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Self-rotation and synchronization in exciton-polariton condensates
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Self-rotation occurs in an exciton-polariton condensate in a two-dimensional semiconductor microcavity
pumped by a nonresonant Gaussian laser beam. A wave packet of the condensate spontaneously rotates around
the center of the pumped region at a constant frequency breaking the rotation symmetry of the system. When two
self-rotating condensates are created with an appropriate distance, synchronization occurs between the dynamics
of the self-rotating condensates.
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I. INTRODUCTION

Self-oscillations are ubiquitous phenomena that occur in
nature, ranging from whistles and heartbeats to pulsating vari-
able stars [1]. Self-oscillation is induced by some instability
and maintained by the oscillation itself, i.e., external energy
is synchronously taken into the system, which balances with
dissipation, and results in the stable limit cycle in the phase
space. When two or more self-oscillators are coupled with each
other, synchronization can occur between their oscillations, as
Huygens observed in pendulum clocks [2].

Self-oscillation can be observed in open quantum systems
with nonlinearity, in which energy is replenished from and
dissipated into their environments. Laser and Josephson
oscillations may be regarded as self-oscillations in quantum
systems. Self-oscillations have also been observed in op-
tomechanical systems [3,4] and in a resonator driven by a
superconducting single-electron transistor [5]. Here, we focus
on exciton-polariton condensates in a planar microcavity [6,7]
as an open quantum system to investigate the self-oscillation.
Exciton-polaritons excited by external laser beams have a
lifetime of picoseconds, which is of the same order as the
characteristic time scale of polariton dynamics. Therefore, the
exciton-polariton condensate is a nonequilibrium open system.
Various experiments have been performed on this system,
such as observations of Bose-Einstein condensation [8],
quantized vortices [9,10], quantum hydrodynamics [11–14],
and a chaotic non-Hermitian billiard [15]. Self-oscillations
and synchronization in exciton-polariton condensates have
been predicted in Refs. [16–23], and the phase locking of
condensates has been reported in Refs. [24,25]. The Bénard–
von Kármán vortex street in an exciton-polariton superfluid
[26] can also be regarded as self-oscillation.

In this paper, we show that a wave packet of an exciton-
polariton condensate that is nonresonantly pumped by a
Gaussian laser beam rotates spontaneously around the center
of the pumped region. This self-rotation is a consequence
of spontaneous breaking of the rotation and clockwise-
counterclockwise symmetries, and the system acquires an
angular momentum. We also show that when two self-rotating
condensates are excited by two Gaussian laser beams with an
appropriate distance between them, the rotating dynamics are
synchronized, even when the individual rotation frequency is
different.

This paper is organized as follows. The problem is formu-
lated and the properties of the uniform system are reviewed in

Sec. II. The self-rotation of the condensate is investigated in
Sec. III. The synchronization of two self-rotating condensates
is demonstrated in Sec. IV. Conclusions and discussion are
provided in Sec. V.

II. MODULATIONAL INSTABILITY IN A
HOMOGENEOUS SYSTEM

First, we formulate the problem and give a brief review of
the modulational instability in a homogeneous system. The
dynamics of an exciton-polariton condensate with an effective
mass m is modeled by the nonlinear Schrödinger equation
given by [27]

i�
∂ψ

∂t
= − �

2

2m
∇2ψ + i�

2
(RnR − γc)ψ

+ gc|ψ |2ψ + gRnRψ, (1)

where ψ(r,t) is the macroscopic wave function of the exciton-
polariton condensate and nR(r,t) represents the polariton
density of the reservoir, which obeys

∂nR

∂t
= P − γRnR − RnR|ψ |2. (2)

The external laser pump P creates polaritons with much
larger energy than that of the condensate polaritons in the
lower branch. The pumped polaritons then relax and form
the reservoir nR , which feeds polaritons to the condensate
with a rate R. In this section, we consider a homogeneous
pump with a constant P . The loss rates of the condensate and
reservoir polaritons are γc and γR , respectively. In Eq. (1),
the condensate polaritons interact with each other through
the nonlinear term with a coefficient gc, and the interaction
between the condensate and reservoir polaritons is described
by the term with gR .

