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Steady-state entanglement between distant quantum dots in photonic crystal dimers
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We show that two spatially separated semiconductor quantum dots under resonant and continuous-wave
excitation can be strongly entangled in the steady state, thanks to their radiative coupling by mutual interaction
through the normal modes of a photonic crystal dimer. We employ a quantum master equation formalism
to quantify the steady-state entanglement by calculating the system negativity. Calculations are specified to
consider realistic semiconductor nanostructure parameters for the photonic crystal dimer–quantum dots coupled
system, determined by a guided-mode expansion solution of Maxwell equations. Negativity values of the order
of 0.1 (20% of the maximum value) are shown for interdot distances that are larger than the resonant wavelength
of the system. It is shown that the amount of entanglement is almost independent of the interdot distance, as
long as the normal mode splitting of the photonic dimer is larger than their linewidths, which becomes the
only requirement to achieve a local and individual qubit addressing. Considering inhomogeneously broadened
quantum dots, we find that the steady-state entanglement is preserved as long as the detuning between the two
quantum dot resonances is small when compared to their decay rates. The steady-state entanglement is shown to
be robust against the effects of pure dephasing of the quantum dot transitions. We finally study the entanglement
dynamics for a configuration in which one of the two quantum dots is initially excited and find that the transient
negativity can be enhanced by more than a factor of two with respect to the steady-state value. These results are
promising for practical applications of entangled states at short time scales.
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I. INTRODUCTION

The possibility of exploiting modern semiconductor de-
vices for quantum information processing has attracted con-
siderable attention in the past decade [1]. In particular,
semiconductor quantum dots (QDs) are among the best
candidates for quantum bit (qubit) operations, owing to
their unique atomlike radiative properties combined with the
sophisticated integration techniques achieved nowadays on
semiconductor platforms [2]. Entangling distinct quantum
emitters is a key requirement for such applications, both
for quantum gate engineering and quantum information
transferring [3,4]. With this aim, the coherent interaction
between two QDs has been widely studied in the short-distance
regime [5–7], and recent experimental evidence has shown
their actual relevance for quantum computing [8,9]. However,
individual qubit manipulation, which is crucial for practical
applications, remains challenging due to the small spatial
separations typically needed for achieving strongly entangled
QD states. On a parallel ground, solid-state artificial atoms
inevitably suffer from short coherence times owing to their
coupling to dissipative environment [10], making it difficult to
envision long-lived entangled states with such kind of qubits
for practical applications. To date, a conclusive demonstration
of long-lived entangled states in spatially separated and distant
QDs has not been shown.
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To this end, a number of studies have been recently
addressing the mutual QDs coupling that is indirectly mediated
by purely photonic degrees of freedom [11–13]. The main goal
would be to achieve a long-range coherent energy transfer be-
tween the QDs by overcoming their short-distance interactions,
such as tunneling and Förster coupling, thus enabling indi-
vidual qubit manipulation. Among the different nanophotonic
systems, photonic crystals represent one of the most promising
platforms to achieve such long-range interactions between
spatially separated QDs [14–16]. Thanks to the enormous
progress in fabrication technologies, QDs coupled to photonic
crystal cavities have allowed pioneering demonstrations of
cavity quantum electrodynamics phenomena, such as Purcell
enhancement, lasing, and strong light-matter coupling at the
single quantum level [17–23]. It has been proposed that two
QDs can be entangled through coupling within the same
cavity [24–28], although the interdot distance remains smaller
than the operational wavelength. Based on these grounds, it
has been recently proposed that sizable radiative coupling
can be achieved between QDs embedded in photonic crystal
dimers (PCD) [29,30], i.e., coupled photonic crystal cavities,
where the QDs distance can be considerably larger than their
resonant wavelength. Such a system could be useful to finally
obtain a long-distance entanglement, an alternative to recent
proposals based on plasmonic [31–33] or nanowire photonic
crystal [34] approaches. Moreover, the PCD approach might
be promising to realize a recently proposed scheme allowing
us to obtain steady-state entanglement via quantum bath
engineering [35,36], thus overcoming the known issues of QDs
in terms of short coherence times.

In this work we propose to exploit the delocalized nature
of the normal modes of the PCD and their strong dipole
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FIG. 1. (a) Schematic representation of the system studied in this
work. Two strongly coupled cavities with one quantum dot coupled
to the electric field antinode in each of them. The normal modes,
arising from the hybridization of the fundamental cavity mode in
each cavity, radiatively couple the quantum dots. The ω’s represent
the frequencies of the system while the γ ’s represent the loss rates.
The intercavity distance dc, which also defines the dot-dot separation,
can be larger than the characteristic wavelength of the system, λm.
(b) PCD considered in this work; two strongly coupled L3 photonic
crystal cavities in a hexagonal lattice of holes with lattice parameter
a. The end lateral holes are displaced by s outward, and their radii are
decreased to 80% of the nominal value. The angle between the line
connecting the centers of the cavities and the horizontal axis is α.

