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All-optical tailoring of single-photon spectra in a quantum-dot microcavity system
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Semiconductor quantum-dot cavity systems are promising sources for solid-state-based on-demand generation
of single photons for quantum communication. Commonly, the spectral characteristics of the emitted single
photon are fixed by system properties such as electronic transition energies and spectral properties of the cavity.
In the present work we study cavity-enhanced single-photon generation from the quantum-dot biexciton through
a partly stimulated nondegenerate two-photon emission. We show that frequency and linewidth of the single
photon can be fully controlled by the stimulating laser pulse, ultimately allowing for efficient all-optical spectral

shaping of the single photon.
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I. INTRODUCTION

For applications in quantum communication, single pho-
tons of well-defined and controllable spectral properties are
needed [1-5]. To address this challenge, various flexible
approaches for single-photon generation were introduced over
the past years. On the one hand, single-photon sources were
realized where selected spectral parameters can be controlled
during the creation process. In an ion-trap cavity system, it
was demonstrated that the temporal structure of the emission
can be imprinted by a driving optical field [6]. Similarly,
single photons with subnatural linewidth inherited from the
exciting laser were generated via quantum-dot (QD) exciton
resonance fluorescence [7]. Also, bandwidth and wavelength
tunability through a whispering gallery mode resonator [8]
or through an enhanced two-photon Raman transition [9,10]
were realized, and pure frequency control with a strain-
tunable QD structure [11]. Also, control of single-photon
properties after photon creation was realized, e.g., electro-optic
modulation was demonstrated for single photons emitted from
atoms [12,13] and spectral compression of photons via optical
sum-frequency generation was achieved [14].

Previous approaches have in common that the control only
addresses certain properties of the single photon and/or require
additional nonoptical control elements such as magnetic or
strain fields. In this work we analyze a relatively simple
approach to gain access to all spectral properties of a single
photon through the adjustment of a control-laser pulse. Our
general emission scheme has recently been introduced in the
context of full and all-optical control on a single photon’s
polarization state [ 15]. It is based on a nondegenerate enhanced
two-photon emission [16,17] from the biexciton to the ground
state in a commonly available solid-state system, a single
semiconductor QD inside an optical microcavity [18-26]. As
illustrated in Fig. 1, the first photon is triggered by a coherent
control-laser field. The second photon is spontaneously emit-
ted into a cavity mode when the QD relaxes to the ground
state. In the present work we demonstrate that, in addition
to the polarization state, the external laser also controls the
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second photon’s spectral shape, including emission frequency
and linewidth (only limited by losses in the solid-state system)
because of two fundamental properties: (i) tunability of the
frequency of the second photon by the control laser is a
direct consequence of energy conservation in the two-photon
process, (ii) the control-pulse-induced photon emission is a
purely stimulated and coherent process such that the emitted
photon directly inherits the control pulse’s linewidth.

II. QUANTUM-DOT MODEL AND THEORY

We model the QD as an effective four-level system in an
electronic-configuration picture. To investigate the process of
interest, we explicitly include the biexciton B, the ground
state G, and the two linearly polarized excitons Xp (Xy)
interacting with horizontally (vertically) polarized light [27].
Figure 1(b) shows the electronic energy-level scheme and the
relevant optical transitions starting from the biexciton. The
system Hamiltonian H = H, + Hj contains the noninteracting
Hamiltonian H, with the free electronic part and photons
in two orthogonal cavity modes with polarizations H and
V, respectively. The light-matter interaction part of the
Hamiltonian reads [15]

