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Approximations to the exact exchange potential: KLI versus semilocal
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In the search for an accurate and computationally efficient approximation to the exact exchange potential of
Kohn-Sham density functional theory, we recently compared various semilocal exchange potentials to the exact
one [F. Tran et al., Phys. Rev. B 91, 165121 (2015)]. It was concluded that the Becke-Johnson (BJ) potential
is a very good starting point, but requires the use of empirical parameters to obtain good agreement with the
exact exchange potential. In this work, we extend the comparison by considering the Krieger-Li-Iafrate (KLI)
approximation, which is a beyond-semilocal approximation. It is shown that overall the KLI- and BJ-based
potentials are the most reliable approximations to the exact exchange potential, however, sizable differences,
especially for the antiferromagnetic transition-metal oxides, can be obtained.
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I. INTRODUCTION

Due to its rather low cost/accuracy ratio, the Kohn-Sham
(KS) version of density functional theory [1,2] is the most
widely used method for the calculation of the geometrical and
electronic properties of matter nowadays. The reliability of
the results of a KS calculation depends mainly on the chosen
approximation for the exchange-correlation (xc) energy Exc

and potential vxc,σ (σ is the spin index). The properties which
are calculated using the total energy, like the equilibrium
volume, are mostly (but not exclusively [3]) determined by
the energy Exc, while properties like the density of states or
the electron density are governed by the potential vxc,σ [4,5].

In the KS method, the xc potential is multiplicative since it
is calculated as the functional derivative of the xc functional
with respect to the electron density ρσ (vxc,σ = δExc/δρσ ).
From the variational point of view, this is more restrictive
than taking the derivative with respect to the orbitals ψσ

i

(v̂xcψ
σ
i = δExc/δψ

σ∗
i ), like in the generalized KS framework

[6], which leads to nonmultiplicative xc potentials in the case of
implicit functionals of the electron density. A straightforward
analytical calculation of vxc,σ = δExc/δρσ is possible for
explicit functionals of ρσ like those of the local density
approximation (LDA) or generalized gradient approximation
(GGA). However, for implicit functionals of ρσ , like meta-
GGA (MGGA) or the Hartree-Fock (HF) exchange [which is
also the exact exchange (EXX) in the KS theory], such a direct
analytical calculation of the xc potential is not possible and
one has to resort to the optimized effective method [7] (OEP)
which consists of solving integrodifferential equations to
get vxc,σ .

Since the EXX energy in the KS method is known (all
equations in this work are given in Hartree atomic units)

EEXX
x = −1

2

∑
σ

Nσ∑
i=1

Nσ∑
j=1

∫ ∫

× ψσ∗
i (r)ψσ

j (r)ψσ∗
j (r ′)ψσ

i (r ′)

|r − r ′| d3r d3r ′, (1)

the OEP applied to EXX gives us access to the exact KS
exchange potential (thereafter called EXX-OEP), and imple-
mentations have been reported for molecules and periodic
systems (see Refs. [4,8] for reviews and, e.g., Refs. [9–11]
for recent implementations).

Since the implementation of a numerically stable OEP
approach is quite involved (see, e.g., Ref. [9]) and since an
EXX-OEP calculation formally scales with the fourth power of
the system size, an accurate, reliable, and fast approximation to
EXX-OEP is of high interest. In a recent study [12], we showed
that among various semilocal approximations for the exchange
potential, the best agreement with EXX-OEP in solids was
obtained with a modification of the potential proposed by
Becke and Johnson [13] (BJ). The conclusions were based on a
comparison of the total energy, electronic structure, magnetic
moment, and electric-field gradient (EFG) for a set of six
solids.

In this work, we proceed by a comparison of the EXX-OEP
with an approximate form suggested by Krieger, Li, and Iafrate
[14–17] (KLI). The KLI approximation to OEP, which has also
been used for functionals other than EXX [self-interaction
corrected (SIC) [18–22], MGGA [23–25], and random-phase
approximation [26]] is an interesting alternative to the OEP
since it avoids the numerical difficulties of EXX-OEP (very
recent works are Refs. [27–35] in the case of EXX and
Refs. [24,25] for MGGAs). However, comparisons between
the EXX-OEP and the KLI approximation (EXX-KLI in the
following) concern mainly atoms and light molecules/clusters
[8,15–17,36–46] and only a few such comparisons were done
for periodic systems [8,11,47–49]. From most of these studies,
it was concluded that EXX-KLI is a good approximation to
EXX-OEP, however, in Refs. [8,48] Engel pointed out that in
bulk Si and FeO the EXX-KLI potential can not fully reproduce
the aspherical features around the atoms seen in the EXX-OEP.
Let us also mention that in their study of the polarizability of
hydrogen chains, Körzdörfer et al. [22] showed that KLI is
a very bad approximation to OEP when applied to the SIC
functional. Overall, the number and variety of systems used
in these comparisons between EXX-OEP and EXX-KLI is
not very exhaustive, and since the EXX-KLI approximation is
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much easier to implement and computationally slightly more
advantageous than EXX-OEP (no unoccupied states needed in
EXX-KLI), a more systematic comparison between these two
potentials giving a better idea of the accuracy of EXX-KLI
would be certainly useful.

