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We present an effective Hamiltonian based real-space approach for studying the weak-coupling BCS to the
strong-coupling Bose-Einstein condensate crossover in the two-dimensional attractive Hubbard model at finite
temperatures. We introduce and justify an effective classical Hamiltonian to describe the thermal fluctuations of
the relevant auxiliary fields. Our results for Tc and phase diagrams compare very well with those obtained from
more sophisticated and CPU-intensive numerical methods. We demonstrate that the method works in the presence
of disorder and can be a powerful tool for a real-space description of the effect of disorder on superconductivity.
From a combined analysis of the superconducting order parameter, the distribution of auxiliary fields, and the
quasiparticle density of states, we identify the regions of metallic, insulating, superconducting, and pseudogapped
behavior. Our finding of the importance of phase fluctuations for the pseudogap behavior is consistent with the
conclusions drawn from recent experiments on NbN superconductors. The method can be generalized to study
superconductors with nontrivial order-parameter symmetries by identifying the relevant auxiliary variables.
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I. INTRODUCTION

The attractive Hubbard model (AHM) is the standard
phenomenological model that describes the transition from
a high-temperature metallic or insulating state to a low-
temperature superconducting state [1,2]. While the micro-
scopic description requires an explanation for the origin of
the effective attraction between electrons [3,4], the nature
of the thermally driven transition can be understood within
the attractive Hubbard framework. Furthermore, the desired
symmetry of the superconducting order parameter can be
realized by appropriate choice of the attractive interactions;
e.g., an on-site attraction leads to s-wave pairing, a nearest-
neighbor (nn) attraction gives rise to d-wave pairing, and a
next-nn attraction in a two orbital model can describe s+− and
s++ symmetry [5–7]. More recently, the AHM has also been
used to identify topological quantum phase transitions [8].

In the limit of weak coupling, the AHM can be studied
within the BCS mean-field theory, and it provides a complete
understanding of the thermally driven transition, and an
accurate prediction for the transition temperatures. The mean-
field theory, however, fails in the strong-coupling limit where
the transition is controlled by phase fluctuations. Indeed, an
effective XY model for phase fluctuations is used to describe
the physics of the strong-coupling superconductivity [9,10].
This strong-coupling limit is also known as the Bose-Einstein
condensate (BEC) limit where the superconducting phase
is understood as a condensate of preformed Cooper pairs.
To describe the crossover from the weak-coupling BCS to
the strong-coupling BEC limit within a single framework
is a challenging problem. Various state-of-the-art methods
have been employed to gain insight into the behavior of
the superconductor (SC) across the BCS to BEC crossover
[11–21]. The problem becomes even more challenging in the
presence of impurities, which are always present in materials
[22–24]. In fact, disorder as a control parameter has become a
powerful concept in understanding some fundamental aspects
of superconductivity. Recent discovery of a Higgs mode in dis-

ordered NbN superconductors is one prominent example [25].
Interestingly, an alternate interpretation of the data has also
been put forward where the low-energy absorption has been
attributed to quasiparticle effects and not to any collective
modes [26]. Intermediate coupling strength demands for a
nonperturbative approach, whereas the presence of disorder
calls for an accurate treatment of the spatial correlations.
The methods that rely on translational invariance of the
Hamiltonian are not best suited to study the effect of disorder
on superconductivity. Therefore, the importance of an explicit
real-space approach for the study of disordered interacting
fermionic systems has been realized in recent years [9,10,27].

In this paper, we present a conceptually simple and nu-
merically efficient method for a quantitative description of the
finite-temperature behavior of the AHM. The method treats the
weak- and the strong-U regimes on equal footing, and captures
the physics of BCS to BEC crossover. We make use of the well-
known analogy of the superconducting pairing amplitudes
(complex numbers) with XY spins. The parameters of the
effective model are calculated by analyzing the variations
in energy about the mean-field ground state by considering
the relevant phase or amplitude fluctuations. A comparison of
Tc estimates with other methods is presented. A quantitative
description of the amplitude and phase fluctuations allows
us to determine their relative importance across the BCS to
BEC crossover. On the basis of the superconducting order
parameter, the quasiparticle density of states, and auxiliary
field distributions, we describe the metallic, superconducting,
insulating, and pseudogapped phases. We find that the pseu-
dogap phase appears close to the insulating phase, consistent
with recent experiments on NbN superconductors. Finally, we
demonstrate that the method works for the disordered Hamilto-
nian, and we discuss the possible extension to superconductors
with nontrivial order-parameter symmetries.

The remainder of the paper is organized as follows. In Sec. II
we discuss the model and motivation of the method. In Sec. III
we present a detailed justification for the choice of the effective
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classical Hamiltonian, and present schemes for obtaining the
parameters of the effective Hamiltonian. The results of the
model in the absence of disorder are presented and discussed
in Sec. IV. In Sec. V we demonstrate the applicability of the
method for disordered Hamiltonians, and the conclusions are
presented in Sec. VI.

II. MODEL AND METHOD

We consider an AHM on a two-dimensional (2D) square
lattice, given by

H = −t
∑
〈ij〉,σ

[c†iσ cjσ + H.c.] − U
∑

i

ni↑ni↓ − μ
∑

i

ni,

(1)

where c
†
iσ and ciσ are the fermionic creation and annihilation

operators. The interaction between fermions is considered
attractive, as specified by the negative sign in front of the
U term in the Hamiltonian. The hopping parameter t defines
the basic energy scale in the model, and therefore we set
t = 1. μ is the chemical potential which controls the average
electron density in the system. For all the results presented in
this paper we adjust μ so as to obtain an average filling of
〈n〉 = 0.8 ± 0.01 electrons per site.

