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A Boltzmann machine is a stochastic neural network that has been extensively used in the layers of deep
architectures for modern machine learning applications. In this paper, we develop a Boltzmann machine that
is capable of modeling thermodynamic observables for physical systems in thermal equilibrium. Through
unsupervised learning, we train the Boltzmann machine on data sets constructed with spin configurations
importance sampled from the partition function of an Ising Hamiltonian at different temperatures using Monte
Carlo (MC) methods. The trained Boltzmann machine is then used to generate spin states, for which we compare
thermodynamic observables to those computed by direct MC sampling. We demonstrate that the Boltzmann
machine can faithfully reproduce the observables of the physical system. Further, we observe that the number of
neurons required to obtain accurate results increases as the system is brought close to criticality.
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I. INTRODUCTION

Machine learning is a paradigm whereby computer
algorithms are designed to learn from and make predictions
on data. The success of such algorithms in the area of
classifying and extracting features from large data sets relies
on their ability to infer them without explicit guidance from a
human programmer. Such automatic encoding proceeds by
first “training” the algorithm on a large data set and then
asking the trained machine to perform some task. Currently,
many machine learning applications are performed with neural
networks, which essentially fit the data to a graph structure
composed of many nodes and edges. If the ultimate goal is to
perform classification, like in image or speech recognition, the
network can be trained on a labeled data set by maximizing the
output probability of the correct label (supervised learning).
However, since labeled data is often scarce, a more effective
strategy is to learn the full distribution of the data using a
generative model, which does not require labels (unsupervised
learning). Such generative training allows the network to
extract more information, and also to generate approximate
samples of the distribution. For the classification of data, this
training is followed by a supervised fine-tuning, which can be
done with only a small amount of labeled data.

Although neural networks have been researched for many
decades, the performance required for solving highly complex
problems in real-world applications has been achieved only
relatively recently with deep learning [1]. Here, the networks
are made up of several layers stacked such that the output of one
layer becomes the input of the next layer. The ability to learn
multiple levels of representations makes deep learning a very
powerful tool in capturing features in high-dimensional data
[2], and it drastically improved the performance in complex
tasks such as image recognition [3], speech recognition [4],
or natural language understanding [5]. Machine learning also
has many applications in physics, and has been successfully
used to solve complex problems, including searching for exotic
particles in high-energy physics [6], solving dynamical mean-
field theory in strong correlated systems [7], or classifying
the liquid-glass transition [8]. More recently, neural networks
have also been employed to identify phases of matter with

and without conventional order parameters [9], and locate the
position of phase transitions to high accuracy [10,11]. In light
of this success, one may ask whether neural networks can
be trained for other difficult problems, such as reproducing
statistical-mechanical distributions of classical Hamiltonians
in an unsupervised setting. This would allow one, for example,
to train a neural network using data that has been importance
sampled using Monte Carlo (MC) from a partition function,
and then to calculate estimators from the distribution produced
by the neural network.

A natural candidate neural network for this task is a
Boltzmann machine. A Boltzmann machine is a stochastic
neural network, composed of neuronlike nodes forming a
network with undirected edges. Each neuron has a binary
value that has a probabilistic element, which depends on the
neighboring units to which it is connected. The connecting
edges weigh inputs to each neuron to define its state.
This architecture, once elaborated, can be used to produce
approximate reconstructions of the original data set. More
precisely, a reconstruction is an estimate of the probability
distribution of the original input, which is of course imperfectly
contained in the limited-size training data set. This procedure
has been widely successful, leading Boltzmann machines to
become a core piece of deep learning architectures.

In this paper, we explore the ability of Boltzmann machines
to learn finite-temperature distributions of the classical Ising
Hamiltonian and, consequently, associated thermodynamic
observables such as energy, magnetization, or specific heat.
We show that faithful recreation of observables is possible for
a finite-size lattice Ising system. We also demonstrate that the
number of neurons in the networks required to recreate data at
the critical point can be much larger than in the paramagnetic
or ferromagnetic phase. This suggests that deep networks may
be required for the faithful representation of thermodynamics
by Boltzmann machines at critical points [12].

