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Theory of Landau level mixing in heavily graded graphene p-n junctions
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We demonstrate the use of a quantum transport model to study heavily graded graphene p-n junctions in the
quantum Hall regime. A combination of p-n interface roughness and delta function disorder potential allows us
to compare experimental results on different devices from the literature. We find that wide p-n junctions suppress
mixing of n �= 0 Landau levels. Our simulations spatially resolve carrier transport in the device, revealing
separation of higher order Landau levels in strongly graded junctions, which suppresses mixing.
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I. INTRODUCTION

The discovery of the integer quantum Hall effect in 1980
was a seminal event in the field of condensed matter physics
[1]. Shortly thereafter, the fractional quantum Hall effect was
also discovered [2]. The observation of integer and fractional
steps in the Hall conductance, in units of e2/h, cemented
two-dimensional electron gases (2DEGs) as a platform to study
quantum transport. Conventional 2DEGs formed in semicon-
ductor heterostructures, however, are restricted to unipolar
conduction, either by electrons or holes. The discovery of
graphene in 2004 by Novoselov and Geim lifted this restric-
tion, giving physicists a fascinating material to investigate the
quantum Hall effect in devices with ambipolar conduction [3].

Graphene is formed by carbon atoms arranged in a single
layer honeycomb structure, yielding a gapless band structure
with linear Dirac cones at two degenerate K and K′ points [4].
At the K and K′ points the twofold spin degeneracy is split
between electron and hole carriers, yielding a characteristic
half-integer quantum Hall effect [4,5]. In addition to ambipolar
conduction, graphene exhibits extremely high carrier mobility
[6] and thermal conductivity [7]; these properties make it a can-
didate channel material for future electronic applications [8].

In this paper, we present a model studying the transition
between graphene p-n junctions which mix Landau levels [3]
and those which only mix the lowest Landau level [9]. We seek
to further understand the magnetotransport of p-n junctions
formed with buried split gates, as depicted in Fig. 1. In order to
study the effect of junction width DW on transport, we combine
the delta function disorder model of Ref. [10] and p-n junction
interface roughness model of Ref. [11], giving a simulation
with more realistic conditions. We will start by introducing
the details of the model, demonstrate how it can be used to
replicate experimental results of Refs. [3] and [9], and then
present several visualizations which assist in understanding
the underlying transport mechanisms.

II. BACKGROUND

Through the use of metal gates capacitively coupled to
graphene, it is possible to create a p-n junction by locally
modulating the carrier concentration. The p-n junction is a
fundamental device, used as the building block from which
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many other devices are built. In graphene, p-n junctions exhibit
very interesting physics such as Klein tunneling [12] and may
be used in electron optics [13].

The application of a magnetic field perpendicular to a
graphene device produces a Lorentz force which constricts
transporting carriers to the edges of the sheet. A sufficiently
strong magnetic field will confine the carriers into edge states,
known as Landau levels, whose energy is given by

ELLn = sgn(n)
√

|n|2eB�ν2
F , (1)

where n is the Landau level index, given by an integer. The
term e is the electron charge, B is the applied magnetic field, �

is the reduced Planck’s constant, and νF is the Fermi velocity
(approximately 106 cm/s).

In a typical graphene quantum Hall measurement, the entire
graphene device is uniformly doped by a global back gate and
a strong magnetic field is applied. When the Fermi energy is
not set to the energy of the Landau level, EF �= ELLn, the edge
states on the opposite sides of the channel are isolated by an
insulating bulk state. In this configuration, carrier conduction
only takes place through the edges of the device. When the
back gate voltage is modulated and the Fermi energy moves
through the energy of a Landau level, EF ≈ ELLn, the bulk of
the device no longer isolates the edges and electrons conduct
through the entire device. These two conditions result in the
transverse and longitudinal resistance, respectively, typically
reported in experiments.