Hy= Y [-g(Px,5b] + Po.x,b)) + Hel
i=H,V

+ ) APx,. 52} (1) + Pox, /()] + Hel. (1)

i=H,V

Here we define P,p = |a)(B], which for a # 8 is the
polarization operator between electronic states « and 8, and
the electronic occupation operator for o« = 8. The photon
operators bf-T) annihilate (create) a photon in the cavity
mode with polarization i, with i € {H,V}. The cavity-mode
energy is hw;, its coupling strength to the QD excitations
is given by g. The time-dependent external classical laser
field £2;(¢) couples to the QD transitions following the usual
dipole selection rules for the photon-assisted transitions. We
assume the exciton levels to be degenerate and choose the
orthogonal cavity modes to have the same energy, hwy =
hwy = hwc. We note that, even if the degeneracy is lifted (in
arange significantly smaller than the typical detunings and the
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FIG. 1. Sketch of emission scheme and spectral control. The
external control pulse (blue arrow) triggers the first photon, the
second one (yellow arrow) is spontaneously emitted. Panel (a)
schematically illustrates the scheme. Panel (b) shows the partly
stimulated two-photon transition between biexciton B and ground
state G in the energy-level diagram of the quantum-dot cavity
system for the horizontal mode. The cavity (yellow vertical braces)
enhances the second photon. It is off resonant to the transitions of
the biexciton-exciton cascade, indicated for the vertical mode starting
from the biexciton (black arrows).

biexciton binding energy of several meV used below), the
results are not significantly changed. The transition energies
in our system are E,,,, — Eg = 1.4 €V, corresponding to 830
nm wavelength, and Ep — Ey,,, = 1.397 eV, corresponding
to a biexciton binding energy of 3 meV, typical of InGaAs-
based QDs [27]. In the present work we study the emission for
a QD system fully inverted to the biexciton state without any
initial coherence or photons inside the cavity. Deterministic
biexciton preparation can, for example, be achieved via
two-photon Rabi flopping [15,28]. Optimum enhancement of
the stimulated two-photon transition is achieved when the
control-pulse frequency wy, (off resonant to all single-photon
transitions; here by few meV) and cavity frequency wc fulfill
the energy-conservation condition hwp + hwc =~ Ep — Eg
[Fig. 1(b)]. In the following, for a fixed cavity frequency
wc, we tune the control frequency wp, resulting in a detuning
AL = hwc + hop, — (Ep — Eg) from the bare two-photon
resonance condition.

To compute the temporal evolution of the system, we
explicitly solve the equation of motion [15],

ihatp = [Huo] + ihatﬂ'cavity + ihatp'pure? (2)

for the system density operator p. We include a finite
photon lifetime A/« inside the cavity via the Lindblad
form i iy pleaviey = (i /2) > y_py (21 pb] — bbip — pblb;).
Additionally, we introduce pure dephasing y of the electronic
coherences by i/d; plpure = —iy /2 Za’ﬂ,a# PyopPgp.Ina
realistic parameter range, the influence of radiative losses on
the single-photon emission spectrum is expected to be weak
(see Appendix A for a detailed discussion). The expectation
value of any observable O at time ¢ is then obtained by
(O0)(t) = tr{p(r)O}. For all calculations presented here, we
use hwc =1.392 eV (5 meV below the resonance of the
lowest-energy single-photon transition), y = h/200 ps~!, g =
h/50 ps~!, and g/k = 0.04. The cavity parameters correspond
to a relatively low cavity quality of Q ~ 4200. These are
typical and realistic parameters for our model system [10,15].
Numerically, Eq. (2) is conveniently solved in the interaction
picture after applying the unitary transformation U(t) =

i . . .
enf’  Taking into account energy conservation and the
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off-resonant character of the cavity mode and control pulse,
all operators are represented in a finite-dimensional Fock
space with a maximum photon number of two per polarization
state. Here we apply the control pulse only in the horizontal
optical mode such that the single photon of interest is also
emitted into the H-mode of the cavity. To keep the notation
as simple as possible, in the discussion below we drop the
polarization-mode index of the exciton states, of the photon
operators, and of the driving field.

To investigate the spectral properties of the cavity-enhanced
QD emission, we compute the autocorrelation function
G(t,t) = (b!(t + T)b(t)) attimes t and T by using the quantum
regression theorem [29]. For arbitrary excitations, e.g., pulsed
scenarios, the time-dependent spectrum at frequency w is given
by [23,30,31]

t t—t'
S(f,w) = Re f dr’ / dre TG, 7). 3)
0 0

In the stationary limit, e.g., continuous-wave (cw) excitations,
and for long detection times ¢ the physical spectrum becomes
proportional [23,32,33] to the well-known Wiener—Khintchine
spectrum [29]

Sew(w) = Re / dre TG (1), 4)
0

where the autocorrelation function is stationary, G(¢,7) =
G(7). Note that, in general, the linewidths and shapes produced
by Eqgs. (3) and (4) are not directly comparable. However, we
evaluate the spectrum (3) only at times # when the emission line
for the single photon of interest is already fully established.