For a mean-field treatment of this Hamiltonian, one
proceeds by decoupling the interaction term in the pairing
channel leading to the well-known Bogoliubov-deGennes
(BdG) Hamiltonian:

HBdG = −t
∑
〈ij〉,σ

[c†iσ cjσ + H.c.] − μ
∑

i

ni

−U
∑

i

[�ic
†
i↑c

†
i↓ + H.c.], (2)

where �i = 〈ci↓ci↑〉 denote the local pairing amplitudes,
which are complex numbers. The mean-field solution cor-
responds to the self-consistent values for the local variables
�i . Note that we do not absorb U in the definition of �i .
In the absence of impurities one can proceed by assuming
a homogeneous solution for �i , and the model can then
be solved analytically by making use of the Bogoliubov
transformations. In general, one proceeds by numerically
diagonalizing HBdG and solving for {�i} self-consistently,
without any a priori restrictions on them. For a given set
{�i} of auxiliary variables, HBdG is diagonalized by the
transformations

ci↑ =
∑

k

(uk,iγk↑ − v∗
k,iγ

†
k↓),

(3)
ci↓ =

∑
k

(uk,iγk↓ + vk,iγ
†
k↑).

In the above, γ † (γ ) are the creation (annihilation) operators
for Bogoliubov quasiparticles, and the coefficients uk,i and
vk,i , which satisfy

∑
k |uk,i |2 + |vk,i |2 = 1 for each site i, are

obtained numerically [28].
The BdG mean-field method correctly captures the BCS

solution in the weak-coupling limit, and describes the tran-
sition temperature and the superconducting gap accurately.
However, in the strong-U limit it severely overestimates the

superconducting transition temperature (Tc). It is well known
that in the strong-coupling limit the superconducting order at
low temperature can be understood as a BEC of preformed
cooper pairs. Therefore, an effective phase-only model is
commonly used to describe the strong-coupling limit [29].
In order to capture the weak to strong-coupling crossover, one
needs to go beyond the BdG mean-field scheme.

Quantum Monte Carlo (QMC), which is sign-problem
free for the AHM, clearly provides a very accurate way to
study the model at arbitrary coupling strength. However, the
method is computationally intensive. In the determinantal
QMC algorithm using the Suzuki-Trotter decomposition, for
example, the simulation scales as N3L, where N is the
size of the spatial lattice and L is the size of the lattice
in the (Matsubara) time direction. Typical lattice sizes that
can be studied using QMC are 18 × 18 sites [30]. There-
fore, it becomes difficult to analyze effects of disorder on
superconductivity using QMC. Another approach that has
been proposed for studying models of superconductivity with
quenched disorder is the static-auxiliary-field Monte Carlo
(SAF-MC) [27]. This is a static version of the QMC where
the temporal dependence of the auxiliary fields is ignored,
and only the spatial dependence is retained. This method
reduces to the BdG mean-field method at T = 0; however,
it captures the fluctuations in both amplitude and phase of the
superconducting order parameters �i and therefore captures
the finite-temperature physics of a superconductor at arbitrary
interaction strengths. The computational time for this method
scales as N4, and therefore one is still severely limited in terms
of accessible lattice sizes. Therefore, further approximations
are commonly used to achieve larger sizes [31–33].

Here, we propose that an effective classical Hamiltonian Hcl

can be used to generate configuration for the complex auxiliary
field �i . These configurations can be generated numerically
using the standard importance sampling with the Metropolis
algorithm. Our proposed classical Hamiltonian is given by

Hcl = Hphase + Hamp,

Hphase = −
∑
ij

Jij (T ) cos(φi − φj ),

Hamp =
∑

i

ki(T )[|�i | − �0(T )]2. (4)

In the above, φi and φj denote the phases of the supercon-
ducting amplitudes �i and �j at sites i and j , respectively. The
temperature-dependent parameter Jij (T ) denotes the phase
stiffness, which will also be bond dependent in the disordered
case. The term Hamp captures the effect of amplitude fluctu-
ations about the mean amplitude value, �0(T ), for a given
temperature. The amplitude stiffness parameter, ki(T ), is in
general dependent on site as well as temperature. For the clean
case the phase and amplitude stiffness parameters are spatially
uniform. We further assume that both these parameters are
also independent of temperature. However, it is very important
to retain the temperature dependence of the �0(T ) as will be
discussed later. Within a semiclassical approach, the physics of
the Hamiltonian Eq. (1) can then be described by a combination
of Hcl and HBdG. The HBdG describes the response of the
fermions to a configuration of classical auxiliary field �i , and
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the evolution of the auxiliary field is approximately captured
by the classical Hamiltonian Hcl. This approach is similar,
in spirit, to the methods proposed for describing magnetism
in the double-exchange model [34,35]. The simulations begin
at low temperature and we assume the starting state to be a
phase coherent superconducting state. The mean-field solution
is obtained at each temperature. By analyzing the nature
of fluctuations around the mean-field solution, as will be
discussed in the next section, we define the parameters for the
Hcl. The resulting Hcl is then simulated via Monte Carlo, and
electronic properties are obtained by using the configurations
for �i into HBdG. The Metropolis algorithm with the standard
single-site updates is employed for simulations. Most of the
results presented here are obtained on a square lattice with
N = 402 sites. The number of Monte Carlo steps used for
equilibration and averaging of quantities involving classical
auxiliary variables is ∼105. Since electronic properties require
a solution of Schrödinger equation for each configuration,
thermal averaging for electronic properties is performed over
∼103 Monte Carlo steps.

