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Weyl semimetals are gapless three-dimensional topological materials where two bands touch at an even
number of points in the bulk Brillouin zone. These semimetals exhibit topologically protected surface Fermi arcs,
which pairwise connect the projected bulk band touchings in the surface Brillouin zone. Here, we analyze the
quasiparticle interference patterns of the Weyl phase when time-reversal symmetry is explicitly broken. We use
a multiband d-electron Hubbard Hamiltonian on a pyrochlore lattice, relevant for the pyrochlore iridate R2Ir2O7

(where R is a rare earth). Using exact diagonalization, we compute the surface spectrum and quasiparticle
interference (QPI) patterns for various surface terminations and impurities. We show that the spin and orbital
texture of the surface states can be inferred from the absence of certain backscattering processes and from the
symmetries of the QPI features for nonmagnetic and magnetic impurities. Furthermore, we show that the QPI
patterns of the Weyl phase in pyrochlore iridates may exhibit additional interesting features that go beyond those
found previously in TaAs.
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I. INTRODUCTION

Topological invariants in condensed-matter systems are
defined on closed manifolds in momentum space. For three-
dimensional systems, an important closed manifold in momen-
tum space is a two-dimensional Fermi surface. In this regard
one can define the so-called topological metal by the Chern
numbers of the single particle wave functions at the Fermi
surface energies. These nonzero Chern numbers arise when
the Fermi surface encloses a band-crossing point, referred to as
the Weyl point, which is a singular point of the Berry curvature
in momentum space [1–4]. Materials with such Weyl points
near the Fermi level are called Weyl semimetals [5].

The Weyl semimetal state was proposed to be realized in
Rn2Ir2O7 pyrochlore systems with an all-in/all-out magnetic
structure [2] and in the ferromagnetic phase of HgCr2Se4 [4].
Another proposal involved a fine-tuned multilayer structure
of normal insulators and magnetically doped topological
insulators [6]. Very recently, the Weyl semimetal phase was
proposed in the Dirac semimetals Cd3As2 [7] and Na3Bi [8]
with an external magnetic field applied along the axis of the
Dirac points and in the inversion-symmetry breaking systems
TaAs [9], NbAs [10], TaP, and NbP [11]. For any lattice
model, the Weyl points appear in pairs of opposite chirality
or monopole charge. The only way to annihilate a pair of Weyl
points with opposite chirality is to move them to the same
point in the BZ. In this sense semimetals are topologically
stable. Important for surface sensitive experiments is that the
existence of Weyl points near the Fermi level leads to several
unique physical properties; one of them is the appearance
of discontinuous Fermi surfaces (Fermi arcs) on the surface
[3,6,11], which were confirmed experimentally in TaAs by
ARPES [12,13]. Photoemission measurements have observed
conical dispersions away from certain points in the Brillouin
zone of these materials.

In order to analyze the physics near the Weyl points and
to clarify the effects of material inhomogeneities on the low-

energy behavior, high energy-resolution, atomically resolved
spectroscopic measurements are important. In this regard
the use of low-temperature Fourier transformed scanning
tunneling microscopy (FT-STM) is ideally suited to address
these crucial issues, as was recently shown for TaAs [14].
FT-STM measures the wave-length of Friedel oscillations
caused by disorder present in a metallic system, which in turn
contains information on the electronic structure of the pure
system. The wavelengths of these Friedel oscillations appear
in the Fourier transformed STM data as peaks at particular
wave vectors q, which disperse with STM bias. In general
there exists no exact theoretical description for the intensities
of the QPI patterns, since these depend on the form of the
impurity potentials and on the k dependence of the tunneling
matrix elements, which are in most cases unknown. However,
the positions of the peaks in the QPI patterns do not depend
on these effects and are determined only by the electronic
structure of the pure system.