coupling to QD excitons to simultaneously achieve a sizable
entanglement between two distant solid-state qubits and in
the steady state. Figure 1(a) shows a schematic illustration of
our proposed system: Two strongly coupled photonic crystal
cavities (the PCD) mediate the coupling between two QDs po-
sitioned at their respective electric-field antinodes through the
electromagnetic normal modes of the coupled cavity system.
Unlike a recent proposal [35], we hereby assume to resonantly
and continuously drive the QD excitons directly, e.g., via
coherent electrical π pulses [37], and show that this is sufficient
to achieve a sizable steady-state entanglement between the two
spatially separated qubits even when considering photonic
and excitonic losses. The present paper complements our
recent study [29,30] on the coherent energy transfer between
two distant QDs in PCDs, where we used a semiclassical
approach based on the photonic Green’s function. Here we
employ a fully quantum mechanical theory, where we focus
on the role of the normal modes as channels for quantum
entanglement between the QDs. The present study will be
useful for quantum information applications on a photonic
crystal chip.

The work is organized as follows. In Sec. II, we summarize
the semiclassical approach used to estimate the photonic

crystal parameters for realistic and state-of-art coupled QD-
PCD configurations and materials, and the quantum mechan-
ical model of two QDs coupled via the normal modes of the
PCD using the master equation formalism. The steady-state
entanglement between the QDs as a function of the interdot
distance is studied in Sec. III for all possible geometric
configurations of the PCD considered in this work. In Sec. IV
we study the transient dynamics of the system and we propose
a simple approach for generation of strongly entangled QDs
in practical applications. Finally, the main conclusions of the
work are presented in Sec. V.

II. THEORY AND METHODS

In order to describe the system that is schematically
sketched in Fig. 1(a), we apply a two-step theoretical approach:
First, the relevant system parameters are estimated in a prac-
tical realization by numerically solving Maxwell equations
in a realistic photonic crystal nanostructure, and then these
theoretically derived parameters (such as QD-cavity coupling
and dissipation rates) are used as inputs for a quantum master
equation formalism, which allows us to quantify the degree
of entanglement between the two qubits. The two theories are
briefly outlined below.

A. Guided mode expansion

Among the practical realizations of the model system
outlined in Fig. 1(a) on an integrated nanophotonics platform,
we are specifically interested in describing the PCD formed
by two coupled (nominally identical) L3 photonic crystal slab
cavities in a hexagonal lattice of circular holes as shown in
Fig. 1(b). The L3 cavity consists in three missing holes along
the �K lattice direction [38], and we adopt the optimized
design in which the end lateral holes are displaced by 0.15a

outward, a being the lattice constant of the underlying photonic
crystal lattice, and their radii are decreased to 80% of the nom-
inal value [39]. The geometry of the photonic crystal lattice
allows four possible symmetrical alignments between the L3
cavities; i.e., the line connecting the centers of the cavities can
determine angles α of 0◦, 30◦, 60◦, and 90◦ with respect to
the largest cavity axis [40]. The two normal mode frequencies
and their respective loss rates (quality factors), arising from
hybridization of the L3 fundamental cavity modes in the
neighboring cavities, are calculated by using the guided-mode
expansion method (GME), in which the electromagnetic fields
of the photonic crystal slab are expanded in the guided-mode
basis of the equivalent homogeneous planar waveguide [41].
We assume that the pointlike QDs are positioned at the electric
field antinodes, i.e., in the centers of the two L3 cavities, where
Ey is the only nonvanishing electric field component [42]. At
this optimal condition the QD-field coupling strengths can be
written as [15,16]

g(n)
m =

(
2πω0d

2

�

)1/2

Ey,m(rn), (1)

where ω0 and d2 are an average exciton transition frequency
and the squared QD dipole moment, which are in the range
of ∼1.3 eV and ∼0.51 eV nm3, respectively, for typical
self-assembled InGaAs QDs [21,22]; rn is the position of the
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QD n, and the electric field of the normal mode m is subject
to the normalization condition

∫
ε(r)E∗

m(r) · Em(r)dr = 1.
The normal mode frequencies, ω1 and ω2, and the coupling
strengths g(n)

m are implicit functions of the distance between the
cavities, dc, defined as the center-to-center distance which thus
coincides with the distance between the QDs. We chose system
parameters relevant to III–V GaAs-based structures, i.e.,
lattice constant a = 260 nm, hole radius 65 nm, slab thickness
120 nm, and real part of the refractive index

√
ε∞ = 3.41. For

computing the loss rates of the normal modes, γm, we adopt the
photonic Fermi’s golden rule into the GME approximation, in
which the transition rate from a guided mode to a leaky mode is
calculated using time-dependent perturbation theory [41,43].
Since the coupling between the guided modes and the radiation
modes depends on the near-field distribution throughout the
dielectric structure [44,45], the loss rates change when the
distance between the cavities varies, and the dependence of
losses on dc is usually strongest for small intercavity distances.
Therefore, γm is also an implicit function of dc.