III. PARAMETERS OF THE EFFECTIVE HAMILTONIAN

We begin by analyzing the nature of fluctuations about the
BdG mean-field solution of the AHM. Given the complex
nature of the variables �i ≡ |�i |eiφi we can compute the
change in energy caused by the variation in the phases φi

and that caused by the change in amplitudes |�i |. In order to
provide a simple geometrical picture, the �i can be viewed as
2D rotors of variable length |�i |.

It is well known that in the strong-coupling limit the XY

model captures the physics of phase fluctuations. Moreover,
the simplest scalar that can be constructed from two vectors is
their dot product. Therefore, it is reasonable to assume that the
change in energy due to relative change of orientation between
pairs of rotors is described by the first term in Hcl Eq. (4), i.e.,

Hphase = −
∑
ij

Jij cos(φi − φj ),

where, in principle, all pairs ij can contribute to the sum-
mation. The task is now to determine the coupling constants
Jij , which in a translationally invariant system should only
depend on the distance between sites i and j . Suppose E0

is the energy of the self-consistent BdG solution that in the
rotor picture corresponds to all rotors pointing in the same
direction, say φi ≡ 0. Now we change the orientation of the
rotor at the ith site by an angle θ so that φi = θ , and compute
the change in energy δE1. Within the effective rotor model,
Hphase, this change must be attributed to the change in bonds
that connect the ith site to all other sites [see Fig. 1(a)]. Next,
we restore the orientation of the ith rotor back to φi = 0,
and change the orientation of the rotor at the j th site by
the same angle θ [see Fig. 1(b)]. This leads to a change in
energy δE2 which is coming from the change in bonds that
are connecting the j th site to all other sites. Clearly, for a
translationally invariant system we should have δE2 = δE1.
Then we orient both the ith and the j th rotors at an angle
θ , i.e., φi = φj = θ . The change is energy obtained in this
configuration is δE3. The change in this case is coming
from the change in all the bonds connecting ith and j th

FIG. 1. A schematic picture describing the method to isolate
the contribution of a single rotor pair to the total energy for the
effective classical Hamiltonian. (a) i th rotor is oriented away from
the otherwise phase coherent arrangement of rotors. The double lines
connecting site i to all other sites indicate the pairs that contribute to
the change in energy due to change in the orientation of the i th rotor.
(b) j th rotor is rotated by an angle θ , and the single lines indicate the
pairs contributing to change in energy. (c) Both i th and j th rotors
are rotated by an angle θ . Note that in this case the pair ij does not
contribute to the change in energy.

rotors to all other rotors, except to each other [see Fig. 1(c)].
Therefore, we can identify the coupling strength between
the ith and the j th rotors as 2Jij = δE/(1 − cos θ ) where
δE = (δE1 + δE2 − δE3). Using this protocol for calculating
the coupling constants, we can also compute the longer-range
coupling strengths. Note that we are not assuming that only
nn bonds contribute to the summation in Eq. (4). In fact,
the present scheme for calculating the Jij shows explicitly
that the most important coupling is that between the nearest
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FIG. 2. (a)–(f) Change in energy as a function of the orientation
angle between a single nearest-neighbor pair of rotors for different
values of U . Symbols are the results of numerical calculations and the
solid line in each panel is a fit to the functional form J (1 − cos θ ) +
K(1 − cos2 θ ). The best-fit values of J and K are indicated in the
figure.
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FIG. 3. (a)–(f) Change in energy as a function of the change in
magnitude of a single rotor. Symbols are the numerical data and the
solid line shows a fit to the functional form δE = k(|�| − |�0|)2,
with the values of best-fit parameter noted in the figure.

neighbor i,j pairs. Moreover, the protocol proposed above
for computing coupling strengths also works for a disordered
system, where Jij will now depend on the sites i and j , and
therefore we will get a distribution of coupling strengths even
for nearest-neighbor couplings.

We begin by verifying the validity of the cos(φi − φj )
form that is assumed in the effective classical Hamiltonian.
Figure 2 shows the numerical data for change in energy δE

as a function of angle of orientation θ for different values
of attractive Hubbard parameter U . The function f (θ ) =
J (1 − cos θ ) + K(1 − cos2 θ ) fits the numerical data very well
for all values of U . The best-fit parameter J is much larger
than K , therefore in the simplest approximation we retain only
the cos(φi − φj ) form in the effective Hamiltonian Eq. (4). In
order to compute the values of the coupling parameters Jij one
can use either the best-fit values, as indicated in Fig. 2, or any
two points from the numerical data.

Following an analogous approach we justify the use of
the second term in the effective Hamiltonian. This term can
be written as Hamp = ∑

i ki(|�i | − |�0|)2, and represents the
stiffness to the change in magnitude of the local pairing
amplitude compared to the average magnitude in the self-
consistent solution. Given the on-site nature of this term, it
is easier to compute the change in energy. The results are
shown in Fig. 3, which shows the change in energy due to
the change in the length of the rotor for different U . In this
case the function g(δ|�|) = k(δ|�|)2 ≡ k(|�| − |�0|)2 fits the
numerical data very well, hence justifying the form of the
second term in the effective Hamiltonian. The rotor picture for
the superconducting amplitudes is strictly valid in the large-U
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0.2

J

0 5 10 15U
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15

k

(a) (b)

FIG. 4. Parameters of Hcl as extracted from the change in energy
about the mean-field value. (a) Coupling constant J (open circles) as a
function of U calculated by assuming a cosine form for the change in
energy and using only θ = 0 and π . Filled squares show a comparison
with J obtained from the fits shown in Fig. 2. Green solid line is the
phase stiffness calculated as expectation value of the kinetic-energy
operator. The dashed blue line represents the 1/U behavior valid in
the large-U limit. (b) The stiffness k to change in local amplitude
|�i |, as a function of U calculated by assuming a k(|�| − |�0|)2

form and using only two points from the data (open circles). Filled
squares are the values obtained from the best fits shown in Fig. 2.
Dashed blue line represents k = U .

limit. This is analogous to how in the repulsive Hubbard model
a local magnetic moment is well defined only in the large-U
limit. Therefore, an alternate approach is used to find the phase
stiffness constant in the small-U regime. This is obtained from
the the expectation value of the kinetic-energy operator [36].

