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Band narrowing and Mott localization in isotropically superstrained graphene
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We explore the effect of multiorbital electron-electron interactions in a two-dimensional monolayer made of
elemental carbon. Using density functional dynamical mean-field theory (DFDMFT), we show that the interplay
between one-particle band narrowing and sizable on-site interactions naturally stabilizes the Mott insulating state
in isotropically superstrained graphene. Our theory is expected to be a key step to understanding both the ability
of graphene to afford large strain deformations and the changes in electronic degrees of freedom of p-band
Coulomb interacting electrons for the next generation of flexible electronics made of semiconductive graphene.
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I. INTRODUCTION

Graphene is a two-dimensional monolayer of carbon atoms
arranged in a hexagonal honeycomb lattice structure (see
Fig. 1). Its electronic properties at low energies are mostly
governed by elementary excitations created around the Fermi
surface [1]. These elementary excitations are known to be
massless Dirac fermions with a linear spectrum. In recent
years, graphene has attracted the attention of the wider
scientific community due to a range of physical properties,
suggesting its application in fields as diverse as photonics, sen-
sor technology, and spintronics [2]. More precisely, graphene
and its derivatives are expected to form the next generation
of (radio frequency) transistors [3], flexible electronics [4,5],
spintronics [6], and nanoelectronic devices [7], as well as
electrochemical, biological, and gas sensors [2,8]. However,
the semimetallic nature of graphene with a Dirac-like spectrum
near the Fermi energy EF and finite conductivity values [9]
seems to prevent its application as the host material for the next
generation of flexible electronic devices [5] and stretchable
transparent electrodes [4]. Hence, what is needed to have
full working devices made of graphene is to find promising
directions for band gap engineering of graphene [10].

Recently, several experimental and theoretical proposals
have been made to open an energy gap in the electronic spectra
of graphene. Experimentally, it has been found that an energy
gap can be induced in epitaxial graphene on a SiC substrate via
strong graphene-substrate interaction [10]. A semiconducting
regime in epitaxial graphene can also be developed by suitable
molecular doping [11]. Theoretical studies have predicted
similar routes for tuning graphene’s band gap. An interesting
proposal is, for example, that a small band gap opens up
in the band structure of graphene when water or ammonia
molecules adhere to its surface [12]. A similar effect is also
observed when gold nanoparticles are deposited on graphene’s
surface [13]. An alternative approach of producing a charge
gap in the spectrum of graphene is to deposit it on top
of a lattice-matched hexagonal boron nitride substrate [14].
Moreover, the potential to tune novel physical properties,
including band gap tuning [15], of graphene by applying
mechanical strain has been explored in recent years both exper-
imentally [4,16–18] and theoretically [19,20]. Theoretically,
at the one-particle level strain can turn semimetal graphene
metallic [20,21] (see also our results below). Importantly,

several experiments have been performed to explore the
physical properties of graphene when its hexagonal lattice
is stretched out of its equilibrium [16,17]. Uniaxial strain
can be induced by bending the substrates on which graphene
is elongated [15]. Graphene on top of a SiX (X = O2, C)
surface [18] also experiences a moderate strain due to surface
corrugations or lattice mismatch. Presently, graphene can
be stretched to 30% [4]; however, it is worth noting that
carbon-nanotube films with a serpentine morphology can be
stretched 170% once before failure [22], meaning that pristine
graphene might have higher sheer elasticity and stretchability
than hitherto probed. In fact, experiments performed on
graphene/poly(dimethylsiloxane) composites [23] seem to
corroborate our prediction by showing that these flexible con-
ductors can support strains higher than 50% before they start to
break. Thus, motivated by this and other studies on stretchable
patterned graphene systems [8] as well as by an experimental
study [17] establishing graphene as the strongest material
ever seen in nature, we carried out first-principles generalized
gradient approximation plus dynamical mean-field theory
(GGA+DMFT) [24] calculations to investigate changes in the
electronic properties of isotropically superstrained graphene.
We show that following incorporation of on-site Coulomb
correlations via GGA+DMFT, an energy gap naturally opens
up in graphene with nearly 52% stretching [20]. We thus
expect that under controlled, albeit extreme, strain conditions
the interplay between electron-electron interactions [25] and
lattice strain will naturally induce Mott localization, i.e., the
formation of a gapped excitation spectrum at low energies in
superstrained graphene.