Most recently, the QPI patterns on the surface of inversion-
symmetry breaking Weyl semimetals were analyzed theo-
retically [15,16]. Here, we extend these studies to inversion
symmetric, time-reversal breaking Weyl semimetals, by con-
sidering an interacting multiband d-electron Hubbard Hamil-
tonian on the pyrochlore lattice with the antiferromagnetic spin
configuration of R2Ir2O7. We compute the surface spectrum
and QPI patterns for this Weyl phase for different types of
surface impurities and surface terminations using the T -matrix
approximation. We demonstrate that the QPI patterns for
the Weyl phase without time-reversal symmetry show unique
features and lack the so-called “pinch-point” at q = 0 that was
argued to be characteristic for the QPI of Weyl semimetals
without inversion symmetry [16]. In the present case this
structure is completely suppressed, due to the nontrivial spin
polarization of the surface states, but is still perfectly visible in
the joint density of states. Instead, we find as a clear signature
of the Fermi arcs, disjoint cross correlation arcs in the outer
regions of the QPI patterns. These results can be used to
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uniquely identify Weyl phases in condensed matter systems
with time-reversal symmetry breaking.

The outline of the remainder of the paper is as follows:
In Section II we discuss the microscopic Hamiltonian [17]
to describe the Weyl phase. We determine the mean-field
phase diagram for this model including the antiferromagnetic
all-in/all-out configuration at zero temperature and derive in
Sec. III the surface states for two kinds of surface terminations
(triangular and kagome). In Sec. IV we introduce the general
procedure to calculate the QPI patterns in a slab geometry and
present the results of these calculations. The conclusions are
presented in Sec. V.

II. MODEL OF THE WEYL PHASE
IN PYROCHLORE IRIDATES

Following the original proposal of the Weyl semimetal
phase in pyrochlore iridates [17], we study here an interacting
tight-binding Hubbard Hamiltonian with hopping matrix ele-
ments along the σ and π bonds and along the oxygen-mediated
bonds. The noninteracting part of the Hamiltonian including
nearest- and next-nearest-neighbor hopping can be expressed
in momentum space as:

H 0
�k =

∑
a,b

[
HNN

ab (�k) + HNNN
ab (�k)

]
,

HNN
ab (�k) = 2(t1 + t2i �dab · �σ ) cos(�k · �bab),

(1)
HNNN

ab (�k) = 2
∑
c �=a,b

{t1(1 − δab) + i[t ′2(�bac × �bcb)

+ t ′3( �dac × �dcb)] · �σ } cos(�k · (−�bac + �bcb)),

where �bij is the vector connecting two corners of the
tetrahedron, and �dij = 2�aij × �bij is orthogonal to �bij and �aij

pointing from the center of the tetrahedron to the connection of
the corners i and j . The positions of the iridium atoms are b1 =
(0,0,0),b2 = (0,1,1),b3 = (1,0,1), and b4 = (1,1,0) in this
coordinate frame. By comparing the model in a local descrip-
tion [18] with Eq. (1) one finds expressions for (t1,t2,t ′1,t

′
2,t

′
3)

in terms of the hopping parameters (tπ ,t ′π ,tσ ,t ′σ ,to) resulting
from the σ -, π -, and oxygen-mediated bonds. The values are
given by

t1 = 130

243
to + 17

243
tσ − 79

243
tπ ,

t2 = 28

243
to + 15

243
tσ − 40

243
tπ ,

t ′1 = 233

2916
t ′σ − 407

2187
t ′π , (2)

t ′2 = 2

2916
t ′σ − 220

2187
t ′π ,

t ′3 = 50

2916
t ′σ − 460

2187
t ′π ,

where t ′σ,π are the next-nearest-neighbor hopping parameters.
This model of noninteracting fermions exhibits three different
phases [17,18] as shown in Fig. 1.

FIG. 1. (a) Phase diagram of the noninteracting pyrochlore model
[17,18], Eq. (1). The axes correspond to the values of the hopping
parameters, and the red line indicates the relation tπ = − 2

3 tσ , used
previously [18]. (b)–(d) Band structure for different values of tσ =
0.4to (b), tσ = −0.8to (c), and tσ = −2to (d). The dashed-dotted line
in (c) refers to the position of the chemical potential for the quadratic
bands touching.