In the following, we summarize the behavior of the
parameters of our Hcl. Figure 4(a) shows the plot of nn coupling
constant J as a function of U . The values obtained via the best
fit to the cosine form [filled squares in Fig. 4(a)] and those
obtained by using only θ = 0,π on the cosine curve (open
symbols) match very well. In the large-U limit, we find that
J ∼ t2/U as expected from the strong-coupling expansion
[dashed line in Fig. 4(a)].

For U � 5, J decreases upon decreasing U . This indicates
a breakdown of the local description for the superconducting
amplitudes as the phase stiffness at weak coupling should not
go to zero in a superconducting phase. In the low-U regime,
we need to choose an alternate approach for computing the
phase stiffness parameter J . Within the Kubo linear-response
formalism, the superfluid stiffness consists of diamagnetic and
paramagnetic parts [37]. The diamagnetic part is related to
the expectation value of kinetic energy per link [28,36,37].
Following Ghosal et al. [28] the kinetic energy can be
computed as

− Ekin = 4t/N
∑
i,k

vk,ivk,i+x̂ , (5)

where vk,i , etc., are the coefficients appearing in the Bo-
goliubov transformations Eq. (3). At low temperatures, the
paramagnetic contribution to the superfluid stiffness is negli-
gible [36]. Therefore, the kinetic energy per link is a measure
of the phase stiffness parameter J for the entire range of U

values. This serves as a cross-check for our calculation of Jij
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described above. The variation of −Ekin with U is shown as a
solid line in Fig. 4(a). Indeed, for values of U larger than ∼5
the kinetic energy per link matches well with the J computed
in terms of energy cost for relative phase change. Therefore,
in the disorder-free case we use −Ekin as the phase stiffness
parameter J for the entire range of U .

The amplitude stiffness parameter k as a function of U is
shown in Fig. 4(b). Once again using a best fit to the quadratic
form (filled squares) and using only two points from the
numerical data (open symbols) are very close. The dashed line
corresponds to k = U , and seems to be a good approximation
for the stiffness constant over the entire U range.

IV. MONTE CARLO SIMULATION RESULTS

A. Order parameter and auxiliary variable distributions

We define the superconducting order parameter at finite
temperature by �op = 1

N
〈∑i �i〉, where the angular brackets

denote thermal averaging over Monte Carlo configurations of
auxiliary variables and N is the number of sites. The temper-
ature dependence of �op for different values of U is shown in
Fig. 5(a). The point of inflection in �op(T ) is used to estimate
the value of the superconducting transition temperature Tc.
The transition temperature displays a nonmonotonic behavior
with varying U [see Fig. 5(a)]. The sharp reduction in �op

across Tc is caused by the vanishing of |�i | for small U , and
by randomness in phases φi for large U . These two limits are
connected smoothly with variation in U , as will be discussed
in detail in the following.

In order to compare with the state-of-the-art QMC results,
for example those presented in Ref. [30], we compute the
pair-pair correlation function, PS , defined as

PS = 1

N

∑
ij

〈c†i↑c
†
i↓cj↓cj↑ + H.c.〉. (6)
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FIG. 5. (a) The temperature dependence of the superconducting
order parameter �op normalized by its low-temperature value, �op(0),
for different values of U . Inset shows the variation of �op(0) with U .
(b) Vortex nv and antivortex na density as function of temperature.
(c) Spectral gap �g as a function of temperature for different U .
(d) Circles show the transition temperature Tc, as inferred from the
inflection point in the T dependence of the order parameter, as a
function of U . Squares and triangles mark, respectively, the expected
variations of Tc in the small-U and large-U limits.
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FIG. 6. Variation of the pair-pair correlation function PS with
inverse temperature for different system sizes. The results are
obtained for U = 4t and n ≈ 0.5.

The results are presented in Fig. 6. The values of PS

below critical temperature are larger than those obtained in
the QMC simulations [30]. This can be attributed to the
absence of quantum fluctuations in the present treatment
where the temporal fluctuations in the auxiliary fields are
completely ignored. This is along the lines of the SAF-MC
method proposed recently [27]. Two important features that
are consistent with the QMC results are (i) the absence
of size dependence for small values of inverse temperature
and (ii) a systematic scaling with the system size for large
values of β. These features are important for extracting a
value of critical temperature from the computed data. Clearly,
similar information is contained in the �op(T ) plots shown in
Fig. 5(a). A quantitative comparison of PS with the QMC
results suggests that the present method overestimates the
magnitude of the order parameter in the superconducting
phase. Similarly, Tc values are overestimated compared to
the QMC results. It is important to point out that the present
method is not capable of describing quantum phase transitions,
which are solely driven by quantum fluctuations.

