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Quantum phase transition of electron-hole liquid in coupled quantum wells
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Many-component electron-hole plasma is considered in the coupled quantum wells. The electrons are assumed
to be localized in one quantum well (QW) while the holes are localized in the other QW. It is found that
the homogeneous charge distribution within the QWs is unstable if the carrier density is sufficiently small.
The instability results in the breakdown of the homogeneous charge distribution into two coexisting phases—a
low-density phase and a high-density phase, which is electron-hole liquid. In turn, the homogeneous state of
the electron-hole liquid is stable if the distance between the quantum wells � is sufficiently small. However,
as the distance � increases and reaches a certain critical value �cr, the plasmon spectrum of the electron-hole
liquid becomes unstable. Hereupon, a quantum phase transition occurs, resulting in the appearance of charge-
density waves of finite amplitude in both quantum wells. Strong mass renormalization and the strong Z-factor
renormalization are found for the electron-hole liquid as the quantum phase transition occurs.

DOI: 10.1103/PhysRevB.94.165304

I. INTRODUCTION

For a long time the investigation of the two-dimensional
(2D) strongly correlated electron system has attracted a great
interest of both theorists and experimentalists (see, e.g.,
Refs. [1–11]). The electron-hole plasma (EHP) in coupled
quantum wells (CQWs), where the electrons are localized in
one quantum well and the holes are localized in the other quan-
tum well, occupies a special place among the low-dimensional
many-electron systems [12–35]. The interest in the CQW has
greatly grown in recent years due to the increasing ability
of manufacturing the high-quality quantum-well structures
in which electrons and holes are confined in the different
spatial regions between which the tunneling can be made
negligible [34]. The EHP in the CQW is a nonequilibrium
one. However, a probability of the electron-hole annihilation
decreases exponentially as the spatial separation between the
quantum wells increases. For this reason, the lifetime of
both the electron and the holes τa increases exponentially
as well [12]. At the same time, the equilibrium time τeq

within the electron subsystem or within the hole subsystem
is determined by the interaction with phonons. Since τeq � τa

one can consider the electrons and the holes as equilibrium
subsystems for the time interval τeq < t < τa .

Strong electron-hole correlations in such systems can result
in the creation of excitons which are the bound electron-hole
states. A possibility of the exciton Bose-Einstein condensation
as well as the superfluidity and the superconductivity in the
CQW are considered microscopically in Refs. [12,13]. The
gas-liquid transition, the features of the liquid exciton phase,
and the transition into the superfluid phase are studied as a
function of the distance � between the electron and the hole
layers in the CQW in Ref. [14]. The strongly nonideal system
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of the excitons in the CQW considered as structureless bosons
was considered in Refs. [24,25,28], the exciton correlation
being taken into account in a semiphenomenological way.
Correlations in electron-hole layers that result in a transition
from the homogeneous liquid to a charge-density wave are
considered in Refs. [26,27].

In the present paper we propose a microscopical description
of strongly correlated multicomponent electron-hole liquid
(EHL) which is a nonideal multicomponent plasma (EHP)
in the CQW at zero temperature. The electron-hole system
in many-valley semiconductors is a typical representative
of the multicomponent EHP [29]. The number of different
kinds of the electrons and of the holes ν is assumed to
be large. As it was shown for the first time in Ref. [36],
the multicomponent EHP in bulk semiconductors possesses
unconventional Coulomb screening. Such a remarkable feature
is connected with occurrence of characteristic momentum
p0 and characteristic energy ω0 which far exceed the Fermi
momentum pF and the Fermi energy εF , respectively. The
parameters p0 and ω0 determine the region of the plasmon
spectrum which is mainly responsible for the unconventional
Coulomb screening in the multicomponent EHP [36]. Such
a property of the multicomponent EHP was employed for
investigation of various features of the EHL [37,38]. The
features inherent in the multicomponent EHP are also relevant
for the multicomponent electron gas at the uniform positive
background and for the EHP and electronic gas with strong
anisotropic electron spectrum in the quasi-one-dimensional
and quasi-two-dimensional system [36,39–43].