In a homogeneous system, the polariton densities in the
steady state above the condensation threshold are given by
|ψ0|2 = (P − Pth)/γc and nR0 = γc/R, where Pth = γcγR/R.
This homogeneous solution is modulationally unstable
[20,27–29] for Pth < P <

γcgR

γRgc
Pth when γcgR

γRgc
> 1. The insta-

bility can be explained by the effective attractive interaction
in the condensate [28]. Figure 1(a) shows the dynamics of
the density profiles under modulational instability, where the
initial state is ψ = ψ0 and nR = nR0 with a small random
noise, which is a random number set on each numerical
mesh. In this and the following numerical simulations, the
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FIG. 1. Modulational instability in the uniform system with
γ −1

c = 0.15 ps, γ −1
R = 3 ps, gc = 6 × 10−3 meV μm2, gR = 2gc,

R = 0.04 ps−1 μm2, P = 160 ps−1 μm−2 � 2.9Pth, and m = 5 ×
10−5 electron mass. (a) Time evolution of the condensate and
reservoir density profiles, |ψ |2 and nR , where the initial state is
the homogeneous stationary state. (b) Positive imaginary part of the
Bogoliubov spectrum.

pseudospectral method with the fourth-order Runge-Kutta
scheme is employed. The unstable wavelengths can
be obtained from the Bogoliubov analysis. Substitut-
ing ψ(r,t) = [ψ0 + uke

ik·r−iωt + v∗
k e

−ik·r−iω∗t ]e−iμt/� and
nR(r,t) = nR0 + Re(nke

ik·r−iωt ) with μ = gc|ψ0|2 + gRnR0

into Eqs. (1) and (2) and diagonalizing the 3 × 3 matrix, we
obtain the Bogoliubov spectrum ω(k) and mode coefficients
uk , vk , and nk . When the imaginary part of ω(k) is positive, the
mode with the wave number k is unstable. Figure 1(b) shows
the imaginary part of ω(k). The most unstable wavelength is
λ � 2π μm, which agrees with the pattern in Fig. 1(a).

III. SPONTANEOUS ROTATION WITH A GAUSSIAN PUMP

We consider a situation in which exciton-polaritons are
pumped by a Gaussian laser beam. The pump profile is given
by

P (r) = P0e
−r2/ρ2

, (3)

where P0 is the peak intensity and ρ is the 1/e width of
the beam. When the pump width ρ is much larger than the
unstable wavelengths of a homogeneous system pumped by
P = P0, the central region of the pump is sufficiently wide for
modulational instability and pattern formation. On the other
hand, when ρ is much smaller than the unstable wavelengths,
no modulational instability occurs in the Gaussian-shaped
condensate. An interesting situation is expected for ρ

comparable to the unstable wavelength. Self-oscillations have
been observed in a one-dimensional system in this regime [20].
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FIG. 2. Time evolution of the system pumped by a Gaussian laser
beam with P0 = 160 ps−1 μm−2 and ρ = 5 μm. The other parameters
are γ −1

c = 0.15 ps, γ −1
R = 3 ps, gc = 6 × 10−3 meV μm2, gR = 2gc,

and R = 0.04 ps−1 μm2. (a) Time evolution of the center-of-mass
(c.m.) position (〈x〉,〈y〉) and the angular momentum 〈L〉 of the
condensate. (b) Magnification of (a). (c) Trajectory of (〈x〉,〈y〉),
where the red and blue points are t < 200 ps and t > 200 ps,
respectively. The points are plotted every 0.17 ps. (d) Snapshots
of the density and phase profiles, |ψ |2, argψ , and nR . The white
arrow indicates the direction of rotation for the c.m. position. See the
Supplemental Material for a movie of the dynamics [30].

Figure 2 shows the dynamics of the system pumped by
a Gaussian laser beam with ρ = 5 μm, where the initial
state is ψ = nR = 0 plus a small random noise. Figures
2(a)–2(c) show the time evolution of the center-of-mass (c.m.)
position,

〈r〉 =
∫

r|ψ |2d r
∫ |ψ |2d r

, (4)
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and the angular momentum per particle,

〈L〉 = −i�
∫

ψ∗(x∂y − y∂x)ψd r
∫ |ψ |2d r

, (5)

of the condensate. After t ∼ 200 ps, the c.m. motion becomes
periodic and the angular momentum converges to a constant
value. The trajectory of 〈r〉 is entrained into a circle and
rotates along the circle at a constant angular frequency. This
circular trajectory is robust against external perturbation. We
have confirmed that the trajectory always returns to the circle
after the regular dynamics are disturbed by a temporal external
potential. We have also confirmed that the circular trajectory
is always realized irrespective of the random seed to produce
the initial noise. These facts imply that the circular trajectory
is the stable limit cycle and the rotating state is the steady state
reached from any initial states.

Figure 2(d) shows the time evolution of the density and
phase profiles after the steady rotating state is reached. A
tadpole-shaped condensate wave packet rotates around the
center counterclockwise. It is interesting to note that the
angular momentum 〈L〉 is negative, whereas the tadpole-
shaped wave packet rotates counterclockwise. This seeming
contradiction arises from the superflow in the condensate.
Figure 2(d) shows argψ , which indicates that the superfluid
flows out from the point near the head of the tadpole, and
results in superflow from the head to the tail of the tadpole.
This is because the condensate is fed from the reservoir mainly
at the head of the tadpole, because the density of the reservoir
is large ahead of the tadpole. As a result, the tadpole grows
ahead, while the tail is always shrunk by the dissipation. This
is the reason why the directions of the tadpole rotation and
the angular momentum are opposite. For initial noises with
different random seeds, 〈L〉 > 0 and 〈L〉 < 0 occurs with the
same probability due to the chiral symmetry of the system.