When a graphene p-n junction is formed, in the quantum
Hall regime, the device simultaneously conducts through the
edge states and localized bulk Landau levels. Away from the
junction, when EF �= ELLn, carriers conduct along the edge
as before. However, at the junction, where the potential of
the device smoothly transitions between n and p type, there
will exist an equipotential line for each transporting edge state
where

EF − ELLn = Eon-site(x). (2)

The term Eon-site is the local potential energy in the device. On
this equipotential line, carriers will conduct through the bulk,
bridging the edge states on the opposite sides of the channel.
Furthermore, in a very smooth p-n junction, the equipotential
line of each bulk state will separate, allowing one to spatially
resolve conduction in each Landau level. In this paper we
will use quantum transport calculations to verify the condition
in (2) and spatially resolve conduction through the bulk in a
smoothly graded p-n junction.
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FIG. 1. A schematic of a graphene device with buried split gates.
The device consists of a silicon dioxide substrate into which two
metal gates are formed. A gate oxide on top of the silicon and metal
gates electrically isolates the graphene from the gates. Contacts on
each side of the graphene device allow for measurements of carrier
transport. The split gates capacitively couple to the graphene sheet
and modulate the local Fermi level. By varying the voltage of the two
gates separately, it is possible to form different types of junctions,
including a p-n junction. Applying a strong external magnetic field,
perpendicular to the graphene sheet, causes the carriers to be constric-
ted into Landau levels, which travel around the edges of the graphene.
The arrows depict the flow of carriers in the lowest Landau level.

Abanin et al. predicted that when the Landau levels in
a graphene p-n junction mix, plateaus in the two-terminal
conductance will occur according to

Gtwo-terminal = |ν1||ν2|
|ν1| + |ν2| , (3)

where ν1,2 = [±2, ± 6, ± 10,...] are the filling factors of
the left/right sides of the junction [14]. This effect was
experimentally measured by Williams et al., where several
of the predicted plateaus were observed [3]. The device of
Williams et al. was fabricated with a global back gate and
local top gate, which were used to create the junction [3].

There have been several studies which model the results
observed by Williams et al. Tworzydło et al. analyzed the
importance of the valley-isospin and intervalley scattering
[15]. Long et al. [16] and Li et al. [10] both demonstrated a
quantum transport model including large on-site disorder delta
function potentials which allowed the Landau levels to mix and
demonstrated plateaus in unipolar and ambipolar junctions.
Low [11] presented an alternative quantum transport model
which used interface roughness, edge roughness, and localized
scattering centers to mix the Landau levels, tying closely to
the experiments by Williams et al. [3].

Recently, Klimov et al. performed measurements on a
graphene p-n junction which, in the ambipolar regime, only
showed one plateau with a conductance of 1 e2/h [9]. This
single plateau was predicted to occur when only the 0th Landau
level mixes. The device of Klimov et al. was formed using a
pair of split gates buried 100 nm under the gate oxide, with a
large intergate spacing. These split gates produce a very graded
junction profile, on the order of several hundred nanometers.

The authors posited that the graded junction would spatially
separate the higher order Landau levels, inhibiting mixing [9].
In contrast, the top gate used by Williams et al. is located very
close to the graphene, producing a sharper junction [3].

III. MODELING TECHNIQUES

In the past, quantum transport modeling has been used
ubiquitously to great success in capturing the physics of
graphene transport both without [17–19] and with magnetic
fields present [10,11,16,20]. In this paper, we will use the
scattering matrix (S-matrix) method, which enables us to
calculate the terminal characteristics of the device in Fig. 1.
Using the S-matrix method, we are also able to calculate
the wave function inside the device channel, allowing for
visualizations of carrier transport. The numerical aspects of
the calculations were performed using the quantum transport
package KWANT [21].

Carrier transport at low energies in graphene is described
by a massless Dirac Hamiltonian given by

Ĥ = νF σ · p, (4)

where σ = (σx,σy) is a vector of Pauli matrices and p =
(p̂x,p̂y)T is a vector of momentum operators. This Hamiltonian
may be discretized onto a honeycomb lattice, resulting in the
tight-binding Hamiltonian

Ĥ =
N∑
i

εi ĉ
†
i ĉi +

N∑
i,j

ti,j ĉ
†
i ĉj , (5)

written in the language of creation/annihilation operators
ĉ
†
i /ĉj .

The first summation in (5) fills the Hamiltonian matrix
diagonals with εi , the on-site energy at site i. The on-site
energy describes the potential landscape of the device and
allows the creation of a p-n junction. The second summation
in (5) only generates nonzero matrix elements for lattice sites
which are first nearest neighbors, allowing transport between
the sites.

Typically, ti,j is set to t0 = 2.71 eV, representing the π -
bond overlap between first nearest-neighbor atoms [22]. In
this work we adopt a scaled tight-binding model, presented in
[23], where the lattice constant of graphene a0 and the hopping
parameter t0 are scaled by a scaling factor sf according to

a = sf a0

ti,j = t0/sf . (6)

We use a scaling factor of sf = 8, which allows for more ef-
ficient simulations while still accurately capturing the physics
of graphene.