For the first time, a possibility of a bulk phase transition of
the EHP into EHL was considered in Ref. [44], followed by
numerous experimental and the theoretical investigations (see,
e.g., Refs. [43,45]). This phase transition is a consequence
of the instability of the neutral homogeneous EHP if it has a
density smaller than a certain critical value nc. The instability
results in the appearance of drops of the EHL with the
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equilibrium density neq > nc. It is remarkable that, if the bulk
EHP is a multicomponent one, both nc and neq are completely
determined by the number of the component ν [36].

The energy of the ground state and the chemical potential
of the multicomponent EHP in the CQW is calculated in
Refs. [46–48] as a function of the electron density n (which
is the same for the holes), the interplane distance �, and the
number of the components ν � 1. The critical concentration
nc = nc(�,ν) is found such that, for the concentration n < nc,

a homogeneous in-plane charge distribution is unstable. Such
instability results in the breakdown of the homogeneous
charge distribution into the rare and the dense phases, the
last one being the EHL with the equilibrium density neq =
neq(�,ν) > nc, neq ∼ ν3/2 if � � ν−1 � 1, and neq ∼ �−3/2 if
� � ν−1 [46].

It is shown in Ref. [46] that, for the density n = neq, the
in-plane exciton radius is of the order of the average distance
between the charge carriers within the quantum well n

−1/2
eq .

This fact does not evidence in favor of an existence of the
exciton as a structureless particle in the CQW. Instead, strong
electron-hole correlations near the Fermi surface remain.
These correlations, in turn, can result in unconventional
Coulomb screening (inherent in the multicomponent EHL),
and in superconductivity induced due to the Coulomb interac-
tion alone [37,38].

In the present paper we investigate the features of the
EHL in the CQW, the existence of which is predicted in
Refs. [46–48]. Like these papers, the system of units is used in
which the effective electron charge e∗ = e/

√
κ0 (κ0 is the static

permittivity), and the bare electron mass m and the Planck
constant � are as follows: e∗ = m = � = 1. For such a system
of units, the effective Bohr radius aB = �

2/me∗2 = 1, which
is taken as a length unit. For the sake of simplicity, we assume
that the masses of electron and hole are equal. As is shown
in Ref. [47], this assumption does not influence the result
qualitatively but it simplifies the calculations significantly.
According to Ref. [48], the plasmon spectrum of the EHL
is stable for n = neq if � � 1. In this case, as it is shown
in the present paper, both the electron mass and the Z factor
for the Green’s function experience negligible renormalization
induced by the Coulomb interaction. However, as the distance
� increases and reaches a certain critical value �cr, the plas-
mon spectrum of the electron-hole liquid becomes unstable.
Hereupon, a quantum phase transition occurs, resulting in the
appearance of the charge-density waves of finite amplitude in
both quantum wells. Strong mass renormalization and strong
Z-factor renormalization are found for the electron-hole liquid
as the quantum phase transition occurs.

All the results obtained in Refs. [46–48] as well as in the
present paper are based on the selection of the diagrams in
the small parameters 1/ν. However, the results obtained seem
to be qualitatively valid if the parameter ν is not too large. A
relationship to the experiments available is considered.

II. GREEN’S FUNCTION FOR THE MULTICOMPONENT
ELECTRON-HOLE PLASMA

The multicomponent EHP in the CQW is described with
the following Hamiltonian of the system Ĥ = Ĥ0 + V̂int:

Ĥ0 =
∑
ασk

k2

2
a+

ασ (k)aασ (k),V̂int = 1

2S

∑
αα′σσ ′

kk′q

Vαα′ (q) × a+
ασ (k)a+

α′σ ′
(
k′)aα′σ ′

(
k′ − q

)
aασ (k + q). (1)

Here α = e stands for the electrons, while α = h stands for the
holes; σ = 1, . . . ,ν labels the kind of the electron or the hole;
a+

ασ (k) and aασ (k) are the electron or the hole creation and
annihilation operators; k, k′, q are the 2D momenta; S is the
area of the QWs. The Coulomb interaction Vαα′ is assumed to
be independent of the kind of the particle, i.e., of the subscripts
σ, and