The numerical GME calculations for computing the rele-
vant system parameters, namely ωm, γm, and Ey,m, are carried
out using a hexagonal supercell of superlattice parameter
24a for the 30◦ and 60◦ cases, with 11 025 plane waves
tested for convergence. Rectangular supercells of dimensions
27a × 8

√
3a with 11 915 plane waves, tested for convergence,

and 18a × 25
√

3a with 24 829 plane waves, tested for
convergence, are used for the 0◦ and 90◦ cases, respectively.
Only one guided mode is used in the guided-mode expansion,
since the corrections of high order guided modes are negligible
for the slab thickness and the refractive index considered in
this work.

B. Master equation formalism

The system of two QDs coupled to the normal modes of
a PCD can be described by a second-quantized Hamiltonian,
written in the normal mode basis, where the rotating-wave
approximation is employed and the QDs are assumed as
pointlike two-level systems:

Ĥ =
2∑

m=1

(�ωmâ†
mâm + �ω(m)σ̂+

m σ̂−
m )

+
2∑

m,n=1

(
�g∗(n)

m â†
mσ̂−

n + �g(n)
m âmσ̂+

n

)

+
2∑
n

(�
ne
−iωpt σ̂+

n + �
∗
ne

iωpt σ̂−
n ). (2)

Here, ωm and ω(m) correspond to the frequency of the
normal mode m and the excitonic transition frequency of
the QD m, respectively; â

†
m (âm) is the creation (destruction)

operator of photons in the normal mode m; σ̂+
m (σ̂−

m ) is the
creation (destruction) operator of one electron-hole pair in
the QD m; g(n)

m are the coupling strengths between normal
mode m and QD n; and 
n is the pumping rate at which
electron-hole pairs in the QD n are coherently created by
a continuous-wave pump laser, or electric gating potential,
with frequency ωp. With the aim of eliminating the explicit

temporal dependence in the Hamiltonian of Eq. (2), the
system dynamics can be described in a rotating reference
frame with frequency ωp by applying the operator R̂(t) =
exp[iωpt(â†

1â1 + â
†
2â2 + σ̂+

1 σ̂−
1 + σ̂+

2 σ̂−
2 )], determining an ef-

fective Hamiltonian Ĥeff = R̂Ĥ R̂† − i�R̂(dR̂†/dt), i.e.,

Ĥeff =
2∑

m=1

(�ω̄mâ†
mâm + �ω̄(m)σ̂+

m σ̂−
m )

+
2∑

m,n=1

(
�g∗(n)

m â†
mσ̂−

n + �g(n)
m âmσ̂+

n

)

+
2∑
n

(�
nσ̂
+
n + �
∗

nσ̂
−
n ), (3)

where ω̄m = ωm − ωp and ω̄(m) = ω(m) − ωp. We adopt the
master equation formalism to quantitatively account for the
losses of the system, which is written in Markov approximation
for the rotated density matrix, i.e., ρ̃ = R̂ρR̂†, as

dρ̃

dt
= i

�
[ρ̃,Ĥeff] +

2∑
m=1

[L(γm) + L(γ (m))], (4)

where L(γm) = γm[âmρ̃â
†
m − â

†
mâmρ̃/2 − ρ̃â

†
mâm/2] and

L(γ (m)) = γ (m)[σ̂−
m ρ̃σ̂+

m − σ̂+
m σ̂−

m ρ̃/2 − ρ̃σ̂+
m σ̂−

m /2] are the
Lindblad operators corresponding to the losses (both intrinsic
and extrinsic, respectively) of the photonic normal mode m at
a rate γm, as well as the losses by spontaneous emission in the
QD m at an exciton decay rate γ (m). The former are explicitly
calculated for the PCD nanostructure by the GME approach
described above. Moreover, since we are interested in low
excitation powers, low temperature, and resonant excitation
regimes, the Lindblad dissipation terms associated with
incoherent pumping can be safely neglected in our master
equation model. Pure dephasing of the QDs transitions can be
taken into account by an additional Lindblad term Ld (γ (m)

d ) =
γ

(m)
d [σ̂+

m σ̂−
m ρ̃σ̂+

m σ̂−
m − (σ̂+

m σ̂−
m )2ρ̃/2 − ρ̃(σ̂+

m σ̂−
m )2/2], where

γ
(m)
d represents a pure dephasing rate. The master equation is

numerically implemented by expressing the operators on an
occupation number Fock basis, truncated to the most suitable
photon number previously checked for convergence.