At the next step we consider the effect of the on-site
Hubbard-like interaction for the metallic phase shown in
Fig. 1(c), which without magnetic order possesses time-
reversal and inversion symmetry. To account for the magnetic
order, consider the mean-field decoupling of the Hubbard
interaction in the form:

HU = U
∑

i

ni↑ni↓ (3)

→ −U
∑

i

∑
l

(2〈 �jil〉 · �jil − 〈�jil〉2), (4)

where i indicates the unit cell, while l = 1 . . . 4 refers to the

sites of the unit cell. Here, �jil = ∑
σσ ′

c
†
lσ �σσσ ′ clσ ′

2 are the local
spin operators, whose expectation values are computed self-
consistently with respect to a specific magnetic configuration
that preserves the unit cell size with the antiferromagnetic
phase, shown in Fig. 2. Here, 〈 �jil〉 = 〈 �jl〉 = �l = � is the
magnetic moment at each corner of the tetrahedron. Figure 3
shows the result of the numerical calculations with increasing

FIG. 2. The unit cell of the pyrochlore lattice showing the
magnetic all-in or all-out configuration of the magnetic moments.
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FIG. 3. (a) Evolution of the magnetic moment with the strength
of the Hubbard interaction U , computed for tσ = −0.8to. (b), (c)
Corresponding band structures for different values of U = 1.53to (b)
and U = 1.6to (c). Note that in the case of (c), the band structure
exhibits the linear band crossings with a Weyl point, shown by the
dashed-dotted line.

strength of the Hubbard interaction, which agrees with the
results of Ref. [17]. Most importantly for the intermediate
value of U , as shown in Fig. 3(c), the band structure in the
antiferromagnetic phase exhibits a linearly dispersing band
touching along the L-� line. The complete 3D Brillouin zone
includes eight such band touchings, as shown in Fig. 4, each
of them carrying a topological charge, as can be found by
computing the Chern number from the Berry curvature, see
Table I.

III. SURFACE STATES

To perform the slab geometry calculations in the case of
the pyrochlore lattice, it is important to find a suitable surface
termination. Observe that the three-dimensional crystal lattice

−0.500.5

−0.5

0

0.5

−0.5

0

0.5

k
y
/π

k
x
/π

k z/π

FIG. 4. First Brillouin zone of the pyrochlore iridates with high
symmetry (�-L) lines shown in green. Positions of the Weyl points
and the L points are shown by red and cyan crosses, respectively.
Upon increasing the interaction, the Weyl points move along the
symmetry lines and annihilate at the L points.

TABLE I. Chern numbers of the Weyl points, shown in Fig. 4 by
the red dots.

Position[kw] C1

(1,1,1) 1
(1,1,−1) − 1
(1,−1,−1) 1
(−1,−1,−1) − 1
(−1,−1,1) 1
(−1,1,1) − 1
(−1,1,−1) − 1
(1,−1,1) 1

can be treated as a “heterostructure” of two two-dimensional
sublattices, kagome and triangular ones being alternatingly
stacked as shown in Fig. 5. Re-parameterizing Eq. (1) with
regard to the new coordinate frame we choose the z direction as
the stacking direction. The spin orientations are left in the old
coordinate frame for simplicity, which is taken into account by
suitably rotating the spin operator. The 2D projected Brillouin
zone of the surface is shown in Fig. 6 together with the
projected positions of the band touchings. For convenience
the interaction strength is chosen in such a way that the Weyl
points are located halfway between the � and the L points,
which corresponds to Uα ≈ 1.41to. Note that since the Weyl
points annihilate at Uc ≈ 1.46, there exists a narrow region of
stability of the Weyl phase.

The submatrices corresponding to the hoppings within
each layer will be indicated as H 0

k for the kagome lattice
and H 0

t for the triangular lattice. Interlayer hopping matrices
are indicated by H±i

[t−k,k−t,k−k,t−t] depending on which kinds
of layers they connect and how many layers lie in between.
From the Hamiltonian in Eq. (1) one finds that H 0

k is a 6 × 6
matrix, H 0

t a 2 × 2 matrix, and the submatrices that contain
the interlayer hoppings are accordingly either 6 × 2, 2 × 6, or
the same size as the onsite matrices. Starting with a kagome
lattice and finishing with a sparse triangular one, therefore
only using full original unit cells, the overall Hamiltonian in

X

Y
Z

FIG. 5. Lattice structure viewed in a new coordinate frame used
for the various surface terminations.
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the slab geometry has the following form

HS(k||) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H 0
k H+1

k−t H+2
k−k H+3

k−t . . . H+N−1
k−k H+N

k−t

H−1
t−k H 0

t H+1
t−k H+2

t−t . . . H+N−2
t−k H+N−1

t−t

H−2
k−k H−1

k−t H 0
k H+1

k−t . . . H+N−3
k−k H+N−2

k−t

H−3
t−k H−2

t−t H−1
t−k H 0

t . . . H+N−4
t−k H+N−3

t−t

...
...