III. RESULTS

A. Frequency control

First we show that the single-photon emission frequency
can be tuned by varying the frequency of the control pulse
or beam. For this purpose, we study the system response
for varying control detuning Ap in the cw limit, 2(r) =
£20e~'* and in the limit of weak excitations. This results in a
quasistationary behavior of the biexciton population which is
virtually not changing on the relevant timescale needed to fully
establish the emission spectrum of the inverted system. Further
below we show that, in this limit, additional and valuable
analytical insight can be readily obtained into the spectral
characteristics of the emission. The fundamental spectral
features found in the cw limit are also recovered in the limit of
control pulses of finite length. This is analytically discussed in
more detail in Appendix B, including radiative losses. Based
on the full system dynamics described by Eq. (2), Fig. 2 shows
the numerically computed cw emission spectra (yellow line)
for three different control detunings A in a semilogarithmic
plot. Here, we focus on the spectral range including the region
around the cavity energy (highlighted by the shaded area),
where the single-photon emission takes place (marked by
the small white arrow), and the spectral range covering the
spontaneous emission from the biexciton-to-exciton transition,
off-resonant to the cavity mode (marked as B <> X). The
emission from the exciton to the ground state at fi(w — wc) =
8 meV is not included in the spectral range shown because
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FIG. 2. Controlling the single-photon emission frequency. Shown
is the numerically computed cw emission spectrum (yellow solid line)
for a control Rabi energy £2p = 0.25 meV in comparison with the
analytic result (black dashed line) for a detuning of (a) A, = 0.0 meV,
(b) AL = —0.3 meV, and (¢c) A = +0.3 meV from the two-photon
resonance condition (semilogarithmically). The emission line of the
single photon is marked by the white arrow and the biexciton-to-
exciton emission is marked by the label B < X.

it nearly vanishes in the quasistationary limit for a system
initially inverted to the biexciton. For A, = 0 meV [Fig. 2(a)],
we find that the single-photon emission occurs at the center
of the cavity resonance. In Figs. 2(b) and 2(c), we observe
that the line is blueshifted for negative and redshifted for
positive detuning Ay of the control beam, following the
energy conservation of the two-photon transition. For all three
situations the biexciton-exciton line at A(w — wc) = 5 meV
remains uninfluenced by the control beam that is off resonant
to this transition. Furthermore, the background emission at
the cavity resonance is orders of magnitude weaker than the
desired emission of the single photon. These results clearly
demonstrate that, even in the weak-excitation regime, the
control laser selectively drives the transition of interest and
allows for all-optical control of the frequency of the single
photon emitted from the cavity.
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In the following we show that, in the cw limit discussed
above, valuable additional insight can also be obtained
analytically, helping to understand our observations in the
numerical data of Fig. 2. To this end, we transform Eq. (2)
to the Heisenberg picture and solve the equation of motion,

K
ihd; G = —(ﬁwc—i-iE)G-l—g[nx,G-l-HB,x], (5)

for the stationary autocorrelation function G(t) = (bT(1)b(0))
analytically. Here we defined I, g(7) = ( Py p(7)b(0)). Be-
cause we are only interested in the single-photon spectrum, we
restrict the infinite set of equations of motion resulting from
Eq. (5) to the three central correlators ITx g, I1p x, and I1p .
For t = 0, they are directly connected to the photon-assisted
polarizations of the biexciton-exciton cascade, ( Py, gb') and
(PG,be), and of the two-photon transition, (PG,BbT), which
is driven by the external control beam. The resulting reduced
model obeys the equation of motion

Iy Exc 0 £2(7) Ix g
iho | Mg x | =— 0 Ep x =) || x|,
Ip ¢ 22%(t) —-2*(t) Epg Iz ¢