We are ultimately interested in quantifying the entan-
glement between the two QDs as mutually coupled qubits,
for which we employ the Peres-Horodecki negativity cri-
terion [46–48]. The latter accounts for the nonseparability
condition of the reduced density matrix in the composite
Hilbert space of dimension 2 ⊗ 2, effectively describing the
two qubits’ quantum mechanical behavior. The negativity is an
entanglement monotone for a two-qubit system which, for the
hereby used normalization, ranges from zero for a separable
state up to the maximum value 0.5 for the maximally entangled
Bell states (see the Appendix for details). In our case, the
reduced density matrix of the QDs is numerically calculated by
tracing over the photonic normal modes ρQD1QD2 = Tr[ρ]m,
and the negativity, quantifying the degree of entanglement
between the QDs, is defined as the absolute value of the sum
of the negative eigenvalues of ρT 1

QD1QD2, where T 1 represents
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the partial transpose of ρQD1QD2 with respect to the system 1,
i.e., QD 1.

III. STEADY-STATE ENTANGLEMENT

In this section, we are interested in characterizing the
photonic normal modes as channels for quantum entanglement
in the steady state. For determining the state with maximum
entanglement we write the pumping rates of the QDs in
the form 
n = 
0e

iφn , where φ = φ1 − φ2 is their phase
difference, and we write the pumping frequency as ωp = ω1 +
δ. Considering the two QDs resonant with the lower frequency
normal mode, ω1, and using the calculated GME parameters
in the quantum model, we compute the negativity by solving
the master equation for the steady-state density matrix as a
function of φ and δ, with φ2 = 0. Figure 2 shows the results
for the 30◦ PCD at distance dc = 2

√
3a = 901 nm, where

the vertical black and white dashed lines correspond to the
dark state and polariton branches of the system, respectively.
The largest entanglement, corresponding to a negativity of
0.103 (or ∼20% of the maximum value, see the Appendix),
is seen for a pumping frequency that is resonant with the
dark state, and a π phase difference. Since the excitonic
dark state does not couple effectively to the photonic mode,
due to their opposite symmetry, the former remains protected
from the dissipative effects of the latter, which allows for the
nonzero steady-state negativity. The phase difference between
the pumpings is determined by the bonding (symmetric) or
antibonding (antisymmetric) character of the normal mode; for
bonding modes the optimal phase difference will be (2n + 1)π
(antisymmetric excitonic dark state) while for antibonding
modes it will be 2nπ (symmetric excitonic dark state), with
n integer. In the calculations of Fig. 2 we have considered
γ (m) = 0 and �
0 = 1 μeV; since �γm is between 10 and

FIG. 2. Steady-state negativity for the 30◦ dimer at dc = 2
√

3a =
901 nm as a function of the phase difference between the pumpings
φ = φ1 − φ2, with φ2 = 0, and the frequency shift δ, where ωp =
ω1 + δ. The largest negativity is 0.103 or ∼20% of the maximum
value. The two QDs are in resonance with the lower frequency
normal mode and we have considered γ (m) = 0 and �
0 = 1 μeV.
The vertical black and white dashed lines correspond to the dark state
and polariton branches of the system, respectively.

60 μeV and �g(n)
m ∼ 110 μeV for all dimers, we are in the

weak pumping regime and the basis used for solving the
master equation, |α1α2m1m2〉 is truncated at mi = 1 (we have
checked that it is sufficient for convergence), where αi = 0 or
1 is the excitation number in the QD i and mi is the number of
photons in the mode i. We have obtained equivalent results for
all of the PCD configurations considered and at all intercavity
distances allowed by the corresponding supercell. We have
also verified in our calculations that if we pump coherently
only the photonic mode, the steady-state entanglement of the
excitonic dark state is destroyed. This is due to the opposite
symmetry between the excitonic dark state and the resonant
photonic mode, which means that the optimal condition to
entangle the QDs is not fulfilled when only the photonic mode
is coherently pumped.

Taking into account that the largest steady-state negativity
corresponds to the dark state, for a pump’s phase difference
determined by the photonic mode in resonance with the
QDs, we now investigate how the entanglement depends
on the QDs separation, dc. Figure 3 shows the negativity
calculated as a function of the interdot distance, for the 0◦,
30◦, 60◦, and 90◦ dimers, considering �γ (m) = 0 μeV, black
circles; �γ (m) = 0.66 μeV, red squares; �γ (m) = 3.3 μeV,
blue triangles; and �γ (m) = 6.6 μeV, green diamonds. The
QDs are in resonance with the lower frequency normal mode
and �
0 = 1 μeV as in Fig. 2. We find that the negativity
decreases as a function of the interdot distance in the large dc