A useful quantity that determines the importance of
the phase of the superconducting order parameter is the
vorticity [38]. Vorticity (antivorticity) can be defined as the
sum of difference of phases around a square plaquette taken
clockwise (anticlockwise) and summed over all plaquettes.
The difference in angles φj − φi is defined modulo ±π . The
density of vortices and antivortices (nv/a) is shown in Fig. 5(b).
In the weak-coupling regime there are no vortex/antivortex
excitations as the system goes across the transition [see
Fig. 5(b) for U = 1.5 and 2]. This shows that the transition
is caused solely by fluctuations in amplitudes of the local
superconducting order parameters �i . Indeed, for intermediate
to large values of U , density of vortices begins to rise near
the transition temperature as determined from �op. This
is consistent with previous results obtained in the extreme
large-U limit, where one can assume the magnitudes |�i | to
be constant and the fluctuations are captured by a phase-only
XY model [38].
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The electronic spectrum is obtained in the Monte Carlo
generated auxiliary field configurations by solving for HBdG

Eq. (2). One of the important features contained in the
electronic spectra is the spectral gap, which we define as
the energy difference between lowest unoccupied level and
highest occupied level assuming a T = 0 Fermi distribution
function. The spectral gap normalized to the value of U

is plotted in Fig. 5(c). The temperature dependence shows
that the gap vanishes at Tc for small values of U , whereas
it remains finite even in the nonsuperconducting regime for
intermediate to large values of U . The U dependence of
Tc obtained in present study is consistent with the BCS
result for small U and a strong-coupling 1/U behavior for
large U [Fig. 5(d)]. These results are qualitatively similar to
those obtained by the dynamical mean-field theory (DMFT),
QMC, and other computationally demanding methods. The
quantitative features are as follows. The maximum value of Tc

is 0.18t , and occurs near U = 3.0t . Within various methods
these characteristic scales are, respectively, given by 0.12t

and 2t (T-matrix approximation), 0.2t and 4t (DMFT), 0.16t

and 4t (fluctuation exchange approximation), 0.18t and 5t

(QMC), and 0.14t and 5t (SAF-MC) [27,39–41]. Although the
maximum value of Tc and the corresponding U value should
both depend on the average electron density, within QMC this
dependence is insignificant in the density range 0.5 < n < 0.9,
and hence the above comparison is meaningful despite the
different values on n used in different studies [30].

The introduction of an effective classical Hamiltonian for
auxiliary fields has twofold advantage. First, it facilitates
the application of the Monte Carlo procedure; second, the
behavior of auxiliary variables provides additional insight into
the nature of the finite-temperature transitions. In order to
further understand the difference between the superconducting
to normal state transitions at weak and strong coupling, we
investigate the details of the temperature evolution of local
pairing amplitudes, �i . The distribution of the magnitude of
pairing amplitudes is computed via

P (|�|) = 1

N

〈∑
i

δ(|�| − |�i |)
〉
, (7)

where the Dirac-delta function is approximated by a
Lorentzian with width η = 0.01. The resulting distribution
is plotted in Figs. 7(a)–7(c). At low T the mean value of
the distribution increases with increasing U . The width of
the distribution decreases with increasing temperature for
U = 1.5 due to a decrease in �0 with increasing T [see
Fig. 7(a)]. At large U , since �0 becomes almost independent
of T , an expected increase in the width of the distribution
due to thermal effects is obtained in our simulations [see
Fig. 7(c)]. Interestingly, a combination of these two effects
occurs at intermediate U where the width first increases and
then decreases upon increasing T [see Fig. 7(b)]. In order to
assess the relative importance of the amplitude fluctuations
in driving the system to a normal state, we compute the
ratio of the variance to the mean value of the distribution.
This is plotted as a function of U for T ∼ Tc in Fig. 7(d).
Clearly, the amplitude fluctuations become less important upon
increasing the strength of attractive coupling. Nevertheless,
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FIG. 7. The distribution P (|�|) of magnitudes |�| at different
temperatures, 0.1Tc, 1.0Tc, 2.0Tc, for (a) U = 1.5, (b) U = 3, and
(c) U = 10. (d) The ratio of the variance to the mean value of P (|�|)
as function of U . This ratio decreases with increasing U highlighting
the importance of amplitude fluctuations at weak U values.

such fluctuations are always present, and seem to vanish only
asymptotically.

Next, we discuss the fluctuations in the phase of the
superconductor along the same lines as those in amplitudes.
We define a bond variable Dij = cos(φi − φj ), where i and j

are the nn sites, and compute the distribution of Dij as

P (D) = 1

N

〈∑
〈ij〉

δ(D − Dij )

〉
. (8)

The δ function is approximated by a Lorentzian as before.
The distributions are shown in Figs. 8(a)–8(c) for different
values of U and T . For all values of U , the distribution
is sharply peaked near D = 1 at low temperatures, and
becomes progressively broader with increasing temperature.
The inverse of peak height of the distribution can be taken as
an indicator for the width of the distribution. In Fig. 8(d) we
show the peak height as a function of T for three values of
U . For intermediate and large U , the peak height reduces
strongly with temperature, indicating stronger fluctuations
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FIG. 9. Real-space plots for two different temperatures T ∼
0.1Tc (first column) and T ∼ Tc (second column) for U/t = 1.5.
(a) and (b) show the nn phase correlations Dij = cos(φi − φj ), and
(c) and (d) show the amplitude variables |�i |.

in the phase. The results are, therefore, consistent with the
well-known notion that for strong interactions the phase
fluctuations are dominant. The overall behavior of amplitude
and phase fluctuations shows that for a wide intermediate range
of U both the amplitude and phase fluctuations play important
roles in driving the superconducting state towards a normal
state.