(6)

with E, g = E, — Eg +1iy/2. By using Eq. (4) and defin-
ing Sy p(w) = fooo dre ot «,8(7), the analytic cw emission
spectrum then reads
ihG(0) + g[Sx,¢(w) + Sp x(w)] )
Moc — w) +ik/2 ’

Sew(w) = Re{

This analytic solution of our reduced model is included in
Fig. 2 (black dashed line) and shows excellent agreement with
the full numerical result. It correctly reproduces all resonance
features including peak heights, widths, and spectral positions
of the single-photon line and of the biexciton-to-exciton
emission. In the following we discuss the additional insight
that can be obtained from Eq. (7) into the details of the spectral
features. The two fundamental components in Eq. (7) are

iy ¢(0) — £20Sp,c(w + wL)

Sx.¢(w) =

3

EX,G —_ h(l)
| hIT 0) + 205
Spx(@) = PRIl x( )E:X 0_ 2:)3(60 +0)L). @®)

These contain the spontaneous decay through the biexciton-
exciton cascade via [Ty (0) and I1p x(0) at the respective
emission frequencies. More importantly though for the present
work, both also contain the control-beam-induced source term
responsible for the single-photon emission,

. ihIlp x(0) ihllx 6(0)
thB’G(O) + QO[ Ep x—how - Exvcfhw]

S =
Bal@+ o) Esp() — ho +iy/2
®
The emission energy of the single photon can be identified as
Esp(w) = hooc — AL — Qg[EB.Xlihw + Ex,olfhw]‘ This energy

linearly depends on the control beam detuning A and thus
can be conveniently tuned by changing the frequency of
the control. We note that the strength of the single-photon
contribution in Eq. (8) linearly scales with the control-beam
amplitude. The additional control-beam-induced energy shift
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FIG. 3. Controlling the single-photon emission linewidth. The
computed single-photon spectrum is shown for pulsed scenarios
with parameters £2p = 0.75 meV, At =5 ps, AL = —0.09 meV
(yellow solid line) and §2¢p = 0.25 meV, At = 15 ps, AL = 0 (black
dashed line) together with the cw scenario from Fig. 2(a) (blue
solid line). Note that the pulses have equal pulse areas. The cavity
Lorentzian (shaded area) is shown for comparison. The spectra are
each normalized to their respective peak maximum.

will only be relevant for increasing control intensity because
it scales with £23. We note that, for practical purposes, this
light-field induced shift can always be compensated by simply
adjusting the control-beam frequency appropriately. In the
limit of weak excitation, the emission energy is approximately
given by Esp — hawc &~ — AL as expected from energy con-
servation. The resonance denominator of Eq. (9) shows that,
in the cw limit, the linewidth is mainly given by the pure
dephasing y (see also Appendix A) which is much narrower
than the cavity’s spectral width determined by the photon loss
«. The initial values G(0) = (b'b) and I, (0) = (Pgqb')*
are obtained analytically by treating their equations of motion
in the cw limit analogously to the equations of the correlators.
Equations (9) and (BS8) can be used as a starting point for
optimization of our single-photon source towards on-demand
behavior. A corresponding detailed numerical optimization
study including further effects of quantitative importance
(e.g., radiative losses and phonon-assisted processes) will be
published elsewhere.

B. Spectral shape

We now turn our attention back to scenarios with finite-
length control pulses [taking into account the full system
dynamics described by Eq. (2)]. As we show in Fig. 2,
the single-photon cw linewidth can be significantly narrower
than the cavity line. To analyze the achievable linewidth
more systematically, Fig. 3 shows three cases with different
control linewidth in comparison together with the cavity
Lorentzian (shaded area). Starting from a Gaussian control

pulse £2(t) = 20 exp [—(’Z_A—’fz)z]e_i“’L’ (centered at time ¢y > 0)
with At =5 ps (yellow line), we increase the pulse length to
At = 15 ps (black dashed line) up to the cw limit At — oo.
We clearly observe that the spectral width of the single-photon
line decreases with increasing length of the control. In all three
examples, even for relatively short pulses, the single-photon

emission line is narrower than the cavity line. In other words,
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FIG. 4. Spectral shaping of the single photon. Computed emis-
sion spectra for a Gaussian pulse with Az = 15 ps, containing three
frequency components Ay with equal intensities (yellow solid line)
and tuned intensities (black dashed line). Details are given in the text.
The spectra are normalized to the peak maximum of the yellow curve.
The cavity line is shown for comparison (shaded area).