region for all dimers, which suggests a direct proportionality
between the QDs entanglement and the PCD normal mode
splitting. The latter is known to be a decreasing monotonic
function for large intercavity distances [29,42]. On the other
hand, in PCD the normal mode splitting is not monotonic
for intermediate values of dc; in fact, the splitting can
increase for increasing intercavity distance at specific PCD
configurations [40]. Such a phenomenon is clearly reflected in
the negativity, i.e., the entanglement increases for increasing
dc, into the dc intervals [1820,2080] nm and [2340,2600] nm
for Fig. 3(a), and [1040,1300] nm for Fig. 3(c); in these cases,
the normal mode splitting changes from a very small value to
a large value, with respect to the linewidths of the photonic
modes. At the other intermediate values of interdot distances,
the negativity is roughly of the order of ∼0.1, i.e., ∼20% of
the maximum value. Hence, the results of Fig. 3 show that the
negativity remains of the order of ∼0.1 as long as the normal
mode splitting is spectrally well defined (i.e., larger than the
photonic linewidths), which is actually the regime where the
effective dipole-dipole interaction is proportional to the quality
factor of the resonant normal mode, as extensively investigated
in a previous work [29]. The 30◦ dimer, in Fig. 3(b), clearly
evidences such a behavior; the negativity is a very flat function,
around 0.1, up to dc = 2252 nm, where the mode splitting is
much larger than the normal mode linewidths. For larger values
of dc, the splitting becomes of the order of γm and the negativity
decreases. Owing to the lower penetration into the photonic
crystal barriers for the L3 cavity modes along the cavity axis,
the 90◦ PCD is characterized by a rapidly decreasing normal
mode splitting on increasing dc, as it is evident in Fig. 3(d). As a
consequence, significant values of negativity are not supported
at interdot distances that are larger than the characteristic
wavelength of the system. Furthermore, it is very interesting
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FIG. 3. Steady-state negativity for the dimers with the connecting lines at (a) 0◦, (b) 30◦, (c) 60◦, and (d) 90◦, as a function of the distance
between the QDs, for different values �γ (m) = 0 μeV, black circles; �γ (m) = 0.66 μeV, red squares; �γ (m) = 3.3 μeV, blue triangles; and
�γ (m) = 6.6 μeV, green diamonds. The two QDs are in resonance with the lower frequency normal mode and �
0 = 1 μeV. The lines
connecting the individual points only serve as a guide to the eye.

that the entanglement is not strongly affected by the γm rates
as long as the normal mode splitting is well defined; along the
flat region (negativity almost independent on interdot distance)
of the 30◦ PCD, �γ1 and �γ2 change from 67 and 37 μeV,
to 17 and 16 μeV, respectively, when dc correspondingly
changes from 901 to 2252 nm. From a previous study, it is
known that the resonant energy transfer between radiatively
coupled QDs depends on the quality factor of the normal
mode in resonance with the dots, where the 0◦ configuration
is the most convenient in terms of energy transfer, due to its
very high normal mode quality factors [30]. In the present
work we essentially show that when the relevant figure of
merit is the long-range entanglement, the 30◦ dimer is the
best choice due to its well-defined normal mode splitting even
for distances larger than the characteristic wavelength of the
system.

The results of Fig. 3 also evidence that the entanglement
of the dark state is only marginally affected when losses of
typical self-organized InGaAs QDs are taken into account;
state-of-art InGaAs QD excitonic lifetimes are between 0.2 and
1 ns, as experimentally reported in the literature [22,23,49].
As a further loss channel, semiconductor QDs are known to be
subject to pure dephasing [26,50]. To complete the study on
the dependence of entanglement on the main system losses,
in Fig. 4 we investigate the dependence of the steady-state
negativity on their pure dephasing rates. Results are reported

for the 30◦ dimer at two different interdot distances in Figs. 4(a)
and 4(b), and considering the same values of γ (m) rates as in
Fig. 3. The steady-state entanglement is not strongly affected
by viable experimental pure dephasing rates [34]. In Fig. 4(a),
where the normal mode splitting is much larger than the
photonic linewidth, the negativity is decreased to 82% for
�γ (m) = 0 μeV at �γ

(m)
d = 1 μeV and to ∼70% for state-of-art

InGaAs QD excitonic lifetimes. For very large intercavity
distances, where the splitting is of the order of the normal
mode linewidth, the entanglement is more sensible and it is
decreased to ∼50% at �γ

(m)
d = 1 μeV for realistic InGaAs

QDs. Since we are interested in the strong cavity-cavity
coupling regime, i.e., well-defined normal mode splitting, and
low-loss QD excitonic states, we will safely consider γ

(m)
d = 0

in the calculations below. Equivalent results were obtained for
entanglement as a function of the pure dephasing rates in the
0◦, 60◦, and 90◦ dimers. As a final remark on the investigation
of the main dissipation sources in the system, by coherently
pumping the QDs it is possible to produce a residual incoherent
pumping of the resonant normal mode. However, since we
are in the weak pumping regime, we verified (not shown
here) that this unwanted effect, modeled by an additional term
L(P ) = P [â†ρ̃â − ââ†ρ̃/2 − ρ̃ââ†/2] in Eq. (4) with a rate
up to P = 2
, modifies the amount of the entanglement by
only a few percent and can be safely neglected.
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FIG. 4. Steady-state negativity for the 30◦ dimer at dc = 2
√

3a =
901 nm, panel (a), and dc = 7

√
3a = 3151 nm, panel (b), as a function

of the pure dephasing rate γ
(m)
d = γ

(1)
d = γ

(2)
d , for different QD loss

rates. The two QDs are in resonance with the lower frequency normal
mode, i.e., ω(1) = ω(2) = ω1, and the pumping rate is �
0 = 1 μeV.