...
...

. . .
...

H−N+1
k−k H−N+2

k−t H−N+3
k−k H−N+4

k−t H 0
k H+1

k−t

H−N
t−k H−N+1

t−t H−N+2
t−k H−N+3

t−t . . . H−1
t−k H 0

t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5)

To reveal the effects of different surface terminations on the
band structure, the full dispersion including surface states
is shown in Fig. 7 for different combinations of surface
terminations. Since the Fermi arcs always connect pairs of
Weyl points, we plot the dispersion along a circle enclosing
one of the Weyl points of −1 chirality at some distance away
from it, as shown by the black circle in Fig. 6. We find that there
are two kinds of surface states corresponding to kagome and
triangular lattice terminations, respectively. The dispersions
around the other Weyl point projections are either identical or
related by a φ → −φ transformation.

The Green’s function in this slab representation is

G(�k||,i,j,ω) =
∑

n

ψ�k||,i,nψ
†
�k||,j,n

ω + iη − En(�k||)
, (6)

where i,j are slab indices, n is the band index, and �k|| is
the in-plane momentum. The slab Green’s function can be
numerically computed in an efficient way by matrix inversion

FIG. 6. Projected Brillouin zone with the positions of the Weyl
points (red crosses) for U = 1.41to and their line of movement upon
increasing the interaction strength (green lines). The lines terminate
at the projected L-points (blue crosses), where the Weyl-Points meet
up with those of the next Brillouin zone and annihilate. The black
circle denotes the choice of the path (parametrized by the angle φ)
used in Fig. 7.

of HS

Gi,j (�k||,ω) =
[

1

ω + iη − HS(�k||)

]
i,j

. (7)

In Fig. 8 we plot the resulting spectral densities for
various terminated surfaces. As pointed out above, there are
two possible regular surface terminations for the case of
the iridates, having kagome and triangular lattice structures,
respectively. Being the most natural choice, they also preserve
the unit cells of the original model. For both terminations we
find Fermi arcs, connecting the two Weyl points of opposite
chirality; see Fig. 8. The choice of ω in Fig. 8 corresponds to
the chemical potential at the surface. It is found to be slightly
higher than that in the bulk by self-consistent evaluation in the
slab-geometry basis.

To demonstrate the spin-momentum locking we plot in
Fig. 9 momentum maps of the spin-resolved density of states
(SDOS)

ρα
k = − 1

π
Im[Tr(σαG11(k))]. (8)

(a)

(d)(c)

(b)

FIG. 7. Electronic dispersion in the Weyl phase of the pyrochlore
iridates, calculated in the slab geometry around the Weyl point of −1
chirality with kagome-triangular (a), kagome-kagome (b), triangular-
kagome (c), and triangular-triangular (d) surface terminations. The
surface states are highlighted in red. Since the Fermi arcs always
connect pairs of Weyl points, we plot the dispersion along a circle,
shown in Fig. 6, enclosing one of the Weyl points.
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(a) (b)

FIG. 8. Spectral density of the kagome (a) and triangular (b) terminated surfaces for ω = −0345to with possible scattering wave vectors
introduced by impurities, as determined by the joint density of states, shown in Fig. 10.

It is interesting to note that the spin-momentum locking of
the surface states is nontrivial for both terminations, as shown
in Fig. 9. In particular, it is complicated by the termination
of the all-in-all-out spin structure of the mean-field state,
resulting in some σz component of the spin polarization of
Fermi arcs as well as interesting polarization of the in-plane
spin components, which are different for the triangular and
kagome terminations. This yields very interesting behavior of
the quasiparticle interference patterns as discussed in the next

section. Interestingly, this turns out to be quite different to
the case of the Weyl phases induced by the lack of inversion
symmetry [15,16].