In order to include the effect of a magnetic field applied
perpendicular to the graphene sheet, we introduce Peierl’s
phase by setting p −→ p − eA. A is the magnetic vector
potential, and the magnetic field is given by B = ∇ × A. For a
device with leads oriented along the x direction, it is convenient
to define the magnetic vector potential using Landau gauge;
A = 〈0, − Bx,0〉, where B is the magnitude of the applied
magnetic field. The effect of Peierl’s phase, in this case, is to
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modify the hopping parameter according to

ti,j = t exp

[
i
e

�

∫ rj

ri

A · dr
]
, (7)

where t is the unperturbed hopping parameter. The integral in
(7) is a line integral which takes place between the two sites i

and j and may be calculated as a straight line, yielding

ti,j = t exp

[
−i

e

�
B(xi − xj )

yi + yj

2

]
. (8)

Simply simulating a pristine abrupt p-n junction in
graphene, by putting a step in the on-site energy profile, is not
sufficient to capture experimentally observed quantum Hall
effects. It is necessary to include some extrinsic effects to mix
Landau levels and cause intervalley scattering at the p-n junc-
tion interface. In addition, experimentally realized p-n junc-
tions have a finite transition between the n and p regions, the
junction width DW , which must be included. In this paper, we
present a model combining the interface delta function disorder
of Ref. [10], the p-n interface roughness model of Ref. [11],
and a finite DW . Our model uses disorder potential a factor of
four less than that used in Ref. [10]. The lower disorder poten-
tial is needed to demarcate the junction profile and combined
with the roughness model of Ref. [11], allows us to study junc-
tion width effects in experimentally measured p-n junctions.

In our simulations, we perform an ensemble average of
conductance over many randomly generated disorder profiles
for a device with a fixed interface roughness profile. This
procedure is used to account for ergodicity, which states that
time averaging by measurements in the laboratory may be
accounted for in simulations by ensemble averages of systems
with spatial disorder [24].

The p-n junction profile, including effects of junction
width, interface disorder, and interface roughness, are all
included by modifying the on-site energy in the device channel
Hamiltonian (5). We implement modifications to the on-site
energy according to the piecewise function⎧⎨
⎩

E1, x � I (y) − DW/2
E2−E1

DW
x + E1+E2

2 + δi, I (y) − DW/2 � x � I (y) + DW/2
E2, x � I (y) + DW/2

.

E1,2 represent the shift in the on-site energy in the device
produced by capacitively coupled gates. In the context of this
work, a positive shift in E1,2 creates a p-type region and a
negative shift in E1,2 creates an n-type region. The term δi is
a delta function disorder potential placed in each site i in the
junction transition region.

The delta function disorder term δi , added to the on-site
energy at the sites in the junction transition region, is randomly
generated according to a Gaussian distribution centered at
0.0 eV with a standard deviation of 0.15 eV. This site-to-site
change in potential energy is sufficient to cause intervalley
scattering at the junction, which is necessary to capture
experimental results. The maximum disorder potential in our
model is a factor of four smaller than that suggested by Li et al.
[10]. Using such a large disorder potential would obscure the
effect of junction width on Landau level mixing. In our case,
the disorder potential perturbs the Landau levels, but the effect
of junction width will still be seen.

I (y) is the junction interface roughness profile, created
using the model presented by Low [11]. We will repeat the
specifics of the interface roughness model here for clarity.
I (y) is generated as a Fourier series, given by

I (y) =
N∑
n

An sin

(
nπy

W

)
. (9)

The amplitude of the nth Fourier component is defined as

An = R(D1)e− n
D2 . (10)

The function R(D1) gives a uniformly distributed random
number around ±D1. The terms D1,2 and the number of
Fourier components N are used to control the form of the
roughness profile. In our simulations, we set D1,2 = 13 and
N = 30. This yields a roughness profile with an RMS standard
deviation of approximately 12 nm.