Vαα′ (q) =
{

Vee(q) = Vhh(q) = V = 2π
q

, α = α′;
Veh(q) = V ′ = − 2π

q
e−q�, α �= α′ . (2)

A single-particle Green’s function Gασ (K) depends neither on
the subscript α nor on the subscript σ. Then,

Gασ (K) = G(K) = [iω + μ − k2/2 − �(K)]−1, (3)

where μ is a chemical potential, �(K) is a self-energy
part (SEP), K = (iω,k), ω is the Matzubara frequency, and
k is a 2D momentum. Like Refs. [46–48], the calculation
of the Green’s function is based on the selection of the
diagram in the small parameter 1/ν � 1. Let us represent
the SEP as �(K) = �H + �(c)(K), where �H = 2πn� is
the K-independent Hartree contribution, and �(c)(K) involves
both the exchange and the correlation contributions. Selecting

the main sequence of the diagram in the parameter 1/ν one
obtains for the SEP �(c)(K) [46]

�(c)(P ) = −
∫

dωd2k

(2π )3 U (K)G(0)(ε + ω,p + k). (4)

Here the Green’s function is G(0)(K) =
(iω + p2

F /2 − k2/2)
−1

, pF = 2π1/2(n/ν)1/2 is the Fermi
momentum, εF = 2πn/ν is the Fermi energy, and n is the
total concentration (the parameters pF ,εF , and n are the same
for the electrons and the holes). The effective interaction reads

U (K) = V (k)

1 − χ (�)V (k)0(K)
, (5)

where the polarization operator is given by

0(K) = ν

∫
dω1d

2k1

(2π )3 G(0)(K + K1)G(0)(K1).

The function χ (�) is a monotonic, continuous, and slowly
varying one obeying the condition χ (�) = 2 for � � 1 and
χ (�) = 1 for � � 1 [46].

We are interested in the �(c)(P ) for the momenta and the fre-
quencies which are close to the Fermi ones. On the other hand,
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as shown in Ref. [46], the main contribution into integral (4)
originates from the region around ω ∼ ω0 = n2/3/2 � εF and
k ∼ k0 = n2/3 � pF . To calculate integral (4), one should take
into account that for ν � 1 the polarization operator 0(K)
can be substituted with its asymptotics for the momentum
k � pF and the frequency ω � εF as

0(K) = −nk2/[ω2 + (
k2/2

)2
]. (6)

Integral (4) is readily calculated by substitution k →(χn)1/3k,
ω → (χn)2/3ω. Then, the calculation of the �(c)(P ) for p �
k0,ε � k2

0 results in the expression for the �(P ) in the form

�(P ) = �(0,pF ) − iεIZ + ξ (0)
p Im, (7)

�(0,pF ) = 2πn� − C(χn)1/3,ξ (0)
p = (

p2 − p2
F

)/
2 (8)

where IZ = CZ(χn)−1/3, Im = Cm(χn)−1/3, ξ (0)
p =

(p2 − p2
F )/2. The numerical calculation of the constants

entering the �(P ) gives C ≈ 1.3, CZ ≈ 7.6, and Cm = 0.4.

The chemical potential μ is determined via �(0,pF ) by the
well-known relation

μ = p2
F /2 + �(0,pF ) = 2πn(1/ν + �) − C(χn)1/3, (9)

and Green’s function (3) reads

G(P ) = G(iε,p) = Z

iε − ξ ∗
p

; ξ ∗
p = p2 − p2

F

2m∗ ; (10)

Z = 1

1 + Iz

;
1

m∗ = 1 + Im

1 + Iz

< 1. (11)

For densities n < nc = [ Cχ1/3

6π(�+1/ν) ]
3/2

, one has ∂μ/∂n < 0.