IV. QUASIPARTICLE INTERFERENCE

From the Green’s function in the slab geometry we can
compute the Green’s function in the presence of pointlike

(a) (b) (c)

(d) (e) (f)

FIG. 9. Calculated momentum map of the spin-resolved density of states for the surface states in the slab geometry for the kagome (upper
panel) and the triangular (lower panel) surface terminations for σx [(a), (d)], σy [(b), (e)], and σz [(c), (f)] spin projections.
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impurities using the standard T -matrix formalism:

Gij (ω) = G
ij

0 +
N∑

l,m=1

Gil
0 (ω)Tlm(ω)Gmj

0 (ω), (9)

where the T matrix represents the solution to the scattering
problem

T α
ij (ω) = V α

i δi,j + V α
i

N∑
n=1

Gik
0 (ω)T α

kj (ω). (10)

In the case of a point impurity V α
i = SαV0δ�ri ,0, where Sα =

τi1 ⊗ . . . ⊗ τin ⊗ σα encodes the structure of the impurity in
the spin (σ ) and the band (τi) basis spaces, respectively.
We further assume that the scattering potential and the
corresponding T matrix are momentum independent, which
yields

T α(ω) =
[

1 − V α

∫
d2�k
4π2

G0(�k,ω)

]−1

V α. (11)

As we are interested mostly in the surface states, we consider
the position of impurities to be only in the first few layers,
close to the termination

V α
i = SαV0δr,0 =

N0=0∑
n′

SαV0δx,0δy,0δni ,n′δn′,nj
, (12)

where the limit of the sum indicates the depth through which
impurities, still located in the origin of the two-dimensional
subsystem, are distributed away from the interface. From
the Fourier transform of the Green’s function correction in
Eq. (9)

δGα
nn′ (�k||,�q||,ω) =

N∑
n′′n′′′

Gnn′′
0 (�k|| + �q||,ω)

× T α
n′′n′′′ (ω)Gn′′′n′

0 (�k′
||,ω), (13)

we find the spin-resolved correction to the density of states
as [19]

δραβ(�q||,ω) = −
N0∑
ni

[
1

2πi

∫
dk2

(2π )2

× [
Tr

(
SαδGβ

ni ,ni
(�k||,�k|| + �q||,ω)

)
− Tr

(
SαδG∗,β

ni ,ni
(�k|| − �q||,�k||,ω)

)]]

= 1

2πi
[�αβ(�q||,ω) − �αβ∗(−�q||,ω)], (14)

where β indicates the spin polarization of the impurity re-
sponsible for the scattering, while α refers to the measurement
channel being either charge (α = 0) or spin (α = x,y,z or
α = 1,2,3) ones.

A. Nonmagnetic point impurity

We start with a single nonmagnetic point impurity on either
surface terminations at an energy of ω = 0.345to which is the
energy position of the Weyl crossing for both terminations.
Let us first discuss the case of the kagome terminated surface
(KTS). In this case, shown in Fig. 11(a), the QPI pattern ρ00

appears to be rather featureless for the KTS. The notable ab-
sence of sharp peaks arises from the absence of backscattering.
This is a consequence of the electronic structure shown in
Fig. 8, where backscattering partners are absent on one surface.
Furthermore, the pattern lacks the “pinch-point” at �q = 0 that
was previously noted to be characteristic for the QPI of Weyl
semimetals [16]. In the present case this structure is completely
suppressed by the nontrivial spin polarization of the surface
states, yet it is perfectly visible in the joint density of states,
see Fig. 10(a). At the same time, the outer regions of the QPI
patterns clearly show disjoint cross correlation arcs, which are
clear signatures of the Fermi arcs, see Fig. 11(a).

Now we turn to the corresponding scattering patterns on the
triangular-terminated surface (TTS), see Fig. 11(b). Here we
can see more definite structures in the sense that we find more
distinguishable prominent features in the QPI. The interarc

FIG. 10. Joint density of the surface states for (a) kagome and (b) triangular surface termination. The q vectors mark the potential scattering
wave vectors, which could be visible in the QPI due to the large joint density of states.
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FIG. 11. The correction to the local density of states (QPI map) in the case of a single nonmagnetic point impurity for kagome (a) and
triangular (b) terminations.

cross-correlation on the other hand is far more complicated
as the correlations of different pairs appear in superposition.
Although there should exist inter- and intra-arc contributions
on the same length scale, the intra-arc correlations are again
suppressed by the spin projection of the arcs, as one sees
from the joint density of states in Fig. 10(b). A signature
of the disconnected nature of the Fermi surface is again the
disconnected nature of the scattering pattern itself. It shows six

nearly nodal lines which would require a threefold spin rotation
along any closed Fermi surface with intact spin-momentum
locking. This nodal structure can also be further investigated
when looking into QPI patterns in the spin polarized channel.