Now that the device Hamiltonian (5) is fully defined, we
use the S-matrix formalism to study its transport properties.
We calculate the zero temperature, zero bias two-terminal
conductance according to the equation

G(E) = 2e2

h
T (E), (11)

where the two is for spin degeneracy. The zero temperature,
zero bias approximation is valid when comparing to low
bias measurements performed at, or below, liquid helium
temperatures. T (E) is the quantum mechanical transmission
function given by

T (E) =
∑

n∈S,m∈D

|Snm(E)|2, (12)

where the summation occurs over the S-matrix elements
connecting the source and drain contacts to the channel.
The calculation of the transmission function automatically
includes another factor of two for valley degeneracy, which
is intrinsically factored into our Hamiltonian.

In addition to calculating the conductance, we also calculate
the wave functions associated with the Landau levels. By
spatially resolving the wave functions, we produce maps of the
transporting electron probability density, which are useful for
analyzing the underlying physical mechanisms of conduction
for each Landau level. The probability density at site i is given
by

ρ(i) =
∑

j=S,D

ψj (i)ψj (i)∗, (13)

where ψj (i) is the wave function at site i for carriers from the
j th contact. In practice, it is helpful to remove the summation
in (13) and study the carriers injected by only one contact at a
time.

IV. RESULTS AND DISCUSSION

We will begin by comparing the results of our model with
experimental results in the literature for junctions which mix
several Landau levels [3] and those which only mix the lowest
Landau level [9]. After verifying that our model is able to
replicate results for different experimental junctions, we will
seek to further understand the mechanisms at play. We will next
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FIG. 2. We benchmark our model by simulating conductance between source and drain contacts, which is equivalent to Hall conductance
measured in typical experiments. We compare our simulated conductance with experiments which show several plateaus in ambipolar conduction
[3] and those which do not [9]. All curves are for L = 320 nm, W = 200 nm, and B = 4 T. Each point in every curve is the ensemble average
of the conductance for 400 different disorder realizations. (a) The diagonal slice of the conductance map typically measured. We set the on-site
energy of the left side of the junction, E1, to be the negative of the right side, i.e., E1 = −E2. This produces a symmetric n-p junction.
(b) The on-site energy of the left side of the junction is fixed to E1 = −0.05 eV, and the right side on-site energy is varied. (c) The junction is
configured as in (b), but now E1 = −0.09 eV. In each plot, when the junction width is small (DW = 30 nm), all the Landau levels are mixed.
Plateaus occur when the filling factors jump from 2 to 6 to 10 (the transitions are indicated by vertical dashed lines). When the junction widths
are longer, mixing is suppressed and only the lowest Landau level fully mixes. This is consistent with experimental results in the literature.
(c) Inset: Two terminal conductance simulated in the unipolar regime for DW = 30 and 125 nm with E1 = E2 (solid line), E1 = 0.09 eV
(dotted line), and E1 = 0.05 eV (dashed line). The x axis is the same as the parent plot. The line colors are the same as given by the legend in
(a). Due to the weak dependence of the unipolar conductance on DW , the lines for E1 = 0.05 eV run on top of each other.

study the effect of junction width and magnetic field strength
on the degree of Landau level mixing in a junction. Several
visualizations will be presented for pristine and disordered
junctions which demonstrate the effect of a large junction
width, where the Landau levels are separated and may be
spatially resolved. Finally, we will compare a very wide
junction device with analytical wave function calculations
[25], demonstrating how the graded p-n junction may reveal
the effect of graphene’s two sublattice structure.

A. Comparison with experiment

In numerically studying quantum transport, it is very
important to first benchmark the model against some experi-
mental measurements. We choose to model the experimental
Hall conductance measurements of Refs. [3] and [9]. In an
experiment, one can sweep two gate voltages independently,
measuring the Hall conductance at each gate voltage. This may
be continued to generate a four quadrant map of conductance
for the p-n, n-p, p-p, and n-n configurations. We will
primarily focus on the ambipolar junction configuration, which
is what makes graphene special compared to conventional
2DEGs.

In Fig. 2 we show the simulated Hall conductance for a
diagonal slice and two horizontal slices (at νn = 6 and 10) of
the n-p quadrant for DW = 30,100, and 125 nm. The x axis
of each plot shows the on-site shift of the right side of the
junction, E2. This shift in the on-site energy represents the
effect of a charged gate nearby the graphene sheet.

Each curve in Fig. 2 is the ensemble average of 400
different randomly generated disorder configurations. There
is an applied magnetic field of 4 T perpendicular to the

graphene sheet. The device scattering region is 200 nm wide
and 320 nm long. In this case, we choose a sheet with zigzag
edges, but with our disorder model, armchair edges would yield
very similar results. Previously, Low demonstrated that with
sufficient disorder, both zigzag and armchair edged graphene
will exhibit plateaus in conductance given by (3) [11].