The proximity to a Mott-Hubbard metal-insulator transition
point [26] (Mottness) is a clear manifestation of dynamical
many-body effects in correlated electrons. Historically, the
Mott transition was considered to occur as a function of the
expansion of the lattice constant L. In Mott’s picture [27], a
first-order transition from an insulator to a metallic state takes
place at a critical value L = Lc. For L > Lc a cubic crystalline
array of one-electron atoms should be in a charge-insulating
state, whereas for L < Lc, one should have a metal. The
charge gap at the Mott transition jumps discontinuously from
a finite value to zero. Mott’s original idea was to tune the
ratio U/W between the on-site Coulomb interaction U and
the one-particle bandwidth W (i.e., the kinetic energy of the
electrons), which defines the phase boundary between the
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FIG. 1. Crystal structure of natural (L = 0.24669 nm) and super-
strained (L = 0.3759 nm) graphene, with L being the lattice constant
of the system.

metallic and the gapped (semiconducting) phases. However,
the possibility of Mottness in carbon-based materials [28] or
in purely p-band [29] systems remains an open and intriguing
problem since the naive expectation dictates that the itinerancy
(kinetic energy of p carriers) is appreciable compared to the
electron-electron interactions, which is distinct from d-band
systems, where the d electrons reside in much narrower
bands (hence, the effective U/W is sizable) [26]. Thus,
searching for and characterizing Mott localization in systems
with active p bands is an issue of contemporary and future
interest.

II. RESULTS AND DISCUSSION

It is recognized that under external perturbations like
lattice strain, the hopping elements are renormalized in
nontrivial ways. On the other hand, due to its atomic nature
the one-site Coulomb U interaction is expected to be less
affected under extreme conditions. With this in mind, in this

work we explore the effect of isotropic strain on the bare
electronic structure of strained graphene [20], showing how
it can be reshaped by interaction effects at not yet explored
superstrained conditions. To establish that Mott localization
can be naturally induced in two-dimensional graphene we
carried out GGA+DMFT [24] calculations and investigated
the reconstructed electronic properties of our superstrained
graphene system. We focus mostly on correlation-induced
Mott-Hubbard localization since the issue related to electronic
reconstruction associated with the interplay between U and
W at currently acceptable strain conditions [4] was already
studied in Ref. [30]. However, if we aim to understand
the material-specific properties, it is important to identify
the character of dominant bands near the Fermi level and
their energy distribution. For this purpose, the first-principles
density functional theories (DFTs) are the best tools available.
Hence, in Fig. 2 we show the GGA spectral function of
natural graphene [31], i.e., with L = 0.24669 nm. At normal
conditions, the sp2 hybridization of atomic s-px,y orbitals of
carbon atoms create lateral σ bonds, and the remaining pz

orbital perpendicular to the plane forms the nonhybridized
π bands in graphene and graphite. Due to strong in-plane
covalency a large bonding-antibonding splitting is created in
the planar (denoted as px,y) orbitals, resulting in a pronounced
charge gap, as shown in Fig. 2. As seen in this figure, the
electronic density of states (DOS) of the pz orbital vanishes
linearly near the Fermi energy at EF = ω = 0, exhibiting
the semimetallic nature of graphene. As seen in Fig. 2, the
linear (Dirac-like) band dispersion is reshaped by isotropically
increasing the lattice constant L. An overall reduction of
the one-electron bandwidth W , including the energy position
of the van Hove singularities at the border of the Dirac
dispersion, is found in the pz band for the lattice constants
varying from 0.24669 to 0.3209 nm [20,30]. Also interesting
is the band structure reconstruction within the planar px,y