This fact means an instability of the homogeneous EHP
for sufficiently small densities. Then, chemical potential (9)
determines the energy per particle:

E = π (n/ν) + πn� − 3
4C(χn)1/3. (12)

This expression has a minimum for the density

neq =
[

Cχ1/3

4π (� + 1/ν)

]3/2

> nc. (13)

The minimum corresponds to the vanishing pressure. For this
reason, the equilibrium state of the EHP at the density n = neq

is just the EHL.
Let us consider how the Coulomb interaction affects the

effective mass m∗ of the quasiparticle and the Z factor of the
renormalized Green’s function for the EHL, i.e., for the density
n = neq. Let � � 1. Then neq � 1. It follows from Eq. (11)
that �m = m∗ − m � m and Z = 1 − δ,δ � 1. In the op-
posite case � � 1, one has neq ∼ l−3/2 � 1. Then, according
to Eq. (11), �m = m∗ − m ∼ m and Z = 1 − δ,δ ∼ 1 and
the renormalization is significant. Thus, the renormalization
induced by the Coulomb interaction is insignificant for � � 1
and is visible for � � 1.

III. VERTEX PART FOR THE MULTICOMPONENT
ELECTRON-HOLE PLASMA

To investigate the plasmon spectrum of the EHL and its
stability, let us calculate the vertex part �ασ,α1σ1;α′σ ′,α′

1σ
′
1

with

= +

= + +

= +

(a)

(b)

(c)

FIG. 1. Exact diagrammatic representation for the vertex part.

two input fermion ends ασ,α1σ1 and two output fermion
ends α′σ ′,α′

1σ
′
1. In what follows, for brevity, we will use the

notation �αβ;α′β ′ instead of �ασ,α1σ1;α′σ ′,α′
1σ

′
1
. Thus, we omit

the subscripts σ,σ1σ
′,σ ′

1. In particular, the notation α, in fact,
implies ασ. This convention reflects the fact that the value of
the vertex part does not depend on the value of the subscripts
σ,σ1σ

′,σ ′
1 at all. However, the omitted subscripts should be

taken into account when the summation over such subscripts
is necessary.

The exact diagrammatic representation for the vertex
function is given in Fig. 1(a). In this figure the black circle
with two input ends and two output ends represents the exact
vertex part �αβ;α′β ′ ; the black square with two input ends and
two output ends represents the irreducible vertex part �αβ;α′β ′

[any diagram is called an irreducible one if it cannot be cut
across one interaction (dotted) line resulting in two uncoupled
parts]; the black triangular with one input end, one output end,
and one interaction end represents the irreducible vertex part

�
3
αα′;δ; the wavy line denotes the effective Coulomb interaction

Uδδ′ . In turn, the effective interaction Uδδ′ is determined by the
self-consistent diagrammatic equation in Fig. 1(b), in which
the dotted lines denote bare Coulomb interaction (2); the inner
lines with arrows denote the exact fermion Green’s functions.
The diagrammatic equation in Fig. 1(c) is an exact relation

between the irreducible vertex parts �αβ;α′β ′ and �
3
αα′;δ .

So the analytic representation of the exact diagrammatic
equation in Fig. 1(a) is given by

�αβ;α′β ′ = �αβ;α′β ′ +
∑
δ1;δ2

�
(3)
α;α′;δ1

· Uδ1;δ2 · �
(3)
β;β ′;δ2

. (14)
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= +
. . .

= +

+ (a)

(b)

FIG. 2. (a) The main diagrammatic sequence for the �αβ;α′β ′ .
(b) The bare irreducible vertex function γαα′ .

In Fig. 1(b) the self-consistent diagrammatic equation reads
the effective interaction Uδ1;δ2 , which enters Eq. (14). Thus,

Uδ1;δ2 (K) = Vδ1;δ2 (k) +
∑
ρ,η

Vδ1;ρ(k)ρ;η(K)Uη;δ2 (K). (15)

Here ρ;η(K) is the exact polarization operator which,
according to Fig. 1(b), reads

ρ;η(K) = ∗
0(K)δρη + (c)

ρ;η(K). (16)

In this equation, the polarization operator ∗
0(K) is determined

as follows:

∗
0(K) = ν

∫
dω1d

2k1

(2π )3 G(K + K1)G(K1), (17)

while the (c)
ρ;η(K) is determined via the vertex �αβ;α′β ′ as is

shown in Fig. 1(b). The asymptotic expression for the ∗
0(K)

is

∗
0(K) = −ν

Z2

2π

(kvF )2/2

ω2 + (kvF )2/2
, k � pF , (18)

∗
0(K) = −n

2Z2ξ ∗
k

ω2 + (
ξ ∗
k

)2 , pF � k � k0 ∼ n1/3. (19)

The main diagrammatic sequence for the �αβ;α′β ′ in the
parameter 1/ν � 1 is shown in Fig. 2(a). Let γαβ;α′β ′ (the light
square) be the irreducible bare vertex part which generates the
main diagrammatic sequence for the vertex part �αβ;α′β ′ . One
can show that the γαβ;α′β ′ is composed of two diagrams shown
in Fig. 2(b).

