external magnetic
field, the amplitude of the mode had a sharp peak near σ̃ = 1.
In the phase diagram (Fig. 1), the above region corresponds
to a singular point (0,1) where all four phases coalesce. We
emphasize that we do not put forward an explanation of the
experiments [19,20]. In an infinite gated 2DES, the retardation
effects do not influence significantly the magnetoplasmon
spectra; namely, additional plasmon branches do not appear
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(see Appendix D). Nevertheless, this situation can change in
the finite-size 2DES due to the influence of edges of the system.
This complicated problem needs special consideration. For
example, edge magnetoplasmon-polaritons with the intrinsic
long lifetimes can appear in a finite 2DES [47].
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APPENDIX A: CONDITIONS FOR S PHASES IN SI UNITS

There are two conditions for the branch in PP spectra to
appear (see S1 and S2 phases in Fig. 1). In Gaussian units they
can be written as σ̃ = 2πσ0/c

√
� < 1 and σ̃ 2 + (ωcτ )2 > 1,

where σ0 is the static conductivity without magnetic field, c is
the speed of light (in vacuum), � is the background dielectric
constant, ωc = |e|B/mc is the electron cyclotron frequency,
e and m are the electron charge and effective mass, and τ is
the electron relaxation time due to collisions with impurities.
Here we discuss these conditions in SI units.

The first condition appears in SI units as

σ0/2ε0c
√

� < 1, (A1)

where ε0 ≈ 8.854 × 10−12 F/m is the vacuum permittivity. If
we assume that the relative dielectric permittivity � is equal
to unity, then one can find using Eq. (A1) that the minimal
resistivity σ−1

0 of the 2DES is 188 ohms/�. Such resistivity
corresponds to electron mobility μ = 16.5 m2/V s for elec-
tron concentration 2 × 1015 m−2 in a typical semiconductor
2DES.

The second condition can be written in SI units as

(σ0/2ε0c
√

�)2 + (τeB/m)2 > 1. (A2)

This condition is trivially satisfied if τeB/m = Bμ > 1. For
typical mobility μ = 10 mm2/V s one can find B > 0.1 T.

APPENDIX B: DRUDE MODEL

Generally speaking, conductivity σ (ω,q) and dielectric
function ε(ω,q) depend on frequency ω and wave vector q.
In 2DESs with infinite relaxation time τ , they can be found,
for example, using RPA. However, RPA fails to include finite
relaxation time effects [48].

Mermin’s approach [48] conserves the local electron
number and is widely applied. In the long-wavelength limit
(q → 0), one can derive that Mermin’s dielectric function
becomes ε(q,ω) = 1 − ω2

p0(q)/ω2(1 + i/ωτ ), where ωp0(q)
is the plasma frequency at the dissipationless limit (τ →
∞). This dielectric function coincides with the usual Drude
dielectric function. Therefore, the Drude model is applicable
in the long-wavelength limit.

If constant magnetic field is applied perpendicular to
the 2DES plane, then the Drude model for conductivities

appears as

σxx = (1 − iωτ )σ0

(1 − iωτ )2 + ω2
cτ

2
, σxy = −ωcτσ0

(1 − iωτ )2 + ω2
cτ

2
.

(B1)

Let us solve the general dispersion equation (2) for plasmon-
polaritons using expressions (B1).

We define dimensionless magnetoplasmon-polariton fre-
quency and wave vector as follows: � = ωτ and k = qcτ/

√
�.

Using Eqs. (B1), the general dispersion equation for complex
frequency � and the real wave vectors k can be written in
dimensionless form as

k2 − 2�2 = i�
(1 − i�)2 + �2

c + σ̃ 2

(1 − i�)̃σ

√
k2 − �2. (B2)

The solutions of Eq. (B2), Re �(k) + i Im �(k), depend
qualitatively on the values of the dc 2D conductivity and the
magnetic field. As a result, the PP spectra can be classified
using a phase diagram: dimensionless 2D conductivity σ̃ =
2πσ0/c

√
� versus dimensionless cyclotron frequency �c =

ωcτ ; see Fig. 1.

APPENDIX C: POLARIZATION AND VELOCITY
OF PLASMON-POLARITONS

Let us now consider polarization of PPs. We direct the 2D
PP wave vector q along the x axis and define the polarization
coefficient δ = Ex/Ey . One can qualitatively assume that if
|δ| � 1 then PP is close to the TE wave, and if |δ| � 1 then
PP is close to the TM wave. The expression for δ can be written
as

δ(k,�) = 1 − i�

−�c

(
(k2 − 2�2)

[
(1 − i�)2 + �2

c

]
�2

[
(1 − i�)2 + �2

c + σ̃ 2
] + 1

)
.

(C1)

For example, let us find δ for the point of cyclotron
resonance k = 0, � = �c − i(1 − σ̃ ) (here we assume σ̃ <

1). Using Eq. (C1), one can derive δ = −i, which corresponds
to the active circular polarization.

Let us now find the polarization coefficient for the
termination point: δs = δ(ks,�s). Using the definition δs =
|δs | exp(iψ), one can find

|δs | = 1 − √
1 − σ̃ 2

1 + √
1 − σ̃ 2

, tan ψ =
√

σ̃ 2 + �2
c − 1√

1 − σ̃ 2
; (C2)

i.e., the PP at the termination point (ks,�s) has mixed
polarization, and the magnetic field modifies only the phase of
coefficient δ.

Let us find now the velocity of energy transfer V = N/w at
the termination point (ks,�s). Here N = c[E × H]/4π is the
Poynting vector and w = (�E2 + H2)/8π is the energy density
of the wave. The averaged in time components of V(ks,�s) (at
z > 0 and q along the x direction) are

V av
x = c√

�

√
2 4
√

1 − σ̃ 2√
1 + √

1 − σ̃ 2
, V av

z = − c√
�

√
1 − √

1 − σ̃ 2

1 + √
1 − σ̃ 2

,

(C3)
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and V av
y = 0; V av

z changes its sign at z < 0. It is clear that
energy flow is directed to the 2DES; i.e., energy travels from
infinity to 2DES and then dissipates in 2DES due to finite value
of 2D conductivity.

APPENDIX D: MAGNETOPLASMON-POLARITONS
IN GATED 2DES

Consider an infinite 2DES in the presence of a metallic gate;
d is the distance between the gate and 2DES plane. Usually,
d is much less compared to the typical sample size L and the
wavelength of light λ (we assume that the frequency lies in
the microwave or terahertz range). Therefore, βd � 1, where
β =

√
q2 − �ω2/c2, as β is of the order of L−1, λ−1, or even

less. Under the condition βd � 1, the dispersion equation for

PP in a gated 2DES appears as follows:(
1 − 4πiωσxxd

c2

)(
1 + 4πσxxβ

2d

−iω�

)
= − (4πσxyβd)2

c2�
.

(D1)

Using the Drude model (B1) and introducing dimen-
sionless notations � = ωτ , k = qcτ/

√
�, �c = ωcτ , and

σ̃ = 2πσ0/c
√

�, one can see that dispersion equation (D1)
is controlled by the parameter V 2

gated�/c2, where Vgated =√
4πe2nd/m� is the velocity of gated plasmons at zero

magnetic field. In real 2DES, the above parameter is always
less than unity. Consequently, additional plasmon branches
and the point of infinite Q factor do not appear; PP spectra are
similar to those in the phase L (see Fig. 1).
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