To this end, the EXX-KLI potential has been implemented
in an all-electron code for solid-state calculations and applied,
along with the EXX-OEP, to various types of solids. In
addition, we compare the EXX-KLI to the semilocal potentials
already analyzed in our previous work, and pursue the
question which of these potentials is the best approximation to
EXX-OEP. This is an important question since the semilocal
potentials are computationally much faster than EXX-KLI.

The paper is organized as follows. Section II provides a
short description of the potentials as well as the computational
details. Then, the results are presented and discussed in Sec. III,
while Sec. IV gives the summary.

II. THEORY AND COMPUTATIONAL DETAILS

The functional derivative of an only implicit functional
of the density with respect to the density can be obtained
by making use of the OEP approach [4,8]. It leads to
a complicated integrodifferential equation, which involves
response functions for the KS orbitals and density. The KLI
approximation to the OEP equation consists of replacing all
orbital energies differences εσ

j − εσ
i in the response function

by the same constant �εσ [14–16]. In the case of EXX,
or also MGGA functionals [23–25], the equations become
much more simple to solve since the sum over the (infinite)
number of unoccupied states can be collapsed, so that the need
of unoccupied states can be completely avoided. The KLI
equations for EXX are

vEXX-KLI
x,σ (r) = vS

x,σ (r) + 1

ρσ (r)

Nσ∑
i=1

∣∣ψσ
i (r)

∣∣2

× (〈
ψσ

i

∣∣vEXX-KLI
x,σ

∣∣ψσ
i

〉 − 〈
ψσ

i

∣∣v̂HF
x,σ

∣∣ψσ
i

〉)
,

(2)

where vS
x,σ is the Slater potential [50]

vS
x,σ (r) = − 1

ρσ (r)

Nσ∑
i=1

Nσ∑
j=1

ψσ∗
i (r)ψσ

j (r)

×
∫

ψσ∗
j (r ′)ψσ

i (r ′)

|r − r ′| d3r ′. (3)

The sum in the second term of Eq. (2) should in principle
run over all occupied orbitals, however, in order to ensure
the correct asymptotic behavior of the potential far from the
nuclei it has been rather common for molecular calculations to
discard the highest occupied orbital from this sum [14]. This is
what has also been done for the calculations on periodic solids
reported in Refs. [51–54], but it is rather obvious that in the case
of solids this procedure is ambiguous. As explained in detail in
Ref. [51], the highest occupied orbital at one k point (or set of
equivalent k points) of a given k mesh is discarded. However,
in the limit of an infinitely dense k mesh, the influence of
this procedure on the results tends to zero. Furthermore, the

requirement of a potential with a correct asymptotic behavior
does not really make sense in the case of solids. Therefore, we
chose to include all occupied orbitals in the sum in Eq. (2) for
this work.

We mention that the potential known as localized HF
(LHF, Ref. [40]), or alternatively as the common energy
denominator approximation (CEDA, Ref. [55]), has the same
form as Eq. (2), the difference being that the second term
consists of a double sum over the orbitals instead of only
one, therefore, the EXX-KLI potential can also be considered
as a simplification of the LHF/CEDA potential. As noticed
in Ref. [40], the LHF/CEDA potential is invariant under a
unitary transformation of the orbitals, which is not the case
with EXX-KLI. Other alternative derivations of Eq. (2) have
been proposed [15,51,56,57]. Let us mention that in Ref. [57],
the derivation to arrive at the EXX-KLI expression is not
based on any assumption about the type of systems under
consideration (molecular of periodic), which justifies the use
of the EXX-KLI potential for any electronic system including
solids.

A certain number of studies about EXX-KLI have been
published in the literature, but among them only a few
concerned periodic systems. These works on periodic systems
are now summarized. Plane-wave pseudopotential calculations
were reported by Bylander and Kleinman [51–54] and Städele
et al. [47] on the semiconductors Si, Ge, and GaAs, and
more recently by Engel and co-workers [8,11,48,58,59] on
Al, Si, FeO, and slab systems as well as by Natan [60]
on C, Si, and polyacetylene. Süle et al. [61] applied EXX-
KLI to polyethylene using a code based on Gaussian basis
functions. Fukazawa and Akai [26,62] reported KLI results
for alkali and magnetic metals (Li, Na, K, Fe, Co, and Ni)
and antiferromagnetic MnO which were obtained with a code
based on the Korringa-Kohn-Rostoker Green function method,
while the details of a EXX-KLI implementation within the
projected-augmented-wave formalism are available in the
work of Xu and Holzwarth [63].

For the purpose of this work, the EXX-KLI potential
(2) has been implemented into the all-electron code WIEN2K

[64], which is based on the linearized augmented plane-wave
(LAPW) method [65–67]. The implementation of the Slater
potential [Eq. (3)] into the WIEN2K code has been reported
recently [68] and the same techniques were used for the
additional term in Eq. (2). Details of the equations specific
for the LAPW basis set can be found in the Supplemental
Material [69]. Here, we just mention that the implementation
of Eq. (2) is exact and is based on the pseudocharge method
[70,71] combined with the technique proposed in Refs. [72,73]
to treat the Coulomb singularity in the integrals involving the
HF operator (see also Ref. [74]). As done by Süle et al. [61]
and Engel [75], the self-consistent-field (SCF) procedure to
solve the KS equations with the EXX-KLI potential vEXX-KLI

x,σ

was done by using vEXX-KLI
x,σ from the previous iteration to

calculate the integrals 〈ψσ
i |vEXX-KLI

x,σ |ψσ
i 〉 on the right-hand

side of Eq. (2). (Another possibility would have been to
solve a set of linear equations at each iteration [14].) A
comparison of our EXX-KLI band gaps for Ne and Si with
those from Engel [75] shows very small deviations of less than
0.03 eV. We also mention that the SCF convergence could be
achieved much more efficiently by using an inner/outer loops
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procedure similar to the one described in Ref. [76] for the HF
method.