When the junction width is 30 nm, our simulation recovers
the first three plateaus predicted by (3), which were measured
in Ref. [3]. The plateaus occur at the energy levels predicted
by (1), denoted by vertical lines in Fig. 2. At a junction width
of 100 nm, we observe partial mixing of the first and second
Landau levels. The plateaus are still visible but occur at smaller
values of conductance.

As we increase the junction width to 125 nm, there is a
slight increase in conductance for filling factors of 6 and 10
in the diagonal slice, but plateaus no longer form. For the
horizontal slices at νn = 6 and 10, the conductance is nearly
flat at 1 e2/h. This result is consistent with what was measured
by Klimov et al. [9].

So far, we have only investigated conduction in ambipolar
p-n junctions. To fully benchmark our model, in the inset
of Fig. 2(c), we plot the simulated Hall conductance in the
unipolar conduction regime. Again, we plot a diagonal slice
and two horizontal slices of the typical four quadrant junction
map, which correspond to E1 = E2, E1 = 0.05 eV (νp = −6)
and E1 = 0.09 eV (νp = −10). We show only slices of the p-p
quadrant, but the n-n quadrant will be effectively identical. In
the unipolar regime, we observe the plateaus given by (3), with
good agreement to experimental measurements on both short
[3] and long [9] junction width devices.

Contrary to ambipolar junctions, for unipolar junctions our
quantum transport simulations result in the plateaus given by
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FIG. 3. Hall conductance as a function of junction width DW .
The device is configured in the same way as Fig. 2, but instead of
varying the on-site energies in the device, we fix the filling factors.
In this case, the device is configured as E1 = −E2 = 0.0875 eV, or
νn = −νp = 6. The effect is demonstrated for two different magnetic
fields: B = 4 and 14 Tesla. When the junction fully mixes all of
the Landau levels, for junction widths shorter than about 40 nm, the
conductance is approximately 3.0 e2/h. For junction widths over
100 nm, the device only mixes the lowest Landau level, yielding
a conductance of approximately 1.0 e2/h. Our simulations indicate
that stronger magnetic fields cause junction width to have a more
pronounced effect in restricting mixing of higher order Landau levels.

(3) without any additional disorder or roughness added to
the model. Disorder at the junction is necessary to produce
plateaus in the ambipolar region, however, too much disorder
has been shown to disrupt the plateaus in the unipolar region
[10,16]. Including disorder at the junction while E1 = E2,
in other words when there is no junction, causes dips in the
conductance each time the Fermi energy crosses a Landau level
energy. While including the disorder when there is no junction
is slightly unrealistic, it is necessary in order to be consistent
with our application of the model to ambipolar junctions.

B. DW and magnetic field dependence

Now that we have demonstrated that our model is able to
capture the experimental Hall conductance of Refs. [3] and [9],
we will seek to explain the differences between the two. The
device which showed several plateaus [3] was fabricated using
a global back gate and local top gate to form a p-n junction.
The device which showed a single plateau [9] was fabricated
using two buried gates. The top gate is located very close to the
graphene layer and produces a very sharp junction. Conversely,
the buried gates are located under a thick oxide layer and have
a large spacing between them. This configuration of buried
gates yields a long junction width.

In Fig. 3 we demonstrate the dependence of Landau level
mixing on junction width and applied magnetic field. We
simulate the same configuration as in Fig. 2, but this time we
fix the device as a symmetric n-p junction with νn = −νp = 6
and vary the magnetic field and junction width. Each point
is an ensemble average of 400 simulations with different
realizations of disorder, with a fixed interface roughness
profile.

For small junction widths, less than 40 nm, the simulations
display full mixing of the Landau levels. For long junction
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FIG. 4. Maps of the nonequilibrium carrier density injected from
the left contact for two different junction widths, (a) 30 nm and
(b) 125 nm. The full model described in the text is included; there is a
finite junction width, interface roughness, and delta function disorder
in the transition between the n region (left side) and the p region
(right side). The edges of the junction are indicated by white dashed
lines. The electron density enters from the bottom left of the junction,
travels along the edge, turns up at the junction interface, and then turns
either left or right at the top of the junction. In this case we configure
the junction the same as in Fig. 3, with E1 = −E2 = 0.0875 eV and
B = 4 T. In (a), the two Landau levels are essentially located on top of
each other. This is an example of a junction which would mix Landau
levels and show plateaus in the ambipolar conductance. In (b), the
first Landau level turns up at the junction interface, while the 0th
Landau level continues until it turns at the middle of the junction. At
a junction width of 125 nm, the Landau levels are spatially separated
and the device will only show a single plateau from the mixing of the
0th Landau level.

widths, approximately 100 nm and greater, only the lowest
Landau level mixes. In between the full mixing and lowest
level mixing regime, the conductance smoothly decreases with
junction width.