In particular, we present the real [Fig. 12(a)] and imaginary
[Fig. 12(b)] parts of the QPI patterns in the out-of-plane spin
polarized channel for a nonmagnetic impurity (δρ30). Note
that within the Born approximation, due to symmetry, the QPI

FIG. 12. The real (left panels) and imaginary (right panels) parts of the Fourier transform of the spin local density of states in the case of
single nonmagnetic point impurity for the kagome [(a), (b)] and triangular [(c), (d)] terminations.
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patterns in this channel are identical to the QPI patterns in the
charge channel for an out-of-plane magnetic impurity (δρ03),
up to a sign change of �q||. This can easily be seen by considering
the individual terms of Eq. (14). Exchanging the trace and the
integration, the integral can be manipulated as follows:

�αβ(�q||,ω) = V0Tr

[∫
dk2

(2π )2
SαG0(�k|| + �q||,ω)SβG0(�k||,ω)

]

= V0Tr

[∫
dk‘2

(2π )2
SαG0(�k′

||,ω)SβG0(�k′
|| − �q||,ω)

]

= V0Tr

[∫
dk‘2

(2π )2
SβG0(�k′

|| − �q||,ω)SαG0(�k′
||,ω)

]

= �βα(−�q||,ω). (15)

The real part of ρ30 for the KTS shows essentially the same
features as ρ00, which are the cross-correlation arcs of the
interarc scattering. In comparison to the imaginary part, there
is only one additional feature, i.e., the finite value of Reρ30 at
scattering vectors �q4. Since those are wave vectors connecting
projected Weyl point positions, that obey inversion symmetry
in charge and spin, they have to give no contribution in the
imaginary QPI pattern, while they give finite contribution to
the real part. Therefore, the imaginary QPI pattern for the
KTS can be considered to be the direct consequence of the
nontrivial spin polarization and the arc structure of the surface
states. Since the integrand of Imρ30, following Eq. (14), is

proportional to ρx
�k ρ

y

�k+�q − ρ
y

�k ρx
�k+�q , with ρx

�k and ρx
�k being spin

projections of the Greens function, see Eq. (8), one can see
that the absence of parts of the Fermi surface prevent the
cancellation of interarc scattering. Similar arguments hold for
the TTS-surface states, although the completion of the Fermi
surface does not correspond to a simple Fermi circle, but a
more complicated structure with multiple self-intersections,
see Figs. 12(c) and 12(d).

B. Classical magnetic point impurity

Next, we study the QPI patterns induced by a magnetic
impurity polarized along the x direction. Starting with the
charge channel of x-polarized impurities, we find two nodes
along the qx and qy direction in the real parts of the QPI for
both surface terminations, see Fig. 13.

Furthermore, information about the in-plane spin polar-
ization symmetries can be gained from the ρ01 pattern.
Within the first Born approximation these patterns result from
integrating out terms proportional to (ρx

�k ρ0
�k+�q + ρ0

�k ρ
x
�k+�q) +

i(ρy

�k ρz
�k+�q − ρz

�kρ
y

�k+�q). Therefore the nodes in the real parts are a
consequence of the x polarization being antisymmetric under
the operation kx ↔ −kx and ky ↔ −ky . The same arguments
can be used to explain the qx = 0 node in the imaginary parts as
being the consequence of the y-polarization symmetry under
ky ↔ −ky , while symmetry under kx ↔ −kx cannot be simply
deduced from the patterns, due to the lack of a qy = 0 node

FIG. 13. The real (left panels) and imaginary (right panels) parts of the Fourier transform of the local density of states in the case of a
single magnetic point impurity with spin polarization in the x direction for the kagome [(a), (b)] and triangular [(c), (d)] terminations.
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(a) (b)

21

21

(c) (d)

FIG. 14. The imaginary part of the Fourier transform of the spin-projected density of states for kagome (upper panels) and triangular (lower
panels) terminations in the case of a single magnetic point impurity with spin polarization along the x direction [(a), (c)] and y direction
[(b), (d)].

for both surfaces. Furthermore, it turns out that finding the
properties of the y polarization under (kx → −kx) is a little
more difficult. The QPI in Figs. 13(c) and 13(d) shows no
node in the qx direction. The contributions, although small in
magnitude compared to other QPI patterns, must result from
antisymmetry with regard to the (kx → −kx) operation of ei-
ther the y or z polarization, since those show up in combination
in the first Born approximation. To decide which one is the
case we would have to look at two more QPI patterns, namely
Imρ21 and Imρ31, which are hard to access in experiment.