bands, where the charge gap shrinks with increasing lattice
constant until it is fully suppressed at large L in GGA [20].
We notice here that even at larger C-C bond distances, the
GGA forces acting between the carbon atoms are such that
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FIG. 2. GGA orbital-resolved and total DOS of graphene for different values of the lattice constant L. Notice the band narrowing and the
evolution of the electronic spectrum with increasing L. A particularly relevant feature is the metallic state in GGA for L = 0.3759 nm. This
corresponds to a C-C average bond length of 0.217 nm (0.142 nm in natural graphene).
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FIG. 3. Total energy difference δE(L) ≡ EL − E0.24669 between
strained and natural graphene obtained from GGA calculations,
showing the nonmonotonic response as a function of the lattice
constant L. The inset shows the behavior of the external forces,
δE′(L) ≡ d

dL
δE(L), required to stretch graphene. Notice the max-

imum in δE′(L) for strain values around 25%, suggesting that a
crossover between hard and soft graphene might be achieved in
future experiments on superstrained graphene across the critical value
Lc = 0.309 nm.

the equilibrium geometry is recovered upon release of the
mechanical constraint. This in turn suggests accessibility of
engineering a tunable bonded state in graphenelike systems.
However, the central result seen in Fig. 2 is the pronounced
one-particle band narrowing, which can be tuned by pulling the
carbon atoms farther apart, in accordance with Mott ideas [27].

Within GGA we have also computed the total energy differ-
ence between strained (or compressed) and natural graphene
[δE ≡ EL − E0.24669] as a function of the lattice constant L.
As expected, our results in Fig. 3 show that the minimum value
of δE is obtained for natural graphene, confirming the lattice
stability of this fundamental 2D carbon allotrope. However, the
fact that δE increases when L �= 0.24669 nm naturally implies
that graphene is resistant to strain or compressive strain. As
visible in Fig. 3, the L dependence of δE is nonmonotonic
with a tendency towards saturating behavior at extremely high
lattice constant values (not shown). In order to explore the
implications of our results for superstrained graphene, in the
inset of Fig. 3 we display the forces [δE′(L) ≡ d

dL
δE] needed

to stretch graphene beyond its most stable configuration.
Surprisingly, our results reveal a maximum in δE′ for a
critical strain around 25%, a value close to that experimentally
reported by Kim et al. [4]. This in turn implies that different
elastic properties with a crossover between hard and soft
graphene are expected to occur in monolayer graphene.
According to our results in Fig. 3, above the critical value Lc =
0.309 nm strained graphene is predicted to lose its robust
strength, and therefore, it will demand less work or effort
to yield large symmetrical deformations. Our prediction is
consistent with the electron localization function (ELF) [32]
analysis in Fig. 4, where localization domains of the ELF
around each carbon atom are clearly observed for L = 0.3759

FIG. 4. Electron localization function (ELF) and electronic den-
sity gradient (gray field lines) analysis for symmetrical superstrained
graphene with L = 0.3759 nm. Notice the C-C bond between the two
carbon atoms. [The ELF color-map range used here goes from 0.0
(purple/black) to 1.0 (white)].

nm [33]. Nevertheless, it might be plausible to assume that
above Lc superstrained graphene might lose part of its intrinsic
elasticity, being less capable of recovering its size and shape
after strong deformations. Taken together, our ab initio GGA
and ELF results in Figs. 3 and 4 strongly suggest that a defect-
free graphene might support deformations well beyond the
linear regime discussed in Ref. [17], and this prediction could
be tested in future experiments on symmetrical superstrained
graphene with strain values well above 30%.