The pump with a Gaussian beam thus induces the rotation
dynamics, which can be regarded as self-rotation, because the
rotation symmetry of the system is spontaneously broken and
the stable rotation persists without any external rotating force.
The rotation is driven by the interplay between the condensate
and reservoir; the tadpole-shaped condensate grows ahead due
to the density gradient in the reservoir, while the high density
region of the reservoir chases the tail of the tadpole where the
supply to the condensate is small.

Figure 3 shows the parameter dependence of the period of
the self-rotation. The self-rotation frequency increases with
P0, R, and gR , and decreases as γc, γR , and gc increase.

Experimentally, there always exist imperfections in a
sample of the semiconductor microcavity, which produces
random potential for polaritons. We have performed numerical
simulations including random potential with a typical energy
of ∼0.1 meV and spatial scale of ∼10μm, and confirmed that
the self-rotation as shown in Fig. 2 occurs even in the presence
of the disorder potential (see the Supplemental Material for a
movie of the dynamics [30]).

One may think that the self-rotation in Fig. 2 is triggered by
the unrealistic oscillation between the condensate and reservoir
in the early stage of the dynamics. We have confirmed that the
self-rotation occurs even without this oscillation, and therefore
the initial oscillation is not responsible for the self-rotation
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FIG. 3. Parameter dependence of the period T of the self-
rotation. The parameters except for the abscissas are P̄0 =
160 ps−1 μm−2, R̄ = 0.04 ps−1 μm2, γ̄c = 0.15 ps, γ̄R = 3 ps, ḡc =
6 × 10−3 meV μm2, and ḡR = 2ḡc.

(see Appendix). It may be better to use a dual reservoir model
[25,31] to suppress the initial oscillation.

IV. SYNCHRONIZATION BETWEEN TWO ROTATING
CONDENSATES

We study the case in which two self-rotating condensates
are excited by two Gaussian laser beams, and examine whether
synchronization occurs between the two self-rotations. The
external pump is given by

P (r) = Plefte
−(r−Rleft)2/ρ2 + Prighte

−(r−Rright)2/ρ2
, (6)

where Pleft,right and Rleft,right = (Xleft,right,Yleft,right) are the
peak intensities and the positions of the two Gaussian-
shaped pumps, respectively. Without loss of generality, we
set Yleft,right = 0. The pump intensities are taken to be
Pleft = 160 ps−1 μm−2 and Pright = 0.99Pleft, which results
in different self-rotation frequencies (see Fig. 3). If the two
self-rotating condensates are independent (i.e., in the case
of Xright − Xleft → ∞), then the rotation period is 10.52 ps
for Pleft and 10.70 ps for Pright. The c.m. position of each
condensate is defined relative to the center of the pump as

〈r〉left,right =
∫
|r−Rleft,right|<rc

(r − Rleft,right)|ψ |2d r
∫
|r−Rleft,right|<rc

|ψ |2d r
, (7)

where the cutoff radius rc is taken to be 8 μm, which is
sufficient to cover each condensate.
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FIG. 4. Dynamics of two self-rotating condensates pumped ac-
cording to Eq. (6) with Pleft = 160 ps−1 μm−2, Pright = 0.99Pleft,
and ρ = 5 μm. The other parameters are γ −1

c = 0.15 ps, γ −1
R =

3 ps, gc = 6 × 10−3 meV μm2, gR = 2gc, and R = 0.04 ps−1 μm2.
(a) Time evolution of 〈x〉left and 〈x〉right with Xright − Xleft = 20 μm.
The two self-rotations are not synchronized. (b) Time evolution of
〈x〉left and 〈x〉right (upper panel) and snapshots of the density profile
|ψ |2 (lower panels), where Xright − Xleft = 16 μm. Synchronization
occurs between the two self-rotating condensates. (c) The same
conditions as those in (b), except a random number seed used to
produce the initial noise. See the Supplemental Material for movies
of the dynamics in (b) and (c) [30].