for a cavity with relatively low quality the linewidth of the
single-photon emission can be directly controlled with the
duration of the control pulse. This is shown analytically for
our reduced model in Appendix B also taking radiative losses
into account.

Above we have shown that both frequency and linewidth
of the single-photon emission can be tuned separately. Com-
bining both mechanisms, also the overall spectral shape of the
single photon can be designed by using a simple pulse-shaping
approach based on an appropriate superposition of control
pulses with different detunings Ay, widths Az, and amplitudes
£29. As a first example, here we choose a superposition of
three Gaussian control pulses with identical envelopes (£29 =
0.25meV, Ar = 15 ps) but different excitation frequencies cor-
responding to the detunings of Ay, = —0.3, 0, and 0.3 meV
of Fig. 2. The resulting single-photon emission spectrum
is depicted in Fig. 4 (yellow line) together with the cavity
Lorentzian (shaded area). We observe that the single-photon
line is split into three separate frequencies. Their respective
intensities follow the envelope of the cavity resonance. We
repeat the calculation with the amplitude of the central control
frequency at Ay = 0 reduced to one half (black dashed line).
Now the three spectral components exhibit similar shapes and
intensities (black dashed line). The slight asymmetry of the
spectral shape mainly stems from the light-induced energy
shift in Eq. (9) and in its generalized form in Eq. (B8). Our
numerical and analytical results indicate that any spectral
shape of the single photon that is compatible with Fourier
transform and system parameters can be generated via simple
pulse shaping of the control pulse, even in the presence of a
cavity.

IV. CONCLUSIONS

We demonstrate a powerful approach to tailor the spec-
tral properties of single photons emitted from commonly
available semiconductor QD-cavity systems. Our approach
offers all-optical and fully flexible control of the single-photon
wavelength, linewidth, and intensity at the moment of its
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creation. We also demonstrate single-photon spectral shaping
inside the cavity emission line. This work further paves the
way towards a solid-state-based on-demand source of tailored
single photons.
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APPENDIX A: RADIATIVE DECAY

Besides photon losses « and pure dephasing y, which
are already included in the discussion in the main body
of this article, also radiative losses & from the excitons
and the biexciton can contribute to the system dynamics.
Although this contribution is expected to be small (typically
6 < 1 ueV [23,31]) compared to the pure dephasing (typically
several ueV [23,27]), we discuss its influence on the emission
spectrum for completeness. Radiative decay can be modeled
by introducing an additional Lindblad term [15] to the equation
of motion (2),

18 B
ih3,plaa = 5 2 D (2PupPl = PYPop = PP} Pr).
i o;

(AD)

for the transitions P,, witho; = (G, X;), (X;,B)andi = H, V.
This leads to modified loss constants I, g in the equations
of motion of the three fundamental correlators, ITx, ¢(f,7) =
(Px,,c(t +1)b(1)), g x,(1,T) = (Pp x,(t + T)b(1)), describ-
ing the cascade, and I1p (¢,7) = (Pp.c(t + 7)b(¢)), describ-
ing the control-induced single-photon emission. These are
defined as

iharHa,ﬁ(Iaf)lpure+rad = _iFa,ﬂHa,ﬂ(tsr) (A2)
and are explicitly given as
y+6 y +36 y +26
I's g =—, Ipyx = , I'pg= .
X;,G > B.X; > B.G 5
(A3)

In other words, I, g defines the natural emission linewidth of
the corresponding transition. In particular, I'p ¢ is the natural
linewidth of the controlled single-photon emission which is
observable in the emission spectrum in the cw limit and which
in the case of small § is mainly given by the pure dephasing y .