Multiorbital (MO) electron-electron interactions often drive
spectacular effects in real materials: precisely how this
might come about is an open, challenging problem also
for wideband systems. Here, we study correlation-induced
electronic reconstruction in superstrained graphene using
combined GGA and DMFT methods. This scheme was used
to revisit the long-standing issues of transport anisotropy due
to incoherence-coherence crossovers in graphite [34] and to
reveal the hidden correlated electronic structure of strained
graphene with L = 0.3209 nm [30], both studies showing
good agreement with spectroscopy (graphite) and tunneling
(strained graphene nanobubbles) measurements. This gives us
the confidence to use GGA+DMFT to predict the electronic
properties of graphene at higher-lattice-strain conditions. The
realistic Coulomb interaction parameter for natural graphene
is U = 9.3 eV [25]. Owing to the metallic p-band DOS
in strained graphene with L = 0.3759 nm (see Fig. 2), one
expects the Hubbard U (or the on-site Coulomb interaction)
to be partially screened compared to natural graphene. Thus,
in our study we choose renormalized U values to reveal an
interaction-induced Mott transition (which is characterized by
a gap opening at EF ) for L = 0.3759 nm and realistic values
of U .

The many-body Hamiltonian relevant for graphene [30] is
H = H0 + Hint, with H0 = ∑

kaσ εa(k)c†kaσ ckaσ and

Hint = U
∑

ia

nia↑nia↓ +
∑

ia �=b

U ′nianib − JH

∑

ia �=b

Sia · Sib.

Here, a = x,y,z label the diagonalized p bands, and εa(k)
is the one-electron band dispersion, which encodes details of
the one-electron (GGA) band structure. U ′ ≡ U − 2JH , with
U,U ′ being the intra- and interorbital Coulomb repulsions
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FIG. 5. Comparison between GGA (solid line) and GGA+DMFT results of (super)strained graphene with L = 0.3759 nm. Notice the
evolution towards a Mott insulator with increasing on-site Coulomb repulsion U . Compared to the GGA results, large spectral weight transfer
is visible in the GGA+DMFT spectral functions.

and JH being Hund’s rule coupling. The effect of tuning the
one-band dispersions is read off from εa(k): these are inputs
for MO DMFT, which generates a Mott insulating state for
U = 6.1 eV at L = 0.3759 nm, as shown below. We use MO
DMFT for the three-orbital model of strained graphene with
the MO iterated perturbation theory (MO-IPT) as the impurity
solver. The detailed formulation of MO-IPT for correlated
electron systems has already been developed [35] and used in
the context of carbon-based systems in Refs. [30,34,36], so we
do not repeat the equations here.

To pinpoint the excitation spectrum that emerges from
dynamical MO electron-electron interactions in superstrained
graphene (with L = 0.3759 nm chosen), we present in Fig. 5
our GGA+DMFT results for U = 4.0 and 8 eV with fixed
JH = 0.4 eV. (Our choice for JH is in accordance with values
estimated within GGA on a different local moment problem in
graphene [37].) The formation of the Mott-Hubbard insulating
gap at low energies with the concomitant appearance of lower

(LHB) and upper (UHB) Hubbard bands on different orbitals at
high energies with increasing U is visible in Fig. 5. As common
in a system approaching the Mott transition, electron-electron
interactions strongly modify the bare GGA spectral functions.
MO dynamical correlations arising from U,U ′ and JH lead
to spectral weight redistribution over large energy scales and
the formation of LHB (local moments) and UHB at high
energies. Noticeable differences in the spectral weight transfer
(SWT) are seen between the pz and px,y channels. Within
the pz orbital the LHB at ω ≈ 2.0 eV for U = 4 eV (and
U ′ = 3.2 eV) is clearly resolved and moves to higher energies
with increasing U . SWT is also seen within the planar orbitals.
Interestingly, in these channels the bonding-antibonding bands
in GGA are transferred to higher energies, but their spectral
line shape remains close to that found in GGA, indicating
that dynamical correlations partially renormalize the C-C
bonds. Hence, as in transition-metal systems under extreme
conditions [26], it is plausible to assume that the Mott phase
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FIG. 6. Orbital-resolved spectral functions and imaginary parts of the self-energies of superstrained graphene for two values of U and
JH = 0.4 eV. A crossover from a selective-Kondo (U = 5.5 eV) to an incoherent metallic regime (at U = 6.0 eV) is visible. Notice the
evolution of the self-energies near EF across the correlation-induced Fermi to non-Fermi liquid crossover.
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FIG. 7. Orbital-resolved GGA+DMFT DOS and imaginary parts of the self-energies of superstrained graphene near the Mott transition
point at 6.05 eV � Uc � 6.1 eV. Notice the sharp pole in the planar px,y self-energies near EF within the Mott insulating phase of graphene
at extreme strain conditions. This behavior is characteristic of selective Mott physics in multiorbital systems.

sets in without spontaneously breaking the hexagonal crystal
lattice of our superstrained graphene.