Since QDs are very likely to be detuned due to their
inhomogeneous size distribution, we finally studied the effects
of the differences of QD excitonic transition frequencies on
the steady-state entanglement. The results for the 30◦ dimer,
at the minimum and maximum interdot distances, are shown
in Figs. 5(a) and 5(b), respectively. The same QD loss rates of
Fig. 3 were considered here, but neglecting pure dephasing.
The entanglement is a very sensitive function of QDs detuning.
In fact, the negativity drops from 20% (at � = 0) to 5% of
the maximal value for detuning � = 10 μeV, see Fig. 5(a),
and from 8% (� = 0) to 3% of the maximum negativity in
Fig. 5(a). The presence of the second normal mode at large
intercavity distances explains the smoother decreasing in the
curves of Fig. 5(b) as compared to the corresponding curves
in Fig. 5(a). Radiative coupling between the QDs through
a photonic normal mode of the PCD is possible as long as
the nonresonant condition determines a detuning between
QDs that is smaller than the mode linewidth; nevertheless,
Fig. 5 evidences that the condition for entanglement between
radiatively coupled QDs is more stringent. In Fig. 5(a), the
linewidth of the corresponding photonic normal mode is
67 μeV, but the negativity is close to zero for detuning values
larger than 40 μeV, where an effective radiative coupling is
still present between the QDs. Hence, the entanglement is more
conditioned by the linewidth of the excitonic transitions than
the linewidth of the coupled photonic normal mode, meaning
that the entanglement is sizable only when the QDs detuning
is smaller than their linewidth. We have obtained equivalent
results for the 0◦, 60◦, and 90◦ PCD, respectively (results not
shown).

FIG. 5. Steady-state negativity for the 30◦ dimer at dc = 2
√

3a =
901 nm, panel (a), and dc = 7

√
3a = 3151 nm, panel (b), as a function

of the detuning between the excitonic transition frequencies of the
QDs, for different QD loss rates. The QD 1 is in resonance with the
lower frequency normal mode, i.e., ω(1) = ω1, and ω(2) = ω(1) + �

with a pumping rate �
0 = 1 μeV.

IV. ENTANGLEMENT DYNAMICS

In Sec. III, we showed that it is possible to obtain 20% of the
maximum entanglement between two radiatively coupled QDs
in the steady-state regime after resonant and continuous-wave
driving of the fundamental excitonic transitions, for interdot
separations that can be sizably larger than the characteristic
operational wavelength of the system. However, practical
applications for quantum information technologies require
strongly entangled qubits. In this respect, our scheme for
steady-state entanglement might still be optimized. One possi-
bility would be to consider an asymmetric pump-detection
configuration as, e.g., in Ref. [27], and make a global
optimization search in the parameters’ space, which goes
beyond the scope of the present work. On the other hand,
an immediate application of the model employed here could
allow for larger values of the negativity to be achieved in the
transient dynamics, as also pointed out in the literature [31,34].
In this section, we focus on the 30◦ PCD, which is the
most convenient configuration for entanglement applications,
and we consider the two QDs in resonance with the lower
frequency normal mode. We assume �
0 = 1 μeV at the
optimal phase difference between the QD coherent drivings.
The basis |α1α2m1m2〉 for solving the dynamics of the master
equation, Eq. (4), is safely truncated at mi = 1 (previously
checked for convergence), as in Sec. III. Figure 6 shows
the negativity dynamics up to 6 ns at dc = 2

√
3a = 901 nm

and γ (m) = 0, for two different initial conditions: a single
excitation in QD 1, i.e., initial state |1000〉, and a single
photon in the lower frequency normal mode, i.e., initial state
|0010〉, respectively. The negativity oscillates with a frequency
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FIG. 6. Negativity dynamics in the 30◦ dimer at dc = 2
√

3a =
901 nm and γ (m) = 0, considering the initial conditions |1000〉, in
black, and |0010〉, in red.

determined by the pumping rate, ∼
0/2, and the amplitude of
the oscillations approximates the maximum negativity value
of 0.5, when the initial excitation is in the photonic mode.
The latter is the most favorable situation, since the two QDs
are equally populated in time by the field, giving rise to an
optimal condition for maintaining the entanglement through
the resonant-QD coherent pumping. When we consider an
excited QD at t = 0, the two QDs are not equally populated in
time, which yields an unfavorable condition for their mutual
entanglement. As it is physically expected, the amplitude of the
oscillations decreases with increasing time, due to the normal
mode dissipation, tending asymptotically to the steady-state
negativity.