Next, in Figs. 14(a) and 14(c) we show the antisymmetric
contributions arising only from the y polarization, since
the spectral density is of constant positive sign. Although
there is still no node in the qx direction, the intensity at
�q4 in Fig. 14(a) is close to zero, and Fig. 14(c) shows
only very weak contributions along that direction. This is in
accordance with Fig. 14(b), which includes the z-polarized
contribution, having peaks at �q4 and Fig. 14(d) having no
sign of a node along �qx . We therefore conclude that the
antisymmetric contributions in Figs. 13(c) and 13(d) were
likely a consequence of antisymmetric behavior of the z

polarization under the (kx → −kx) operation.

Temperature dependence

Another interesting feature visible in the QPI response
of pyrochlore iridates is the temperature dependence of the

local magnetization, which has direct impact on the QPI
signal. Since the outermost features of the QPI originate from
scattering between Fermi arcs, the position of these features
depends sensitively on the positions of the Weyl points. As
both the local magnetization and the chemical potential are

FIG. 15. Temperature dependence of the scattering peak together
with temperature dependencies of the order parameter |�| (magneti-
zation) and the chemical potential μ.
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temperature dependent, which we capture in a mean-field
treatment of the antiferromagnetic phase, the QPI features are
bound to be also strongly temperature dependent. Thus both T
dependencies influence the scattering peak position.

The results of our calculations are shown in Fig. 15.
One finds that the temperature dependence is not as strong
as one might have expected alone from T dependence of
the magnetization (lower inset), which should in principle
control the Weyl point position. The explanation for this is the
temperature dependence of the chemical potential, which does
not follow the energy position of the bulk band crossing of the
Weyl point. Basically, at T > 0.9TC one finds not the scattering
between Fermi arcs connecting Weyl point projections but
between some surface (non-Weyl) states. These are located
well above the energy position of the Weyl crossing which
occurs at higher values of �q. Nonetheless there is an observable
temperature dependence of a quite isolated scattering peak for
some temperature region below Tc, connected to the dispersion
of the Fermi arc.

V. CONCLUSION

To conclude, in this paper we analyzed the QPI signatures
of the Fermi arcs in time-reversal breaking Weyl semimetals.

As a concrete example, we considered the Weyl phase of
an interacting multiband Hubbard model on the pyrochlore
lattice with antiferromagnetic spin configuration, as realized
in R2Ir2O7. We demonstrated that the use of various types
of impurities allows us not only to prove the very existence
of the Fermi arcs but also to reconstruct from the QPI
patterns the unique features of the surface states and their
internal spin polarization. This can help to identify the wave
function of the surface fermions and their spin-momentum
locking. Furthermore, we find that for Weyl phases induced by
many-body effects, the scattering features associated with the
Fermi arcs show a very strong temperature dependence that
stems from the many-body origin of the Weyl phase.
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APPENDIX: DIMENSIONAL REDUCTION MATRICES

The Hamiltonian in the slab geometry, given by Eq. (6) in the main text, has the following elements. In particular, one finds
for the nearest neighbor terms:

H
0,NN
k = 2
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(
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6
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(k−t),(t−k) = 0, if |i| > 1, (A1)

where the abbreviation �±
b,c,d = (t1σ0 ± it2(bσx + cσy + dσz)) was used. The next-nearest-neighbor hopping terms could be

written as

11H
0,NNN
k = 0

12H
0,NNN
k = 2(t ′1σ0 + it ′2�−−+ + it ′3�+−+) cos

(
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2
kx − 3√

6
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√
6ky)

21H
0,NNN
k = 12H

0,NNN,†
k
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0,NNN
k = 0
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where �±±± = (±σx ± σy ± σz). Finally the mean field interaction terms in this representation are given by:
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The complete submatrices will therefore have the following form:
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