The EXX-OEP calculations, which will serve as reference
for the discussion of the results, were done with the FLEUR

code [77] that is also based on the LAPW method. The
implementation of the EXX-OEP method in FLEUR employs
an auxiliary basis, the mixed product basis, for representing
the EXX-OEP, and as shown in Refs. [9,78–80], very well
converged all-electron EXX-OEP could be obtained thanks to
an accurate and efficient construction of the KS orbitals and
density response.

The semilocal calculations were done with the following
exchange-only potentials vx,σ . The LDA potential [2], which
is exact for the homogeneous electron gas, depends only on ρσ .
The potentials of Perdew, Burke, and Ernzerhof [81] (PBE),
Engel and Vosko [82] (EV93), and Armiento and Kümmel
[83] (AK13) are functional derivatives of functionals Ex of
the GGA form and hence depend on ρσ and its first two
derivatives ∇ρσ and ∇2ρσ . In Ref. [12], a generalization of
the BJ potential [13] (gBJ) was proposed as an approximation
to the EXX-OEP in solids. The gBJ potential, which is of the
MGGA form since it depends on the kinetic-energy density
tσ = (1/2)

∑Nσ

i=1 ∇ψσ∗
i · ∇ψσ

i , was shown to be more accurate
than the GGA potentials mentioned just above (the test set of
solids was composed of C, Si, BN, MgO, Cu2O, and NiO).
However, this good agreement with EXX-OEP was achieved
by tuning the three empirical parameters (γ , c, and p) in gBJ,
and it was shown that a set of parameters that is good for
a property or group of solids may not give good results for
other properties/solids. For instance, a good agreement with
EXX-OEP for the magnetic moment in NiO requires values
for (γ,c,p) that are very different from those for the band
gap or total energy [12]. Furthermore, it was also shown that
meaningful results for the band gap and EFG in Cu2O could
only be obtained by considering the universal correction to
the gBJ potential [84]. For this work, we decided to consider
only one of the four parametrizations of the gBJ potential
discussed in Ref. [12], namely, the one for the total energy
[(γ,c,p) = (0.6,1.0,0.60)]. Showing also the results obtained
with the parametrization that is on average slightly more
accurate for the band gap ([γ,c,p) = (1.4,1.1,0.50)] would
not change the conclusions of this work. The two other sets
of parameters were proposed for NiO and Cu2O specifically
and lead to very bad results for other systems such that they
are of limited interest. Note that it was shown in Refs. [85,86]
that the BJ potential (and consequently all its modifications) is
not a functional derivative, which from the theoretical point of
view is undesirable and may also lead to problems in practice
[85–87].

The convergence parameters of the calculations with
WIEN2K and FLEUR, like the size of the basis set or the
number of k points for the integrations in the Brillouin zone,
were chosen such that the results are well converged (e.g.,
within ∼0.03 eV for the band gap). The solids of the test
set are listed in Table S1 of the Supplemental Material [69],
along with their space group and geometrical parameters.
The core electrons (also indicated in Table S1) were treated
fully relativistically (i.e., including spin-orbit coupling), while
a scalar-relativistic treatment [88] was used for the valence
electrons.
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FIG. 1. Error (in mRy/cell) in the EXX total energy calculated
with orbitals generated from approximate exchange potentials with
respect to the values obtained with the EXX-OEP orbitals.

III. RESULTS AND DISCUSSION

A. EXX total energy and electron density

We begin the discussion of the results with the EXX total
energy EEXX

tot . The results are shown graphically in Fig. 1 for
each solid (see Table S2 of the Supplemental Material [69] for
the numerical values) and Table I contains the mean error (ME)
and mean absolute error (MAE). As in Refs. [12,68], the EXX

TABLE I. Average over the solids of the errors (with respect to
EXX-OEP) in the EXX total energy, electron density, KS fundamental
band gap, and energy position of the core states. See text for details.

EXX-KLI LDA PBE EV93 AK13 gBJ

EXX total energy
ME (mRy/cell) 18 218 139 87 84 55
MAE (mRy/cell) 19 218 139 87 84 55

Electron density
ME 0.9 3.1 2.1 1.6 1.8 0.9

Band gap
ME (eV) −0.58 −1.84 −1.36 −0.96 0.39 −0.63
MAE (eV) 0.58 1.84 1.36 1.03 1.20 0.71