Simple reasoning reveals that γαβ;α′β ′ may be represented
as follows: γαβ;α′β ′ = γαβδαα′δββ ′ . Then, e.g.,

γee = γhh = γ ; γ (p1,p2,q)

= −
∫

d3p

(2π )3 U (p)U (k − p)G(p1 − p)

×[G(p2 + p) + G(p2 + k − p)]. (20)

The effective interaction U (K) in Eq. (20) is given by Eq. (5).
An analysis of the integrand in Eq. (20) [which is similar
to the analysis of the integrand in Eq. (4)] shows that the
main contribution into integrals (20) originates from the region
k ∼ k0 ∼ n1/3 � pF and ω ∼ ω0 ∼ k2

0 � εF . For this reason,

if the components of the external momenta p1,p2,q are much
smaller than k0,ω0, then one can neglect p1,p2,q in the
integrand. Therefore, the vertex part γ (p1,p2,q) does not
depend on the p1,p2,q. After the simple transformation one
obtains

γ = − 1

2n2

∫
d2kdω

(2π )3 U (K)U (−K)[0(K)]2. (21)

To calculate integral (21), let us take into account that, for ν �
1, Eq. (6) can be used for the polarization operator 0(K) for
large transfer momentum k � pF . Then, the integral is readily
calculated by substitution k →(χn)1/3k, ω → (χn)2/3ω. As a
result, one obtains

γ = −Cγ

1

(χn)2/3 ,Cγ ≈ 0.4. (22)

Similarly, for small external momenta one has

γeh = γ ′; γ ′ = − 1

2n2

∫
d2kdω

(2π )3 U ′(K)U ′(−K)[0(K)]2.

(23)
Here U ′(K) is the effective electron-hole interaction. As is
mentioned above, integrals like Eq. (23) are determined by
the region k ∼ k0 ∼ n1/3 � pF and ω ∼ ω0 ∼ k2

0 � εF . For
this region, the integrand is proportional to U ′(K) ∼ V (k0) ∼
exp (−k0�). In what follows, we are interested in the densities
n ∼ neq [see Eq. (13)]. In this case for � � 1 the parameter
k0� � 1 and one has U ′(K) = −U (K). In the opposite case
� � 1 one has k0� ∼ �1/2 � 1 and the integrand in Eq. (23)
vanishes. Thus, we have

γ ′ = γ for � � 1; γ ′ = 0 for � � 1. (24)

Since the bare vertex parts γ and γ ′ are constant, the
irreducible vertex �αβ;α′β ′ depends only on the momentum
transfer and, thus, �αβ;α′β ′ = �αβ;α′β ′ (k,ω). The main sequence
of the diagram in the parameter 1/ν for �αβ;α′β ′ [see Fig. 2(a)]
is easily summed for k � k0 and ω � ω0. Taking into account
that the vertex part can be represented in the form �αβ;α′β ′ =
�αβδαα′δββ ′ , where �ee(K) = �hh(K) = �(K), one has

�αβ;α′β ′ = �αβ(K)δαα′δββ ′ ,K = (iω,k), (25)

�ee(K) = �hh(K) = �(K)

= γ − (γ 2 − γ ′2)[∗
0(K)]2

1 − 2∗
0(K)γ + (γ 2 − γ ′2)[∗

0(K)]2
, (26)

�eh(K) = �
′
(K) = γ ′

1 − 2∗
0(K)γ + (γ 2 − γ ′2)[∗

0(K)]2
.