We plot the configurations of the auxiliary variables in terms
of the amplitude and the phase of �i . The plot is shown in
Fig. 9 for U = 1.5 and in Fig. 10 for U = 16 at T ∼ 0.1Tc

and Tc. For small U the fluctuations in the phase {φi} are
essentially absent at T ∼ 0.1Tc, and remain insignificant even
as T approaches Tc [see Figs. 9(a) and 9(b)]. On the other hand,
the amplitudes {|�i |} show significant fluctuations already at
T ∼ 0.1Tc, which become very strong as T approaches Tc

[see Figs. 9(c) and 9(d)]. This reconfirms that the small-U
regime is dominated by amplitude fluctuations. The trends are
essentially reversed for large U . The phase fluctuations are
relatively stronger for U = 16 [see Figs. 10(a) and 10(b)]. The
amplitudes also contain significant fluctuations, but remain
finite even at Tc [see Figs. 10(c) and 10(d)]. Therefore the
loss of superconductivity in the large-U limit is driven by the
fluctuations in the phase. While the dominant fluctuations can
be identified as amplitudelike for weak U and phaselike for
strong U , fluctuations in both the phase and amplitude vari-
ables are present over the full range of the attraction strength.
The idealized amplitude-only and phase-only descriptions of
the suppression of superconducting order seem to be valid
only in very small-U and very large-U regimes of the model.
This is supported by experiments where presence of Josephson
effect, which is an indicator for phase-sensitive supercon-
ductivity, is observed over the entire BCS to BEC crossover
region [16].

FIG. 10. Real-space plots for two different temperatures T ∼
0.1Tc (first column) and T ∼ Tc (second column) for U/t = 16.
(a) and (b) show the nn phase correlations Dij = cos(φi − φj ), and
(c) and (d) show the amplitude variables |�i |.

B. Quasiparticle DOS and pseudogap phase

The behavior of the classical auxiliary variables with
increasing temperature and for different U already provides
us with substantial insight into the thermal physics of the
superconductor. It is equally important to analyze the response
of the quasiparticles to the thermal fluctuations at different
values of U . To this end, we now discuss the behavior of the
quasiparticle density of states, which is defined as

N (ω) = 1

N

〈∑
k

δ(ω − εk)

〉
, (9)

where εk are the 2N eigenvalues obtained numerically by
solving for HBdG Eq. (2) in a given configuration of the
classical auxiliary variables. The angular bracket denotes
averaging over various �i configurations as generated by the
Monte Carlo. The DOS across the entire range of T and U can
be grouped into three qualitatively distinct categories based
on their behavior near the chemical potential. These are (i)
gapped, (ii) pseudogapped, and (ii) gapless (see Fig. 11). At
T = 0 the DOS supports a finite spectral gap for all values
of U . However, the finite T behavior depends strongly on
the value of U . For small U , the gap vanishes as T � Tc

[see Fig. 11(a)]. For very large U the gap persists above Tc

[see Figs. 11(c) and 11(d)]. In the intermediate- to strong-U
regime, the DOS shows a dip at chemical potential without
a clean gap. This regime of parameter space is termed as a
pseudogap regime.

In order to find a possible connection between the nature of
the DOS as discussed above and the nature of fluctuations
in the auxiliary field variables we consider the following
three idealized configurations of auxiliary variables. These are
(i) amplitude-only fluctuations—configurations with perfect
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FIG. 11. Variation of quasiparticle density of states, N (ω), with
temperatures for coupling strengths (a) U = 1.5, (b) U = 3, (c) U =
6, and (d) U = 10. For small U , the spectral gap vanishes at Tc as
expected in the BCS regime.

phase coherence (φi ≡ φ0), but a random distribution of |�i |
between zero and 2|�0|, where �0 is the low-temperature
value of the order parameter—(ii) phase-only fluctuations—
the amplitudes are uniform (|�i | ≡ |�0|) and the phases are
randomly distributed between zero and 2π—and (iii) ampli-
tude and phase fluctuations—both |�i | and φi are randomly
distributed over the above-mentioned range. The DOS is
computed for these three idealized configurations for different
values of U . The outcome of this in terms of the nature of DOS
is presented in Table I. We find that amplitude-only fluctuations
do not lead to a pseudogapped DOS. For the other two
combinations, the pseudogap phase occurs for intermediate
values of U , and a fully gapped DOS above Tc is consistent
with both phase-only and amplitude and phase fluctuations.
Within the analysis presented in Table I, a pseudogap phase
exists at intermediate values of U when phase fluctuations are
present. However, the auxiliary field distributions generated
during Monte Carlo are such that the phase fluctuations at
intermediate U are necessarily accompanied by amplitude
fluctuations. Therefore, one can conclude that a pseudogap
phase exists when both phase and amplitude fluctuations are
present. Recent experiments indeed show that a pseudogap
phase can exist in conventional superconductors that sit at the
proximity to an insulating phase [42].

TABLE I. Nature of DOS at T > Tc for different values of U

within three basic scenarios that consider different combinations of
fluctuations in magnitude and phase of �i .

U ⇓, Fluctuations ⇒ {|�i |} {|�i |} + {φi} {φi}
1.5 Gapless Gapless Gapless
2.0 Gapless Gapless Gapless
3.0 Gapped Pseudogapped Pseudogapped
4.0 Gapped Pseudogapped Pseudogapped
6.0 Gapped Gapped Gapped
8.0 Gapped Gapped Gapped
16.0 Gapped Gapped Gapped

FIG. 12. (a) Temperature variation of coherence length (ξ ) for
different U . (b) Variation of ξ as function of U at low temperatures.
The filled symbols represent the Monte Carlo data, and the other
three data sets are for the hypothetical auxiliary field configurations
corresponding to fluctuations in magnitude of �i , phase of �i , and
both phase and magnitude of �i (see text).