Core states
MMRE (%) 0.2 1.1 0.3 0.0 −0.6 −0.3
MMARE (%) 0.6 1.3 0.5 0.6 0.9 0.5
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TRAN, BLAHA, BETZINGER, AND BLÜGEL PHYSICAL REVIEW B 94, 165149 (2016)

total energy expression [Eq. (1) for Ex and no correlation] has
been evaluated with the orbitals generated from various poten-
tials. The error is with respect to the value obtained with the
EXX-OEP orbitals: EEXX

tot [{ψσ,approx
i }] − EEXX

tot [{ψσ,EXX-OEP
i }],

where EEXX
tot [{ψσ,EXX-OEP

i }] is the EXX total energy calculated
with the EXX-OEP orbitals and EEXX

tot [{ψσ,approx
i }] is the value

obtained with orbitals obtained by one of the approximate
exchange potentials. From the results we can see that the
smallest errors with respect to EXX-OEP are obtained with
the EXX-KLI and gBJ orbitals. With the exception of NiO,
EXX-KLI leads to errors which are below 50 mRy/cell, and
the MAE is about 20 mRy/cell. gBJ leads to very similar
errors except for the transition-metal oxides and CeO2 for
which the errors are clearly larger (up to ∼260 mRy/cell for
NiO and CeO2). These differences between the EXX-KLI and
gBJ total energies for the transition-metal oxides are in line
with the results for the electronic structure which show that
EXX-KLI is much more accurate than gBJ (see below). The
MAE with the gBJ potential of 55 mRy/cell is three times
larger than for EXX-KLI. The orbitals generated by the other
potentials lead to EXX total energies that are much higher
(i.e., less negative) and to MAE of 218 (LDA), 139 (PBE),
87 (EV93), and 84 (AK13) mRy/cell. As a technical note, we
remark that a few of the errors in Fig. 1 (Table S2) obtained
with EXX-KLI and gBJ are slightly negative. In principle, this
should not occur since among all sets of orbitals generated
by a multiplicative potential, the EXX-OEP orbitals should,
by definition, lead to the most negative EXX total energy.
These negative values, which are anyway tiny and of no
importance for the discussion, might be due to some minor
(but unavoidable) incompatibilities between the two LAPW
codes, e.g., details of the basis set or the integration methods.

Using the EXX total energy is a way to quantify with a
single number the difference in shape between two sets of
orbitals. An alternative is to consider the difference between
the electron densities as follows:

100

N

∫
	

|ρapprox(r) − ρEXX-OEP(r)|d3r, (4)

where N = ∫
	

ρ d3r is the number of electrons in the unit cell
	 and the multiplication by 100 makes the numerical values
more convenient. The absolute value of the integrand is taken
in order to avoid cancellation between positive and negative
values of ρapprox − ρEXX-OEP. The results of Eq. (4) for the
different approximate potentials and solids are displayed in
Fig. 2, while the ME over the solids is shown in Table I. The
main observation is the same as with the EXX total energy,
namely, the EXX-KLI and gBJ potentials lead to the smallest
errors on average. However, both potentials lead to the same
ME (0.9), which was not the case for the EXX total energy;
one of the reasons is that Eq. (4) is normalized with the number
of electrons that is much larger for the transition-metal oxides
and CeO2, such that the large spreads in the errors observed
in Fig. 1 become similar to the other solids. This also explains
the differences between Figs. 1 and 2 for Ge and LiH. Ge is
a relatively heavy atom, such that the total energy EEXX

tot (and
the error in EEXX

tot ) is proportionally much larger than for Si
and BN, for instance. By considering the relative error in EEXX

tot
instead, there would be no peak for Ge as in Fig. 1. On the other
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FIG. 2. Integrated density difference as defined by Eq. (4).

hand, LiH is so light (four electrons in the unit cell) that a nor-
malization of the error in the electron density means a division
by only four. This is again with LDA that the largest ME (3.1)
is obtained. From Fig. 2 we can see that the LDA and AK13
potentials lead to very large density difference for LiH, which
should mainly be due to the Li-1s core states (see Sec. III B).

Thus, we can conclude that in terms of EXX total energy
and integrated electron density difference, the EXX-KLI and
gBJ potentials are on average the closest to the EXX-OEP.

B. Electronic properties

Turning now to the electronic band structure, the results
for the KS fundamental band gap, defined as the conduction
band minimum minus the valence band maximum, are shown
in Fig. 3 and Table S3 of the Supplemental Material [69]. Note
that since the KS and experimental fundamental band gaps
differ by the derivative discontinuity [89,90], a comparison
with experimental values is not really justified and therefore
omitted in this study (see, e.g., Ref. [91] for a discussion). The
LDA and standard GGAs like PBE are known to underestimate
the band gap by a rather large amount in solids compared to
EXX-OEP [9,12,92–94]. Such an underestimation is indeed
observed for all solids considered in this work, and it is the
largest, between 2 and 4 eV, for Ne, LiF, MnO, NiO, and
ZnO. The GGA EV93 exchange functional [82], which was
designed to have a functional derivative which resembles the
EXX-OEP in atoms, increases the band gap with respect to
the LDA and standard GGAs potentials such that a better
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FIG. 3. Error (in eV) in the KS fundamental band gap calculated
with approximate exchange potentials with respect to the EXX-OEP
values.

agreement with EXX-OEP is usually obtained (see Fig. 3 and,
e.g., Refs. [12,68,95,96]). An exception is Ne since the EV93
band gap is slightly smaller than the LDA and PBE band gaps.
In Table I, the ME and MAE for the band gap are reduced
for EV93 compared to LDA and PBE, but there is still a non-
negligible underestimation of −0.96 eV on average. As already
shown in Refs. [12,68,91], the AK13 potential also improves
over the standard potentials LDA and PBE. In this work, AK13
leads to ME and MAE of 0.39 and 1.20 eV, respectively, but
leads to rather important overestimations for Ne, LiH, LiF, and
LiCl, that are due to the excessively large positive values of
the AK13 potential in the interstitial region as discussed in
Refs. [12,68].