The results reported in Fig. 6 show that the optimal initial
condition is given by a single excitation in the photonic mode,
while the QDs are in their ground state at t = 0. Nevertheless,
this is particularly challenging due to the delocalized nature of
the normal mode: in order to achieve such an initial condition,
it would be necessary to prepare a collective state of both
cavities at the same time. Here, we propose a different and less
challenging operational approach. We consider QD 2 initially
out of resonance, and QD 1 in resonance with the normal
mode at frequency ω1, and we assume an initial condition
with a single exciton in QD 1 at t = 0, i.e., |1000〉. Then,
we wait for a time τ at which the excitation has been almost
completely transferred to normal mode 1 due to Rabi coupling.
At this time, QD 2 is brought into resonance with QD 1, which
can be accomplished by using the quantum confined Stark
effect [26,51], for example. All these steps are performed
by pumping the QDs at the frequency of the dark state of
the system. The results of this numerical experiment are
shown in Fig. 7(a) for the 30◦ PCD at dc = 2

√
3a = 901 nm

separation, and in Fig. 7(b) for the same PCD configuration
at dc = 5

√
3a = 2252 nm center-to-center distance. Here we

have assumed the same QD loss rates as in the calculations of
the previous section, and the intercavity distances considered
here delimit the flat region in Fig. 3(a). From Fig. 7(a), it
is evident that our approach is totally equivalent to consider
an initial excitation in the photonic mode, and the amount
of entanglement is also very close to the maximum value
obtained in the transient dynamics for γ (m) = 0. As in Fig. 6,
the amplitude of the oscillations decreases with increasing

FIG. 7. Numerical experiment for time-dependent negativity in
the transient dynamics using the 30◦ dimer at dc = 2

√
3a = 901 nm,

panel (a), and dc = 5
√

3a = 2252 nm, panel (b). The initial condition
is |1000〉 in both cases with QD 1 and photonic mode ω1 in resonance,
and QD 2 far from resonance. We wait for a time τ = 9 ps and
τ = 9.3 ps, at dc = 901 nm and dc = 2252 nm, respectively, with
the aim of maximally populating the resonant photonic mode, and
QD 2 is brought into resonance for t > τ . The QD pumping rate is
�
0 = 1 μeV at resonance with the excitonic dark state for all times.
The insets show the early dynamics of the system.

time due to dissipation in the resonant normal mode of the
PCD. When QD losses are taken into account, maximum
negativity values around ∼0.2, i.e., 40% of the maximal value,
are obtained for state-of-art QDs. However, the presence of this
dissipation channel produces a faster decreasing amplitude
as compared to the corresponding result for γ (m) = 0. As a
consequence, the steady-state value is achieved more rapidly.
For interdot distance dc = 2252 nm, i.e., the results shown in
Fig. 7(b), the presence of the second normal mode, with the
same symmetry of the excitonic dark state, starts to play a role
in the transient dynamics, providing an additional loss channel
for the entangled QDs; even for γ (m) = 0, the steady-state
regime is rapidly achieved. Nevertheless, maximum negativity
values of about ∼0.2, or 40% of the maximal value, are
obtained for state-of-art QDs. In the early dynamics, as shown
in insets of Fig. 7, the fast oscillation frequency is determined
by the QD-PCD mode coupling rates, g(n)

m , and the negativity
amplitude is affected by the loss rates: Since the normal mode
losses, γm, are smaller for the dc = 2252 nm than for the
dc = 901 nm intercavity distance, the negativity amplitude is
larger for dc = 2252 nm than for dc = 901 nm. However, the
slow transient dynamics (i.e., after 200 ps) determines large
negativity time intervals that are much larger than the photonic
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VASCO, GERACE, GUIMARÃES, AND SANTOS PHYSICAL REVIEW B 94, 165302 (2016)

mode and QD lifetimes, which could be relevant for practical
applications of transient QDs entanglement.

V. CONCLUSIONS

We have studied the conditions for achieving steady-state
entanglement between radiatively coupled quantum dots by
exploiting their mutual long-distance interaction through the
normal modes of a photonic crystal dimer. The amount
of entanglement is quantified through the Peres-Horodecki
negativity criterion of the reduced density matrix within the
two QD subspace, which is computed through the quantum-
dissipative master equation in the Markov approximation. The
photonic crystal slab structures were solved within the guided-
mode expansion approach, and their solutions were used as
input parameters for the master equation formalism. Material
parameters relevant to InGaAs and GaAs nanostructures
were considered throughout the work, but the results can be
generalized to an arbitrary material platform.