Furthermore, the applied magnetic field can control the
degree of Landau level mixing. We observe that for an applied
magnetic field of 14 T, it is significantly easier to inhibit
mixing at the junction. This is due to increased confinement of
the Landau levels at higher magnetic fields, which reduces
the junction width required to fully separate the Landau
levels.

C. Landau level mapping

Here we will investigate the effect of junction width DW

on the distribution of Landau levels transporting across the
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FIG. 5. Spatial maps of the electron probability density injected from the left contact. In these simulations we fix the on-site energy variation
(solid black lines in the lower panels) and vary the Fermi energy (dotted lines in the lower panels). The junction width is 100 nm and the
applied magnetic field is B = 10 T. The position where each Landau level turns at the junction is closely predicted by (2). In (a), νn = 2,
only the 0th Landau level transports. The current turns at the charge neutrality point. In (b), νn = 6, so two Landau levels transport. The 0th
Landau level current turns at the charge neutrality point and the first Landau level current turns close to the edge of the left junction interface.
(c) Similar to (b) but for νn = 10. The Landau level spacing in these plots is fixed by the slope of the on-site energy and the Landau level
energies given by (1). (d-f) Energy band diagrams corresponding to (a-c), respectively, with scatter points depicting the turning point of current
in each Landau level.

junction. In Fig. 4 we plot the nonequilibrium electron density
injected from the left contact for DW = 30 and 125 nm. The
device is configured as a symmetric n-p junction in a filling
factor of νn = 6 and νp = −6 on the left and right sides of the
junction, respectively. The maps include the full model with a
roughness profile given by (9) and the delta disorders inserted
randomly between the dotted white lines.

In Fig. 4, the current travels along the bottom edge from
the left contact, runs up the junction, and then turns either
left or right at the top edge of the device. In the case of
DW = 30 nm, the 0th and first Landau levels mostly run on
top of one another up the junction. There is a small separation
in the levels, but much of the density overlaps. This map
represents a junction which mixes higher order Landau levels
and corresponds to a device which shows plateaus in the Hall
conductance.

In the lower panel of Fig. 4 we show a junction width of
125 nm. In this case, the 0th and first levels are fully separated
at the junction. The 0th level is located at the center of the
junction, while the first level is located at the left edge of
the junction. This density map represents a device which only
mixes the lowest Landau level, showing a single plateau in
the ambipolar configuration. The spatial separation of Landau
levels inhibits mixing at the junction, which is consistent with
what was proposed by Klimov et al. [9].

Now that we have shown visualizations of the two classes
of devices, those which mix many Landau levels and those
which only mix the lowest Landau level, we will explore

what determines the Landau level spacing. In Fig. 5 we
demonstrate a series of pristine density maps for the same
potential profile, but with different Fermi levels. The three
maps show a symmetric n-p junction (νn = −νp = 2) and
two asymmetric n-p junctions (νn = 6,10 and νp = −2). To
examine the distribution of Landau levels more easily, we
demonstrate these junctions without p-n interface roughness
or delta disorder potentials.

The lower panels of Fig. 5 show the energy band diagram of
the junction, with the Fermi energy and corresponding Landau
level energies. The position of the points for each Landau level
is determined by the condition in (2). The condition in (2)
also determines, within a few nanometers, where the current
in the particular Landau level will turn at the junction. As
the Fermi energy is increased in Fig. 5, the 0th Landau level
moves from left to right, according to (2). When the energy
of the first and second Landau levels is bigger than the on-site
energy, EF − ELL1,2 > Eon-site(x), they begin to transport.
The spacing between different Landau levels is fixed by the
slope of the junction potential and follows the same parabolic
form as given by (1). We note that (2) works very well for
predicting the turning point of the Landau levels, even without
correcting the energy eigenvalues for electric field effects [25].