Another indicator that is commonly used to describe the
crossover from a BCS-like superconductor to the BEC of
cooper pairs is the coherence length of the superconductor.
The coherence length ξ is defined via [11]

ξ 2 =
∑

r r2|F (r)|2∑
r |F (r)|2 , (10)

where F (r) = 1√
N

∑
i〈ci+r↓ci↑〉, and i + r denotes a site

located at distance r from site i. Figure 12(a) shows the
temperature dependence of pair coherence length for different
values of U . For small values of U , the coherence length de-
creases with temperature, and ξ (Tc)/ξ (0) ∼ 0.8 in agreement
with previous calculations [11]. With increasing U , ξ reduces
rapidly and becomes essentially temperature independent.
Note that ξ < 1 for U > 4 indicates that the cooper pairs
have essentially become well localized in this regime of
interaction strength. We further test the three basic scenarios
of fluctuations in auxiliary variables for the pair coherence
length. We compare the results obtained for the pair coherence
length in the Monte Carlo simulations, with those obtained
by considering three types of idealized auxiliary variable
configurations that are already discussed for the DOS. We find
that for small values of U our Monte Carlo simulation results
for ξ are very close to those obtained in the amplitude-only
fluctuation model [see Fig. 12(b)]. In the large-U regime, the
Monte Carlo results are closest to the phase-only fluctuation
model. In the intermediate range, 4 < U < 10, the coherence
length is best described by the fluctuations in both |�i | and φi

These results indicate that the Monte Carlo method faithfully
captures the crossover from amplitude-only fluctuation regime
at small U to the XY -model regime at large U .

We summarize the results obtained so far in a phase diagram
in Fig. 13(a). The T -U phase diagram as obtained within
our simulations consists of four distinct phases, namely, SC,
normal metal, non-SC gapped, and pseudogapped. This is con-
sistent with results obtained via more sophisticated numerical
techniques. The pseudogapped state can be understood as an
indicator for the presence of both the phase and the amplitude
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Tc
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is shown for the gap at T = 0 and that at T ∼ Tc.

fluctuations. The turnaround of the Tc versus U curve, which
is located close to the BCS behavior within our calculations,
can be considered as an indicator for the onset of significant
phase fluctuations. This is why the region just above Tc shows
pseudogapped DOS. As U increases, the phase fluctuations
become dominant, however the amplitude fluctuations become
inactive only when U is considerably large. The DOS remains
gapped as long as amplitude fluctuations are weak, and at
higher T when both amplitude and phase are random, a
pseudogap phase appears. The pseudogap phase is likely to
disappear at a scale proportional to U itself, where the pairing
amplitudes themselves vanish and therefore the phase of the
order parameter cannot be defined. In Fig. 13(b) we show the
plot of �g(0)/Tc as a function of U . The plot begins to deviate
from the BCS value of 3.5 (as indicated by the horizontal
dashed line) around U = 2. We also show �g(Tc)/Tc as a
function of U . In the BCS scenario, �g(Tc)/Tc = 0, which we
find to hold for U � 3. These two indicators of BCS behavior
suggest that the deviation from a BCS-like superconducting
order begins somewhere between U = 2 and 3. However, there
is no critical value of U for which the behavior deviates from
the BCS behavior.

V. EFFECTIVE HAMILTONIAN IN THE PRESENCE
OF QUENCHED DISORDER

Although disorder is present to varying degrees in almost
all materials, its effect is typically ignored in the simplest
treatment. Indeed, translational invariance is commonly in-
voked in theories of condensed-matter systems. In the context
of superconductors, however, disorder plays a crucial role in
providing a better understanding of the underlying mecha-
nisms. Indeed, there has been immense interest in studying
disordered superconductors, both bulk and thin films, in recent
years [25,42]. The idea is to use disorder as a control parameter
which then provides new insights into the understanding of
correlated electron physics. Hence, methods that can treat the
effect of disorder accurately become extremely useful. This is
where the real-space methods hold an edge over the variety
of mean-field methods. Having shown that the real-space

method proposed in Sec. II of this paper recovers the physics
of thermal fluctuations in both the amplitude and the phase
of the superconducting order, we now demonstrate that the
scheme can be applied to disordered Hamiltonians. In order to
proceed, we use the prototype model for disorder and extend
our Hamiltonian Eq. (1) by adding a random on-site energy
term. The resulting disordered Hamiltonian is given by

H ′ = H +
∑

i

εi(ni↑ + ni↓), (11)

where εi are random variables selected from a uniform box
distribution of width V , i.e., −V < εi < V . The additional
term affects both HBdG Eq. (2) and Hcl Eq. (4). The change
in HBdG is simply the addition of the term

∑
i εini to Eq. (2).