The smallest MAE in Table I for the band gap are obtained
with the EXX-KLI and gBJ potentials, which lead to values in
the range 0.6–0.7 eV, while the other potentials lead to MAE
above 1 eV. Also, the error for Ne is strongly reduced compared
to the other methods (see Fig. 3). However, by looking at the
detailed results, we can see that there are some noticeable
differences in the trends in the EXX-KLI and gBJ band gaps.
In particular, the curve of the error for gBJ has a similar shape
as for LDA, PBE, and EV93 in the sense that the error clearly
varies from one solid to the other, while this is not the case
with EXX-KLI since the error is in a narrow window around
−0.5 eV for most solids except NiO (−1.5 eV). This is a quite
interesting observation since the error in the band gap with

EXX-KLI seems to be more predictable than with the other
potentials. Other direct comparisons between EXX-OEP and
EXX-KLI for the gap were reported in Refs. [44,47,48,97],
where it was found that EXX-KLI underestimates the gap in
the solids Si, Ge, and GaAs by 0.4–0.5 eV [47] (in line with our
results) and in the CO and BeO molecules by 0.47 and 0.24 eV,
respectively [44]. Furthermore, in Ref. [48] a metallic ground
state for antiferromagnetic FeO was obtained with EXX-KLI,
which is a qualitatively wrong result since EXX-OEP (with
LDA correlation added) leads to a band gap of 1.66 eV [48].
Actually, we could confirm (with our implementation) that
EXX-KLI leads to no band gap in FeO, which means that in
this respect, semilocal potentials can perform better since gBJ
(with 0.62 eV) and some others [68] open a band gap. We also
mention that for CoO, we obtained a EXX-KLI band gap of
0.48 eV, which is about 2 eV smaller than the EXX-OEP value
reported by Engel [48], while AK13 and gBJ lead to band gaps
of 1.37 and 1.18 eV, respectively.

Aside from the KS fundamental band gap, it may also be
interesting to look at the density of states (DOS), in particular
for the transition-metal oxides since qualitative differences in
the occupied DOS can be observed. For the other solids, the
visible difference in the DOS consists only of a change in
the band gap, i.e., a rigid shift of the unoccupied states with
respect to the occupied ones. The DOS of antiferromagnetic
MnO and NiO are shown in Figs. 4 and 5, respectively. In
MnO, the configuration of the 3d electrons on the Mn atom
with majority spin-up electrons is (t↑2g)3(e↑

g )2(t↓2g)0(e↓
g )0 such

that the band gap is determined mainly by the exchange
splitting. The EXX-OEP DOS seems overall to be reproduced
more accurately by the EXX-KLI potential. This is clearly
the case for the DOS just below the Fermi energy and the
unoccupied DOS, and actually, the EXX-OEP and EXX-KLI
methods describe MnO as an insulator with a band gap of
mixed Mott-Hubbard/charge-transfer type, while the band gap
obtained by the other methods is much more of Mott-Hubbard
type. However, in the energy range between 1 and 7 eV below
the Fermi energy, noticeable differences between EXX-OEP
and EXX-KLI can be observed, like for instance the Mn-3d

states at −2 eV in the EXX-OEP DOS that are shifted 1 or
2 eV deeper in energy by EXX-KLI.

In NiO, the electronic configuration is
(t↑2g)3(e↑

g )2(t↓2g)3(e↓
g )0, which means a band gap that is

determined mainly by the splitting between the t2g and eg

states of the minority spin. Figure 5 shows that the agreement
between EXX-OEP and EXX-KLI for the DOS is excellent,
except for the position of the unoccupied states. As already
observed in Ref. [12], all semilocal potentials (including
the parametrization of gBJ specific for NiO, see Fig. 5
of Ref. [12]) lead to DOS which differ significantly from
the EXX-OEP DOS, like showing no sharp Ni-3d peak
at the lower part of the valence band or no clear energy
separation between the spin-up and spin-down occupied
Ni-3d states. This is not the case with EXX-KLI, which
reproduces accurately all features in the occupied EXX-OEP
DOS. For the other transition-metal oxides Cu2O and ZnO,
the conclusion that the EXX-KLI DOS is the closest to the
EXX-OEP remains also valid.

The results for the energy position of the core states with
respect to the valence band maximum (VBM) are shown in
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EXX−OEP Total
Mn1−d
Mn2−d
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−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8
Energy   (eV)

gBJ

FIG. 4. Spin-up DOS of MnO. Mn1 is the Mn atom with majority
spin-up electrons. The Fermi energy is set at zero.

Figs. 6 and 7. For a given solid and approximate potential, the
mean relative error (MRE) and mean absolute relative error
(MARE) (in %) are defined as

100

Ncore

Ncore∑
i=1

(
�ε

approx
core,i − �εEXX-OEP

core,i

)/∣∣�εEXX-OEP
core,i

∣∣ (5)

and

100

Ncore

Ncore∑
i=1

∣∣�ε
approx
core,i − �εEXX-OEP

core,i

∣∣/∣∣�εEXX-OEP
core,i

∣∣, (6)

EXX−OEP Total
Ni1−d
Ni2−d
O−p

EXX−KLI

PBE

EV93

AK13

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7
Energy   (eV)

gBJ

FIG. 5. Spin-up DOS of NiO. Ni1 is the Ni atom with majority
spin-up electrons. The Fermi energy is set at zero.