D. Landau level shape

Close examination of Fig. 5 shows that higher order Landau
levels split into multiple beams of carriers when they transport
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(a)

(b)

FIG. 6. (a) Spatial map of the electron probability density injected
from the left contact. The applied magnetic field is B = 4 T and E1 =
−E2 = 0.125 eV, yielding a filling factor of νn = −νp = 14. We see
four Landau levels transporting, each turning up at the junction at
positions determined by (2). No roughness or delta function disorder
is used, for clarity. Interestingly, the higher order Landau levels do
not take on the form of Gaussians, instead having a more complex
structure. In (b) we plot a slice of the simulation in (a) taken at
y = 100 nm (denoted by a white dashed line). In addition, we plot
P (x) = Mn	n,ky

(x)†	n,ky
(x), using the analytical form of the wave

function (14) which was calculated in Ref. [25].

up the junction. The carriers do not simply travel at the junction
as a Gaussian wave packet. The same effect may be seen
in Fig. 4, although it is slightly more difficult to see due to
junction disorder. To investigate this effect, in Fig. 6(a) we
show carrier density calculations for a symmetric n-p junction
configured so that νn = −νp = 14. A junction width of 500 nm
is simulated, which allows us to separately spatially resolve the
first four Landau levels. Note that we zoom in to only show the
left side of the junction, to more easily see the Landau levels.

The higher order Landau levels shown in Fig. 6 do not
follow the simple Gaussian form of the 0th Landau level but
instead split into a more complex structure. The shape of the
Landau levels is influenced heavily by the A-B sublattice
structure of graphene, where the Landau level is formed by
the superposition of the wave functions from the A and B
sublattices.

In Ref. [25], a closed form solution for the wave function of
a graphene sheet with crossed electric and magnetic fields was
obtained. The system studied by Ref. [25] is similar to ours,
but the electric field in their work is pointed perpendicular to
the edges of their graphene sheet. Despite this difference, their
analytically calculated wave function may be compared to our

simulated wave function when the junction width is very long.
The wave function, adopted from Ref. [25], is given by a two
component spinor

	n,ky
(x,y) ∝ eikyye− θ

2 σy

[
sgn(n)φ|n|−1(ξ )

iφ|n|(ξ )

]
, (14)

where

ξ = (1 − β2)
1
4

lb

(
x + l2

bky + sgn(n)

√
2|n|lbβ

(1 − β2)
1
4

)
. (15)

The term β = E
νF B

, where E is the applied electric field.
The wave function takes on the form of quantum harmonic

oscillator functions, φ|n|(ξ ), where one sublattice contributes
the nth harmonic oscillator function and the other sublattice
is n − 1. The index n is an integer equal to the particular
Landau level number. The 0th Landau level is contributed by
one sublattice and is a Gaussian.

In Fig. 6(b) we show a slice of the simulated Landau
level map at y = 100 nm. We also calculate the probability
density from (14), P (x) = Mn	n,ky

(x)†	n,ky
(x), where Mn is

a normalization function used to match to the multimoded
transport in our simulation. We define the electric field for the
analytical calculation as E = E2−E1

eDW
.

For the very long junction width considered in Fig. 6, the
wave function given by (14) may be applied to our simulations.
The quantum transport simulation and analytical solution of
[25] agree well for the 0th, first, and second Landau levels.
The third Landau level straddles the edge of the junction
where the electric field drops to zero and the uniform electric
field assumption breaks down. Nevertheless, the analytical
calculation still does a good job of describing the third Landau
level as well.

V. CONCLUSIONS

In this paper we have studied the influence of junction
width on Landau level mixing in ambipolar graphene p-n
junctions. We utilized a combined p-n interface roughness
and delta function disorder model, which represents a best
case scenario to mix Landau levels. The model’s capability
to match experimental data on junctions which mix several
Landau levels and those which only mix the lowest Landau
level was demonstrated. Our simulations indicate that more
disordered devices with short junction widths are likely to mix
Landau levels, while cleaner devices with very wide junction
widths will only mix the lowest Landau level. To support
our arguments, we provided visualizations of nonequilibrium
carrier density across the junctions and a demonstrated simple
predictive model which determines how the Landau levels will
separate at the junction. Finally, we compared our simulations
with analytical calculations [25], revealing the interesting form
of higher order Landau levels. In the future, this model may be
extended to more complex devices with multiple p-n junctions.
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