The change in Hcl arises via the change in the parameters
of the effective Hamiltonian. Since translational symmetry
is broken by the disorder term, the parameters Jij and ki in
Eq. (4) become site dependent. However, even before arriving
at the effective parameters, we need to verify the validity of
the form of the effective Hamiltonian Eq (4). We show the
dependence of the change in energy on the rotation angle
for all nn pairs of sites. Since our primary task is to identify
the functional form of δE(θ ), we plot the change in energies
normalized to the change for largest value of θ , i.e., θ = π for
all nn pairs. The resulting plot is shown in Fig. 14 for a few
representative values of U and V . While there is a broadening
due to disorder, the overall shape of the curve is reasonably well
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pairs. In order to show the variation for different pairs on the same
scale, we have normalized the variation in energy for each pair by its
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approximated by a cosine function. Interestingly, the deviation
from the cosine behavior is large for intermediate values of
U . For large V , the cosine curve passes through the scatter
of points corresponding to δE(θ ) for different nn pairs [see
Figs. 14(b), 14(d), and 14(f)]. Note that the fit does not appear
as good as that in the clean case (see Fig. 2) because we are not
using additional fit parameter K in this case. In principle, more
parameters can be introduced in Hcl in order to improve the
model; however, our aim here is to demonstrate the working
of the general scheme and therefore we leave this task of
quantitative improvements for future. The results presented for
the disordered case are averaged over four to ten realizations
of disorder. We note that despite using only a few disorder
realizations for averaging, the results are stable as large lattice
sizes allow for a self-averaging even for a single realization of
disorder.

The distribution of parameters is shown in Fig. 15. Both
Jij and ki acquire a broad distribution for finite values of
V . Interestingly, for large U the coupling strengths Jij do
not become larger than the disorder-free value of J . For the
stiffness constant, ki < U for all values of disorder strength
and U , and for all sites. The method employed here for
calculating Jij can also be useful in the study of quantum XY

models where the common practice is to select Jij from random
uncorrelated distributions [43]. The Monte Carlo simulations
proceed as in the case of the disorder-free Hamiltonian, except
that in the present case the parameters ki and Jij of Hcl are
site and bond dependent, respectively. From the behavior of
the parameters for Hcl in the presence of disorder, we can
already argue that the fluctuations in both the amplitude and
the phase of the superconducting order parameter are enhanced
by disorder. We show the results for the superconducting
order parameter in Fig. 16(a). The T = 0 value of the order
parameter decreases rapidly upon increasing V [see inset in
Fig. 16(b)] [44]. The Tc decreases with increasing V for both
U = 4 and 6. The trends for larger values of U are similar to
those for U = 6. The behavior of the system for different
values of V and T is summarized in two phase diagrams
in Figs. 16(c) and 16(d). For intermediate U , the SC order
is destabilized with increasing temperature, giving way to
a nonsuperconducting phase with finite spectral gap. With
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further increase in T , the non-SC gapped phase evolves into
a pseudogapped phase [see Fig. 16(c)]. This phase suggests
that the cooper pairs are not very robust and are at the verge
of breaking into normal electrons. For strong U , the non-SC
gapped state is stable over a wider region in T -V space and
the pseudogap phase does not appear.

The QMC studies on AHM in two dimensions indicate an
existence of a superconductor to insulator transition (SIT) upon
increasing disorder strength [45]. The critical value of V/t for
U/t = 4 is found to lie between 3 and 4 for n = 0.86 [45]. The
results obtained within our Monte Carlo method are consistent
with the previous results. The critical value of disorder required
for SIT increases with increasing U . The pseudogap region
expands with increasing the strength of disorder for weak
disorder, and reduces upon further increasing the disorder.

VI. CONCLUSIONS

We have introduced an effective Hamiltonian based Monte
Carlo method for studying disordered AHM. The method is
inspired by the ideas presented by Hubbard in Ref. [46] in the
context of repulsive Hubbard model. The interacting Hamil-
tonian is replaced by (i) an effective classical Hamiltonian
that controls the fluctuations of the auxiliary fields and (ii) a
Hamiltonian describing electrons in arbitrary potential arising
due to the auxiliary field configurations. The parameters of the
classical Hamiltonian are determined from the behavior of en-
ergy variation about the BdG mean-field solutions. The results
presented for the disorder-free Hamiltonian are quantitatively
close to those reported in studies utilizing more sophisticated
methods, such as QMC, DMFT, and SAF-MC. The effective
Hamiltonian approach also provides additional insights into
the behavior of the AHM. The distribution of the auxiliary
fields and their evolution with U and T aid in understanding the
nature of the finite temperature phase transitions. We find that
while the small-U (large-U ) limit is dominated by amplitude
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(phase) fluctuations as expected in the BCS (BEC) scenario,
both amplitude and phase fluctuations contribute significantly
to the thermally induced suppression of superconductivity in
the intermediate-U regime. The pseudogap phase exists in this
regime just above Tc when both amplitude and phase fluctua-
tions are active. This agrees well with the recent experimental
findings in NbN superconductors. The key advantage is that
a purely classical Monte Carlo method can be employed to
generate auxiliary field configurations at finite temperatures.
Accessibility of large lattice sizes makes this a powerful
method to study the effect of disorder on superconductivity.
To this end, we demonstrate that the method can indeed
be used for disordered Hamiltonians. The parameters of the
effective Hamiltonian become site and bond dependent in
the presence of quenched disorder. The effect of disorder
is to enhance fluctuations in both the amplitude and phase
variables. The observation of the pseudogap in disordered s

-wave superconductors is consistent with our inference that the
pseudogap state is an indicator for the presence of fluctuations
in both phase and amplitude of �i . It should be noted that, in
the disordered case, our method for computing the parameters

of the classical Hamiltonian works only in the intermediate- to
large-U regime. Identifying a new method to compute bond-
dependent stiffness parameters Jij in the small-U regime can
further improve the scope of application of the general method
proposed here. It will be interesting to explore the extension of
our scheme to include superconducting phases with nontrivial
order-parameter symmetries such as d-wave, s++/s+−-wave,
etc. The general idea of building an effective Hamiltonian by
analyzing the change in energy about the BdG mean-field state
should work, provided one can identify the relevant auxiliary
fields that describe the low-energy fluctuations.
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