respectively, where the sum runs over the Ncore core shells (see
Table S1) and �εcore,i is the position of the ith core state with
respect to the VBM. A negative MRE indicates that on average
the core states are deeper in energy with the approximate
potential than with EXX-OEP. The main observations are the
following. On average, LDA and AK13 lead to too shallow
and too deep core states, respectively, since their mean MRE
(MMRE, see Table I) are 1.1% and −0.6%. The other exchange
potentials are more accurate and lead to rather similar values
with a MMRE below 0.3% in magnitude, and a mean MARE
(MMARE) that is in the range 0.5%–0.6%.
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FIG. 6. MRE (with respect to EXX-OEP and in %) for the energy
position of the core states with respect to the VBM. For a given solid,
the MRE is over all core states indicated in Table S1 (for LiH, the
Li-1s state was considered for the present analysis).

C. Magnetic moment and EFG

We continue the discussion of the results with the atomic
spin magnetic moment μS in MnO and NiO and the EFG
in Cu2O. The results in Table II show that EXX-KLI is a
very good approximation to EXX-OEP for μS since the values
obtained with the two methods differ by only ∼0.1 μB for NiO
and are the same for MnO. The other exchange potentials lead
to substantially smaller values. We note that in our previous
work [12], a value of 1.86 μB for NiO could be obtained with
gBJ, but with parameters (γ,c,p) that were tuned specifically

TABLE II. Atomic spin magnetic moment μS (in μB) in MnO
and NiO and EFG (in 1021 V/m2) at the Cu site in Cu2O calculated
from different exchange potentials.

Potential μMn
S μNi

S EFGCu

EXX-OEP 4.59 1.91 −17.7
EXX-KLI 4.58 1.79 −11.1
LDA 4.18 1.30 −4.7
PBE 4.23 1.43 −5.6
EV93 4.30 1.51 −6.8
AK13 4.39 1.58 −8.1
gBJ 4.35 1.61 −7.0
HF 4.57 1.88 −17.0

0 0.5 1 1.5 2 2.5 3 3.5 4
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Cu
2
O

NiO

MnO

BaO

MgO

BeO

LiCl

LiF

LiH

BN

Ge

Si

C

Ne

MARE on core states   (%)

EXX−KLI
LDA
PBE
EV93
AK13
gBJ

FIG. 7. MARE (with respect to EXX-OEP and in %) for the
energy position of the core states with respect to the VBM. For a
given solid, the MARE is over all core states indicated in Table S1
(for LiH, the Li-1s state was considered for the present analysis).

for NiO. The EFG at the Cu site in Cu2O has a value of −17.7 ×
1021 V/m2 with EXX-OEP, but is substantially smaller with
all other potentials including EXX-KLI which leads to the best
agreement with −11.1 × 1021 V/m2 (∼40% too small). As for
NiO, we could find a parametrization of a modified form of the
gBJ potential (see Ref. [12] for details) that leads to an EFG
approaching the EXX-OEP value.

In addition to the results obtained with the multiplicative
exchange potentials, the HF values are also reported in Table II,
and as already noticed in Ref. [12], the EXX-OEP and HF
methods provide basically the same values. This is expected
for such properties calculated from the electron density since
the two methods should in principle lead to electron densities
that should not differ up to the first order [16,43,57], despite
completely different electronic structures [12].

D. Further discussion

In our previous works about exchange potentials in solids
[9,12,68,96,98] as well as in Refs. [47,92,99,100], a rather
clear understanding of the results could be achieved by
visualizing the potential and electron density. For instance, in
solids where the VBM and conduction band minimum (CBM)
are located in different regions of space (typically, the VBM is
localized around atoms and the CBM in the interstitial region),
the size of the band gap is directly related to the value of
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TRAN, BLAHA, BETZINGER, AND BLÜGEL PHYSICAL REVIEW B 94, 165149 (2016)

1 1.5 2 2.5 3
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

d (Å)
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FIG. 8. Exchange potentials vx in Cu2O plotted starting at a
distance of 1 Å from the Cu atom at site ( 1

2 , 1
2 ,0) (d = 0) in the

direction of the O atom at site ( 3
4 , 3

4 , 3
4 ) (d = 3.538 Å).

the potential in the two regions. The more the values of the
potential in the two regions differ, the more the band gap
should be large (see Ref. [96] for LiCl and Ref. [68] for Kr
and BaO). The situation may be different in transition-metal
oxides where the band gap can be of onsite d-d type such
that, for instance, it is determined by the splitting between
occupied and unoccupied d states. In such cases like Cu2O
[98] or NiO [12,68], the size of the band gap and atomic
magnetic moment are determined by the sensitivity of the
potential to the d-orbital shape (e.g., t2g versus eg) and/or the
magnitude of vx,↑ − vx,↓. In Ref. [12], it was also shown that
the differences between the electron densities generated by
the various potentials correlate quite well with the numerical
results for the total energy, magnetic moment, etc.

From these analyses it was concluded that the LDA and
standard GGA potentials like PBE are much more homoge-
neous than the EXX-OEP [12], explaining why they lead to
band gap and magnetic moment that are much smaller than
with EXX-OEP. The more specialized potentials EV93, AK13,
and gBJ are more inhomogeneous such that they are better
approximations to the EXX-OEP. This is particularly the case
for the gBJ potential which was shown to reproduce quite
accurately most features of the EXX-OEP, provided that the
appropriate parameters γ , c, and p are used. The same analysis
can also be made for the results obtained in this work. However,
since the observations and conclusions would be very similar
to those obtained in our previous works, only a brief discussion
is given below.