Figure 4(a) shows the time evolution of the two self-rotating
condensates, where the distance between the two pumps is
Xright − Xleft = 20 μm. In this case, the two condensates are
well separated from each other and the interaction between
them is negligible. The left- and right-side condensates rotate
independently with periods of 10.52 and 10.70 ps, respectively,
and no synchronization occurs. The self-rotation always
occurs for both condensates irrespective of the random noise.
Figure 4(b) shows the synchronization for Xright − Xleft =
16 μm. The c.m. positions 〈x〉left and 〈x〉right oscillate in
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FIG. 5. Time evolution of I defined in Eq. (8), where (a)–(c)
correspond to the dynamics shown in Figs. 4(a)–4(c).

phase at the same frequency. The two condensates rotate in
opposite directions with a common rotation period of 10.53 ps,
by which it seems that the right-side frequency is entrained
into the left-side frequency [32]. Interestingly, another type of
synchronization is observed for the same parameters, which
is shown in Fig. 4(c). The c.m. positions 〈x〉left and 〈x〉right

oscillate out of phase with a period of 10.55 ps. The only
difference between the numerical simulations in Figs. 4(b)
and 4(c) is the random number seed used to produce the small
initial noise. We have also confirmed that the synchronization
can occur for a sample with disorder [30].

To clearly visualize the synchronization, the inner product
is calculated:

I = x̂leftx̂right − ŷleftŷright, (8)

where r̂ left,right = 〈r〉left,right/|〈r〉left,right| are the unit vectors
of the c.m. positions relative to the centers of the pumps.
The minus sign in Eq. (8) is introduced to quantify the
synchronization between the opposite rotations, as shown in
Figs. 4(b) and 4(c). If the two unit vectors rotate in the opposite
directions as xleft + iyleft = eiωt and xright + iyright = e−iω′t+φ ,
then I = cos[(ω − ω′)t + φ]. When frequency lock occurs, I

becomes constant.
Figures 5(a)–5(c) show the time evolution of I , which

correspond to the dynamics shown in Figs. 4(a)–4(c), respec-
tively. When the two self-rotations are not synchronized, I

oscillates at their frequency difference, as shown in Fig. 5(a),
where the period is � (10.52−1–10.7−1)−1 � 625 ps. When
synchronization occurs, I oscillates around a constant value,
as shown in Figs. 5(b) and 5(c). The synchronized phase φ is
�0 in Fig. 5(b) and �π in Fig. 5(c).
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FIG. 6. Time evolution of (a) Nc = ∫ |ψ |2d r (solid curve) and
(b) the c.m. position (〈x〉,〈y〉) for γ −1

c = 0.19 ps, γ −1
R = 0.86 ps,

gc = 3.6 × 10−3 meV μm2, gR = 17.3gc, and R = 0.04 ps−1 μm2,
and P0 = 272 ps−1 μm−2, where ρ = 4.5 μm in (a) and ρ = 5.6 μm
in (b). The dashed curve in (a) shows Nc for the same parameters as
those in Fig. 2.

V. CONCLUSIONS AND DISCUSSION

We have investigated the dynamics of an exciton-polariton
condensate in a planar semiconductor microcavity pumped by
a nonresonant laser beam. We considered a parameter region
in which modulational instability arises in a homogeneous
system (Fig. 1). It was shown that when the polariton conden-
sate is excited by a Gaussian laser beam of which the width

is comparable to the unstable wavelength, the self-rotation of
the condensate occurs; the c.m. position of the condensate
wave packet rotates around the center of the pump at a
constant frequency (Fig. 2). The parameter dependence of the
self-rotation frequency was investigated (Fig. 3). In addition,
the synchronization of two self-rotating condensates pumped
by two Gaussian laser beams was investigated (Figs. 4 and
5). The two self-rotations could be synchronized, even when
the individual rotation frequencies were slightly different. We
have also confirmed that the self-rotation and synchronization
can be observed even in the presence of disorder potential in a
realistic sample.

Spontaneous rotation has been studied for the nonlinear
Schrödinger equation with pump and decay [33], and recently
a wave packet of a condensate in a harmonic potential
was found to rotate spontaneously [34]. The mechanism
for these spontaneous rotations may be different from that
presented here, because only the condensate wave function
was considered in these previous studies, while the interplay
between the condensate and the reservoir plays an important
role in the self-rotation in this work.
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APPENDIX: SELF-ROTATION WITH MODERATE
CONDENSATE GROWTH

For the parameters used in Fig. 2, the present model
exhibits unrealistic violent oscillation between the numbers
of condensate and reservoir polaritons in the early stage of
the dynamics. In this Appendix, we show that this oscillatory
behavior is not responsible for the self-rotation.

Figure 6(a) shows the initial growth of the condensate
polaritons Nc = ∫ |ψ |2d r . For the same parameters as those
in Fig. 2, Nc strongly oscillates at t ∼ 10 ps (dashed curve).
On the other hand, for a new parameter set with a shorter
reservoir lifetime, the condensate grows smoothly (solid
curve). Figure 6(b) shows the time evolution of the c.m.
position for this parameter set, which exhibits self-rotation
after t � 150 ps. Thus, the self-rotation occurs even without
the initial oscillation in Nc and therefore the initial oscillatory
behavior is not responsible for the self-rotation.
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