(27)

These expressions are used to calculate the correlation part of
the polarization operator (c)

ρ;η(K) [see Eq. (16)] and the vertex

�
(3)
α,α′;δ [see Fig. 1(c)]. As a result, one obtains

(c)
ρη(K) = ∗

0(K)�ρη
∗
0(K), (28)

�
(3)
α,α′;δ = �

(3)
α;δδαα′ ,�

(3)
α;δ(K) = δαδ + �α;δ(K)∗

0(K). (29)
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Substituting Eqs. (25), (28), and (29) into Eq. (14) for the vertex �αβ;α′β ′ , one has �αβ;α′β ′ = �αβδα;α′δβ;β ′ , where

�ee = �hh = �(K) = (V + γ ) − [(V + γ )2 − (V ′ + γ ′)2]∗
0

[1 − (V + V ′ + γ + γ ′)∗
0][1 − (V − V ′ + γ − γ ′)∗

0]
, (30)

�eh = �′(K) = V ′ + γ ′

[1 − (V + V ′ + γ + γ ′)∗
0][1 − (V − V ′ + γ − γ ′)∗

0]
. (31)

IV. PLASMON SPECTRUM AND INSTABILITY

Let us investigate the plasmon spectrum of the EHP in the
CQW which is determined by poles of vertex parts Eqs. (30)
and (31). First, let us consider the case l � 1. Then, it follows
from Eqs. (30) and (31) that

� = (V − π�)

[1 − 2(V − π�)∗
0]

+ (γ + π�)

[1 − 2(γ + π�)∗
0]

, (32)

�′ = −(V − π�)

[1 − 2(V − π�)∗
0]

+ (γ + π�)

[1 − 2(γ + π�)∗
0]

. (33)

Let us substitute Eq. (18) into Eqs. (32) and (33) and replace
the Matzubara frequency iω by the real frequency ω. The pole
of the vertex parts � and �′ is given by the second terms in
Eq. (32) or Eq. (33). Then, the plasmon spectrum is determined
by the equation

1 + 2(γ + π�)
ν

2π

(kvF )2/2

−ω2 + (kvF )2/2
= 0. (34)

The spectrum is stable if ω, which obeys Eq. (34), is real. This
takes place if

n >

[
Cγ

χ2/3
(

1
ν

+ l
)]3/2

. (35)

Thus, if n > ncr = [ Cχ1/3

6π(1/ν+�) ]
3/2

, the plasmon spectrum is
stable. In the opposite case, n < ncr, the pole takes place for
imaginary ω. This denotes an instability of the plasmon spec-
trum. This instability just corresponds to the thermodynamic
instability of the homogeneous EHP for the densities n < ncr

for which one has ∂μ/∂n < 0 [36]. Let us note that for � � 1
the plasmon spectrum remains stable for the equilibrium EHL

which has the density neq = [ C�1/3

4π(1/ν+�) ]
3/2

> nc.

Now let us investigate the plasmon spectrum for the case
� � 1. Let us consider momenta and frequencies which obey
the limitations (1/�) � k � k0, ω � ω0. In this case V ′(k)
vanishes. Also, according to Eq. (24), γ ′ = 0. Therefore, it
follows from Eq. (31) that �′ = 0. So in the case � � 1 Eq. (30)
reads

�(K) = V (k) + γ

1 − ∗
0(K)[V (k) + γ ]

. (36)

Let us substitute V,∗
0, γ by Eqs. (2), (19), and (22) for the

momentums pF � k � k0 and change iω by ω As a result,
one obtains

�(K) =
(

2π
k

− Cγ

n2/3

)[
ω2 − (

ξ ∗
k

)2]
ω2 − ξ ∗

k

[
ξ ∗
k + nZ2

(
2π
k

− Cγ

n2/3

)] . (37)

A pole of the �(K) determines the plasmon spectrum and
exists for the frequencies

ω2
p(k) = ξ ∗

k

[
ξ ∗
k + nZ2

(
2π

k
− Cγ

n2/3

)]
. (38)

Let us investigate a behavior of the plasmon spectrum for
the EHL of a density n ∼ neq. One can easily see that,
for small momenta k � k0 which additionally belong to
the interval n2/3 � k � n1/2, the plasmon frequency ωp(k)
becomes imaginary. This means an instability of the homoge-
neous state of the EHL with respect to an appearance of the
spatially inhomogeneous periodic in-plane charge distribution
with a period characterized by the wave vector k. Such a
charge-density fluctuation describes the charge-density waves
(CDWs), which are in phase for the electron and the hole
layers. For the equilibrium EHL with n ∼ neq ∼ �−3/2, one
has 1

�
� k � 1

�3/4 and, thus, the period of the CDW obeys the
condition �3/4 � D � �.