Figure 8 shows exchange potentials in Cu2O plotted along
a portion of the path between the Cu and O atoms located
at sites ( 1

2 , 1
2 ,0) and ( 3

4 , 3
4 , 3

4 ) of the unit cell, respectively. In
Refs. [12,68], we identified a (valence) region close to the Cu
atom (1 � d � 2 Å) to be important for the band gap and EFG
since it was observed that the potentials which agree with the
EXX-OEP in this region in particular, namely, gBJ with the
universal correction, Becke-Roussel [101] and Slater, lead to
reasonable values for the band gap and EFG. To some extent,

FIG. 9. Two-dimensional plots of vx,↑ − vx,↓ in a (001) plane of
antiferromagnetic NiO. The contour lines start at −2 Ry (blue color)
and end at 2 Ry (red color) with an interval of 0.235 Ry. The Ni atom
with a full spin-up 3d shell is at the left upper corner.

the same is true for the EXX-KLI potential since from Fig. 8
we can see that it is relatively close to EXX-OEP compared
to the other potentials [see Fig. 8(b) of Ref. [12] and Fig. 3
of Ref. [68] for more potentials] and also leads to smaller
difference with respect to EXX-OEP for the band gap and
EFG as discussed above.

The difference vx,↑ − vx,↓ between the spin-up and spin-
down exchange potentials for antiferromagnetic NiO in a (001)
plane is shown in Fig. 9. As we can observe (see Fig. 10 of
Ref. [12] and Fig. 4 of Ref. [68] for other potentials) the
shape of the unoccupied eg orbitals is the most pronounced
with EXX-OEP and all semilocal potentials (except gBJ with
parameters for NiO [12]) lead to a eg shape that is very
much attenuated with respect to EXX-OEP. Compared to the
semilocal potentials, EXX-KLI seems to be more accurate,
however, the magnitude of vx,↑ − vx,↓ is still too small, thus
explaining the underestimation of the magnetic moment and
band gap.

Figure 10 shows electron density differences in a (001)
plane of rock-salt LiH. The difference is with respect to the
density obtained with the EXX-OEP. As expected from the
results of Sec. III A, the smallest deviations from ρEXX-OEP are
obtained with the EXX-KLI and gBJ potentials. The EXX-
KLI potential leads to slightly less contraction of the density
towards the nuclei of the Li and H atoms, while the opposite is
true with gBJ. The LDA and AK13 potentials lead to electron
densities around the H atom that are much smaller and larger
than EXX-OEP (i.e., underestimation and overestimation of
charge transfer), respectively, which explains the large errors
for the integrated density difference shown in Fig. 2.
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FIG. 10. Electron density ρ obtained with different exchange
potentials minus ρEXX-OEP plotted in a (001) plane of LiH. The atom
at the left upper corner is a H atom. The contour lines start at −0.01
electron/bohr3 (blue color) and end at 0.01 electron/bohr3 (red color)
with an interval of 0.00125 electron/bohr3.

More generally, since the EXX-KLI potential is derived
from the EXX-OEP by using the closure approximation (i.e.,
directional averaging), it is expected to be smoother than the
EXX-OEP. This has been underlined by Engel and co-workers
in Refs. [8,48] who already showed that for Si and FeO the
EXX-KLI potential around the atoms is less aspherical than the
EXX-OEP. Thus, for systems with a highly aspherical electron
density, e.g., systems with an open 3d shell, the closure
approximation should have a large impact on the results. This
is what has indeed been observed for FeO (metallic with
EXX-KLI but not with EXX-OEP [48]) and NiO (much larger
underestimation of the band gap than for the other solids, see
Fig. 3). In comparison, the electron density on the Mn atom
in MnO is more spherical (the 3d shell is full for one spin
and empty for the other), therefore, the underestimation of the
band gap is not as large, but similar as for the nonmagnetic
solids.

One may have noticed that no comparison with exper-
iment has been made in this work. The main reason is
that our calculations were done only with exchange (i.e.,
the correlation potential vc,σ was set to zero), such that a
comparison with experimental values would not really make
sense. Correlation effects are in magnitude much smaller than
exchange effects, but of crucial importance most of the time.
Concerning the solids considered here, a few observations
can be made. The magnitude of the EFG in Cu2O obtained
with EXX-OEP is much larger than the experimental value
(17.7 × 1021 V/m2 for EXX-OEP and ∼10 × 1021 V/m2 for
experiment [74]), which means that correlation effects should
be very important in this particular case. On the other hand,
the EXX-OEP magnetic moments in MnO and NiO seem to
be in reasonable agreement with experiment (see Ref. [102]
and references therein). Nevertheless, considering only the
(dominant) exchange component is the first and most important
step for the search of a computationally fast and accurate
approximation to the exact KS potential vxc,σ . Furthermore,
finding approximations for vx,σ and vc,σ separately is also
the way (albeit not the easiest) for an xc potential providing
reliable results without relying on error cancellation between
exchange and correlation. Note that recent works have reported
the calculation of correlation potentials that were obtained by
applying the OEP method to accurate ab initio correlation
functionals [97,103–106] or from other ways [107].