Since the dependence of electron-electron interactions in
the excitation-spectrum graphene-based systems is quite subtle
and not yet fully understood [38], in Fig. 6 we display the
orbital-resolved DOS and the imaginary part of self-energies
Im�a(ω) within the correlated metal phase. Up to U = 5.0 eV
the charge carriers of highly strained graphene are in a Fermi
liquid (FL) regime, characterized by the emergence of narrow
quasiparticle resonances in the orbital-selective DOS near EF

and ω2 dependence in the self-energy imaginary parts (see
Fig. 6). Moreover, as can be seen in Fig. 6, our self-consistent
GGA+DMFT calculation also resolves a pseudogap feature
near EF for U = 6.0 eV, implying a crossover from a FL to a
non-FL regime. This behavior is often seen in MO metallic
systems close to Mottness, where strong orbital and spin
fluctuations prevent the FL fixed point. In our superstrained
graphene system the transfer of spectral weight found in the
FL and non-FL metallic phases can be traced to a dynamical
scattering process that leads to electron mass enhancement,
which is not expected for massless Dirac fermion systems like
in natural graphene [39].

To further illustrate the correlated nature of our spectral
functions near the localization-delocalization transition point,
in Fig. 7 we show the changes in the orbital-resolved DOS
and Im�a(ω) across the Mott transition. Interestingly, the
transition found here is of first-order type showing large-
scale changes in SWT at the (6.05 eV < Uc < 6.1 eV) phase
boundary. In this regime, the imaginary parts of the orbital-
resolved self-energies in Fig. 7 display signatures of selective
Mott-Hubbard physics. The out-of-plane pz orbital shows
weak deviations from the −ω2 (FL) form at small ω, being
consistent instead with a sublinear ω dependence, along with
a finite value at EF (ω = 0) for U = 6.05 eV. On the other hand,
the px,y self-energies reveal strong Mott localization physics.
The Mott-Hubbard insulating state thus goes hand in hand with
the development of a sharp pole in Im�x,y(ω) close to EF .

This implies that the charge carriers in superstrained graphene
have a dual nature, where effectively Mott localized px,y states
coexist with incoherent pz electronic states at U = 6.1 eV. In
this two-fluid scenario localization of the px,y states in our
system implies that these orbitals now act like an intrinsic
source of electronic disorder in the system. With U ′ = 5.3 eV
this suggests that an intrinsic disorder potential, arising from
orbital-selective physics, exists near the Mott transition. Such
behavior results from strong scattering between effectively
(Mott) localized and quasiitinerant components of the full
DMFT matrix propagators. Our work calls for electrical
transport studies in superstrained graphene. These studies
will constitute a proof to Mott localization and the ability
of defect-free graphene to afford large strain deformation as
well as the importance of treating dynamical correlations
adequately to reveal a variety of unexplored responses in
complex materials.

III. CONCLUSION

In conclusion, we have performed first-principles GGA
calculations to confirm that semimetal graphene turns to
metallic when increasing the lattice constant from 0.24669
to 0.3759 nm [20]. Using GGA+DMFT for a realistic multi-
orbital Hubbard model, we explore the correlated nature of the
excitation spectrum of a superstrained graphene. In a regime
of isotropically large lattice distances, the interplay between
one-particle band narrowing and multiorbital electron-electron
interactions pushes strained graphene into a Mott insulating
state characterized by selective orbital physics at low en-
ergies. Our microscopic description of coupled multiorbital
Hubbard interactions is expected to be generally applicable
to three-dimensional flexible graphene networks [23] as well
as for superstrechable graphene films for transparent and
biocompatible electrodes [4,5].
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