In the steady-state regime and for resonant pumping
condition, we have found that the largest entanglement is
obtained at the excitonic dark state of the system, i.e., for
a coherent driving of the quantum dots with a phase difference
of (a) (2n + 1)π when coupled to a symmetric normal mode of
the photonic crystal dimer, and (b) 2nπ when they are coupled
to an antisymmetric one, respectively, n being an integer. The
largest negativity value achieved in this regime is predicted
to be on the order of ∼0.1, i.e., 20% of the maximum value,
and it remains of the same order of magnitude as long as
the normal mode splitting is well defined, i.e., larger than
the photonic mode linewidths. These results are shown to be
robust against the main sources of QD decoherence, such as
spontaneous emission and pure dephasing. Furthermore, when
the splitting is of the order of the photonic mode linewidths, the
negativity is roughly proportional to the normal mode splitting.
On the other hand, when a QDs inhomogeneous distribution
is considered, the entanglement is shown to remain sizable
only for detunings that are smaller than their linewidths. As a
consequence, the QD radiative coupling is a necessary but not
a sufficient condition to obtain entanglement between the two
qubits. In terms of the photonic crystal dimer, our results show
that the 30◦ dimer is the most convenient configuration to show
long-range entanglement, due to its very-well defined normal
mode splitting even at intercavity distances that are larger than
the characteristic operational wavelength of the system.

When addressing the transient dynamics of the system, it
has been shown that the degree of entanglement can be sizably
larger than the steady-state value. In such a case, we found
that an optimal condition for initializing the system is obtained
when considering an initial excitation in the resonant normal
mode, where long-time negativity oscillations with a frequency
∼
0/2 are seen with a period much larger than both photon
and exciton lifetimes, respectively. Based on these results,
we have proposed and demonstrated an effective protocol
for generating the same long-time entanglement oscillations
in practical devices, by initializing the system with a single
excitation in one of the quantum dots (which represents an
operationally less challenging task). Negativity values of the
order of ∼0.2, i.e., 40% of the maximum value, were obtained
for state-of-art InGaAs quantum dots in our proposed device.

As a final remark, we believe that the present system will
be useful for quantum information applications on photonic
crystal platforms, where the entanglement between distant
qubits is a key functionality to be developed.
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APPENDIX: NEGATIVITY OF BELL STATES

We hereby discuss the upper bound for the negativity value
of two maximally entangled qubits. The Bell states can be
written in the two-qubit basis as follows:

|φ±〉 = 1√
2

(|00〉 ± |11〉), (A1)

|ψ±〉 = 1√
2

(|01〉 ± |10〉), (A2)

where the corresponding density operators are given by

ρ̂φ± = |φ±〉〈φ±|, ρ̂ψ± = |ψ±〉〈φ±| (A3)

Considering the ordering of the basis {|00〉,|01〉,|10〉,|11〉},
the matrix representations of the density operators in Eq. (A3)
read

ρφ± = 1

2

⎛
⎜⎝

1 0 0 ±1
0 0 0 0
0 0 0 0

±1 0 0 1

⎞
⎟⎠,

ρψ± = 1

2

⎛
⎜⎝

0 0 0 0
0 1 ±1 0
0 ±1 1 0
0 0 0 0

⎞
⎟⎠. (A4)

The matrix elements of ρT 1, namely, the partial transpose of
ρ with respect to qubit 1, i.e., the first entry of |α1α2〉, are
obtained from the matrix elements of ρ following the rule
〈α1α2|ρT1 |α′

1α
′
2〉 = 〈α′

1α2|ρ|α1α
′
2〉. The matrix representations

of ρT 1
φ± and ρT 1

ψ± are then

ρT 1
φ± = 1

2

⎛
⎜⎝

1 0 0 0
0 0 ±1 0
0 ±1 0 0
0 0 0 1

⎞
⎟⎠,

ρT 1
ψ± = 1

2

⎛
⎜⎝

0 0 0 ±1
0 1 0 0
0 0 1 0

±1 0 0 0

⎞
⎟⎠. (A5)

Finally, it is easy to show that the characteristic equation to
find the eigenvalues λ of the four matrices in Eq. (A5) is

(0.5 − λ)3(0.5 + λ) = 0, (A6)

and their solutions are {0.5,0.5,0.5, − 0.5}. The absolute value
of the sum of the negative eigenvalues in Eq. (A6), i.e., the
negativity, is therefore 0.5. Since Bell states are maximally
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entangled and the negativity is an entanglement monotone
for composite Hilbert spaces of dimension 2 ⊗ 2, a negativity

value of 0.5 determines an upper bound for the amount of
entanglement in a two-qubit system.
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[44] J. Vučković, M. Loncar, H. Mabuchi, and A. Scherer, IEEE J.

Quantum Electron. 38, 850 (2002).
[45] C. Bonato, J. Hagemeier, D. Gerace, S. M. Thon, H. Kim, L. C.

Andreani, P. M. Petroff, M. P. van Exter, and D. Bouwmeester,
Photon. Nanostruct. Fundam. Appl. 11, 37 (2013).

[46] A. Peres, Phys. Rev. Lett. 77, 1413 (1996).
[47] M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A

223, 1 (1996).
[48] K. Bartkiewicz, J. Beran, K. Lemr, M. Norek, and A.

Miranowicz, Phys. Rev. A 91, 022323 (2015).
[49] A. Majumdar, M. Bajcsy, A. Rundquist, E. Kim, and J. Vučković,
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