V. CONCLUSION

Thus, for � � 1 the homogeneous state of the EHL with
the density neq ∼ ν3/2 is stable. However, as the distance
� increases, the plasmon spectrum becomes softer for finite
momenta k � 1

�
. Then, for a certain �cr ∼ 1, there appears a

momentum k = kcr = 1/�cr for which the plasmon frequency
vanishes. As the distance � increases, the plasmon frequencies
characterized by the wave-vector interval 1

�
� k � 1

�3/4 become
imaginary. As a result, the CDW appears. This feature of the
plasmon spectrum implies that EHL in the CQW experiences
a quantum phase transition in the parameter �.

Note that, according to Refs. [46,48], the homogeneous
EHP of the spatially separated charges of the opposite sign in
the CQW possesses a negative compressibility if the charge
density is smaller than the critical value nc. Such a feature
evidences that the EHP is absolutely thermodynamically
unstable. It should be pointed out that such instability is
revealed for arbitrary separation distance � (however, the
critical density nc depends on the �). An inevitable presence
of impurities serving as condensation centers results in the
formation of the EHL drops. It is shown in the present paper
that the EHL remains homogeneous if the spatial separation
does not exceed the critical value �cr. Instead, if the separation
exceeds the critical value �cr, the instability of the EHL with
respect to creation of the CDW takes place. Thus, the instability
of the EHP found in Refs. [46,48] differs from the instability
in the EHL discovered in the present paper.

Note that some of the results obtained above are valid for
multicomponent electron gas at the positive background [1–
4,6,39–42]. In particular, this concerns the effective mass
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renormalization, the Z-factor renormalization for the single-
particle Green’s function, the dependence of the ground-state
energy, and the chemical potential of the electrons. Also, the
conclusion remains valid and leads to an instability of the
ground state of the electron gas with respect to appearance of
the CDW for sufficiently small density. However, a significant
difference takes place: in contrast to EHL, the electron
gas at the positive background cannot find the equilibrium
density to minimize the ground-state energy since the electron
density is settled by the positive background. Instead, Wiegner
crystallization of the electron gas can take place.

In this paper, for the sake of simplicity, it is assumed that
the bare effective electron and hole masses are the same. First
of all, let us note that, if the spatial separation is negligible,
i.e., � � 1, the exciton bound energy is determined by the
reduced mass of the electron-hole system. For this reason,
taking into account the fact that the effective hole mass mh is
much greater than the effective electron mass me can change
the reduced mass only by a factor of 2. This is insignificant for
the results obtained. In the opposite case � � 1, the exciton
bound energy is proportional to the factor e∗2/� and depends
neither on the effective electron mass nor on the effective hole
mass. The impact of the difference between the electron and the
hole masses on the electron-hole liquid critical parameters is
considered in our paper Ref. [47]. It is shown in our paper that

correlation energy even increases by the factor (mh/ml)1/3.
Thus, the difference in the masses makes the formation of the
EHL more preferable as compared to the exciton gas. So far
as the creation of the CDW in the EHL is concerned, the mass
difference should not affect the result, as it is due to the strong
column correlation which, according to Ref. [47], increases as
the mass difference increases.

There are several experiments in which the EHL seems
to be observed in CQWs [49–51]. Yet, strictly speaking, our
results concern many-component electron-hole systems for
which ν � 1. Within this circumstance, one can relate the
results obtained to the experiments available only qualitatively.
However, it is worthwhile mentioning that, if the spatial
separation obeys the limitation � � 1/ν, the dependence of
all the critical parameters on the key parameter ν vanishes.
For this reason, we expect that our results are connected with
Refs. [49–51].
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