IV. SUMMARY AND CONCLUSION

In this work, we have presented the results of electronic
structure calculations on solids with the EXX-KLI approxima-
tion to the exact exchange potential EXX-OEP. The goals were
to provide all-electron benchmark EXX-KLI (and new EXX-
OEP) results and to figure out if EXX-KLI can be used safely
as a substitute to EXX-OEP, and if it is more accurate than
the semilocal approximations like the MGGA gBJ potential.
The test set consisted of 16 solids of various types and the
calculated properties were the EXX total energy, electron
density, electronic structure, magnetic moment, and EFG.

The results for the total energy and electronic structure have
shown that on average the EXX-KLI and gBJ approximations
are more or less of the same accuracy. However, by looking
at the results in more detail, we have noticed that for
the transition-metal oxides, the EXX-KLI and gBJ results
can differ qualitatively. For instance, opposite trends were
observed for the band gap in the antiferromagnetic systems;
while EXX-KLI leads to a fairly accurate band gap in MnO
(clearly more accurate than gBJ), it is by far too small or even
zero for NiO, CoO, and FeO (gBJ is better than EXX-KLI for
these cases). The EXX-KLI approximation seems to be quite
inaccurate in the case of highly aspherical electron density
like in NiO, FeO, and CoO as noticed previously [48]. On the
other hand, the EXX-OEP occupied DOS of MnO and NiO
are reproduced accurately by EXX-KLI, while all semilocal
potentials lead to completely different DOS, especially for
NiO. The other difference between EXX-KLI and gBJ is the
error for the band gap: with EXX-KLI there is a systematic
underestimation of the order of ∼0.5 eV for all systems except
NiO, while for gBJ and all other semilocal potentials the error
varies strongly among the solids.
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For the magnetic moment and EFG, the EXX-OEP results
are reproduced more accurately by EXX-KLI, nevertheless, a
clear underestimation of the magnitude of the EFG in Cu2O is
still observed.

Thus, in conclusion, EXX-KLI seems to be a rather good
approximation to EXX-OEP for ground-state properties, i.e.,
properties which are calculated using the occupied orbitals.
For the band gap, an excited-state property, EXX-KLI leads
to an underestimation of ∼0.5 eV for most systems, except in
the special case of antiferromagnetic NiO (and also FeO and
CoO) for which a much larger error of more than 1.5 eV is
obtained. The results obtained with gBJ, the most accurate of
the tested semilocal potentials, are also rather good, but more
unpredictable for the band gap, a behavior which is in general
more expected for semilocal approximations than for ab initio
approximations like EXX-KLI.

Concerning the LHF/CEDA [40,55] method briefly men-
tioned in Sec. II, which, in principle, should be a better

approximation to EXX-OEP (but also more expensive) than
KLI, the works published so far [40,41,97] have shown that
the LHF/CEDA and KLI results for the total energy and gap
are quasi-identical in most cases (see also Ref. [4] for further
discussion). However, since these LHF/CEDA calculations
were done for atoms and light molecules, it is not certain that
this conclusion would hold also for much more complicated
systems like NiO or FeO.
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91, 165121 (2015).
[13] A. D. Becke and E. R. Johnson, J. Chem. Phys. 124, 221101

(2006).
[14] J. B. Krieger, Y. Li, and G. J. Iafrate, Phys. Lett. A 146, 256

(1990).
[15] J. B. Krieger, Y. Li, and G. J. Iafrate, Phys. Rev. A 45, 101

(1992).
[16] J. B. Krieger, Y. Li, and G. J. Iafrate, Phys. Rev. A 46, 5453

(1992).
[17] Y. Li, J. B. Krieger, and G. J. Iafrate, Phys. Rev. A 47, 165

(1993).
[18] Y. Li, J. B. Krieger, M. R. Norman, and G. J. Iafrate, Phys.

Rev. B 44, 10437 (1991).
[19] X.-M. Tong and Shih-I. Chu, Phys. Rev. A 55, 3406 (1997).
[20] J. Garza, J. A. Nichols, and D. A. Dixon, J. Chem. Phys. 112,

7880 (2000).
[21] S. Patchkovskii, J. Autschbach, and T. Ziegler, J. Chem. Phys.

115, 26 (2001).
[22] T. Körzdörfer, M. Mundt, and S. Kümmel, Phys. Rev. Lett.
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[47] M. Städele, M. Moukara, J. A. Majewski, P. Vogl, and A.
Görling, Phys. Rev. B 59, 10031 (1999).

[48] E. Engel and R. N. Schmid, Phys. Rev. Lett. 103, 036404
(2009).

[49] S. Rigamonti, C. M. Horowitz, and C. R. Proetto, Phys. Rev.
B 92, 235145 (2015).

[50] J. C. Slater, Phys. Rev. 81, 385 (1951).
[51] D. M. Bylander and L. Kleinman, Phys. Rev. Lett. 74, 3660

(1995).
[52] D. M. Bylander and L. Kleinman, Phys. Rev. B 52, 14566

(1995).
[53] D. M. Bylander and L. Kleinman, Phys. Rev. B 54, 7891 (1996).
[54] D. M. Bylander and L. Kleinman, Phys. Rev. B 55, 9432 (1997).
[55] O. V. Gritsenko and E. J. Baerends, Phys. Rev. A 64, 042506

(2001).
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195117 (2010).

[77] See http://www.flapw.de.
[78] M. Betzinger, C. Friedrich, A. Görling, and S. Blügel, Phys.
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