APPENDIX B: CONTROL-INDUCED SPECTRUM

In this appendix we derive a generalization of Eq. (9) for
control pulses 2(1) = Qe (t)e " with arbitrary envelope
2eny- This will lead to a deeper understanding of the influence
of the QD-cavity design (including photon and radiative losses
and pure dephasing) and the design of the control pulse on the
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fundamental properties of the single photon’s spectrum. For
this purpose, we rewrite Eq. (6) for the correlators 11, g(¢,7) =
(Py,p(t + 1T)b(t)). Going into the rotating frame, I1, g(¢,7) =
eiE""ﬁr/hlpaqlg(l‘,‘C) with Ea,,B =FE, — Eﬁ + l'Fa”g = ha)a,lg, the
equation of motion reads

Yx.G i 0 0 $i3\ (¥
0| ¥sx | = 7 0 0 23| |¥x | (BD
UG 251 $25, 0 LJNe
Here we have defined the control-pulse components
23.1(1,7) = 2*(1 + T)e@roTnE)T,
23.0(t.7) = —2°(t + T)e T @noTon 0T,
215(t,7) = 2(t + v)e!@roTOxT
2253(t,7) = —2(t + 1) @reTOBNT, (B2)

To solve the equation of interest, i.e., the third equation of

Eq. (B1), we use the ansatz
W(t,7) = e Jo TMET) Gz 1) (B3)

for the correlator vector ¥ = (Wx ¢,¥s.x,¥s.c) using the
transformation matrix

0 0 0

M(t,7) = 0 0 0], (B4)
§£231(,7)  $232(t,7) O

which fulfills M@, o)M@,7)=0 and trivially

[M(¢,7),M(t,7")] = 0. Considering the light field up to
the second order, Eq. (B1) can be decoupled and solved
analytically. We eventually obtain

Wp 6(t,7) = (Pp.gh)(t)e” #¥"0T (B5)

where we have identified the light-induced energy shift

i T 4 2
2,1t = —/ df’/ dt" Yy §23,(t, 7251, 7).
ht 0 0 kX:;

(B6)

which is second order in the field, as expected from Eq. (9).
With Egs. (B1) and (BS5), the autocorrelation function is now
fully determined via its equation of motion
iEc ig
aTG(t’T) = _G(tvt) - _[HX,G(tvt) + HB,X(t’T)]s

h h
(B7)

where we have introduced Ec = hwc + ik /2. Since we are

only interested in the control-induced single-photon emission,
we extract the contribution with frequency near the cavity
frequency from the full result for G(z,7), yielding

G(l, r)|Cavity

(Px,gb)(1)

= ekt ((bTb)(t) +8p P xb)0)

8
Epx — Ec

x.c — Ec

] 1 1 .
- E[ = }<PB,Gb><r>e—'W
I EB,X_EC EX,G_EC

T
x / dt/e‘f%(AL*Z(”)+’[§‘F”v°'])’/96nv(t—{—r’)).(B8)
0
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The corresponding emission spectrum can then be obtained
using Eq. (3), which is more or less the Fourier transform with
respect to the T coordinate. For improved readability, we avoid
to give its explicit form here and discuss its fundamental prop-
erties in the time domain represented by Eq. (B8). The first line
describes the background emission caused by the total photon
emission (bTh)(¢) and the contributions from the biexciton-
exciton cascade (Px ¢b)(t), (Pp xb)(t). The second and third
line describe the control-induced single-photon emission: its
strength is determined by the QD-photon coupling g, the dif-
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ference of the reciprocals of the cavity-detuned transition en-
ergies, which is proportional to the biexciton-binding energy,
and the pulse amplitude. Its width and shape are either defined
by the width and shape of the pulse envelope £2.,, following
Fourier-transform rules or, in the cw limit, by the QD linewidth
I'p ¢ consisting of the pure dephasing y and the radiative decay
6. Furthermore, the spectral position within the cavity line is
controllable via Ay . Note that the light-induced energy shift X
introduces an additional detuning for increasing pulse intensity
which can be compensated by an appropriate choice of Ap.
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