II. THE BOLTZMANN MACHINE

In constructing a Boltzmann machine, our goal is to build
an approximate model of a target probability distribution. For
the sake of concreteness, we will consider the Boltzmann
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distribution of N Ising spin variables, weighted by the partition
function, as our target distribution. It is natural to imagine
sampling this distribution with a MC procedure. In addition to
producing these samples, a MC simulation usually calculates
estimators of thermodynamic observables, such as energy or
specific heat, directly from the sampled target distribution.
However, one could instead imagine obtaining estimators
from an approximate distribution constructed to mimic our
target distribution. In this scenario, spin configurations can be
generated by a Boltzmann machine that was trained by the MC
samples of the target distribution. In this section, we review
the concept of sampling the target distribution for an Ising
spin Hamiltonian, and detail the construction of a Boltzmann
machine. In Sec. III we present the results for thermodynamic
observables obtained from this Boltzmann machine, trained on
finite-temperature configurations produced from the nearest-
neighbor Ising ferromagnet.

Consider a system of N classical spins on a d-dimensional
lattice, with Ising spin configuration σ = {σ1,σ2, . . . ,σN }, and
a generic Hamiltonian HS(σ ) where the S subscript indicates
the physical (spin) system. When the system is at thermal
equilibrium at temperature T , the “target” probability of a spin
configuration σ is given by the familiar Boltzmann distribution

pS(σ ,T ) = 1

ZS

e−HS (σ )/T , (1)

where ZS = Trσ e−HS (σ )/T is the canonical partition function.
With the knowledge of ZS it is possible to compute all
thermodynamic potentials and average values of observables.
However, the estimation of the partition function involves a
summation over all the 2N states, which is feasible only for
very small systems. The average value of an observable O can
be calculated as

〈O(T )〉 = 1

M

M∑
k=1

O(σ k) (2)

if σ k are samples drawn from the distribution pS(σ ,T ) at
temperature T . This equation is exact only when M → ∞.
However, the sampling process can be done using Markov
chain MC simulations, leading Eq. (2) to give an expression
for a MC expectation value for finite but large M . In the below,
we consider expectation values obtained with this procedure to
be the exact results for the target probability distribution. They
will be compared to observables calculated from a probability
distribution generated by a Boltzmann machine, as we now
describe.

Given a target probability distribution pS(σ ) defined over a
set of random variables σ , our goal is to build a probabilistic
model pλ(σ ) which mimics our target distribution. The model
is in general characterized by a set of parameters λ, which
we will tune in order to minimize the distance between these
two probability distributions. It is advantageous to build a
joint probability distribution on a graph, where conditional
independence between random variables in the corresponding
probabilistic model can be better understood with the help
of graph theory and through visualization. We recall that
a graph is a collection of nodes and edges where to each
node is associated a variable σ and each edge represents a
probabilistic relation between nodes. A probabilistic graphical

h

c

b W

σσ

FIG. 1. Restricted Boltzmann machine. The visible nodes (blue)
are connected to the hidden nodes (red) with a symmetric matrix of
weight W . The external fields in the Hamiltonian are represented by
new edges with weights b and c connecting the visible and hidden
nodes, respectively, with ancillary nodes (purple and orange) with
value clamped to one.

model defines a joint probability distribution pλ(σ ) over the
graph and conditional independence between the variables
σ provides us with a factorization rule for the distribution.
We build the probability distribution over an undirected graph
satisfying a local Markov property (called a Markov random
field). In particular, we adopt a bilayer architecture. Symmetric
edges connect spin nodes σ ∈ {0,1}N in the so-called “visible”
layer, with “hidden” nodes h ∈ {0,1}nH in the hidden layer
(Fig. 1). The weights of the edges are described by a matrix W
with zero diagonal, where the element Wij is the weight on the
edge connecting hi to σj . We also introduce two external fields
b and c coupled to the visible and hidden layers, respectively.
One can consider the latter as weights on new edges between
each visible and hidden node and an ancillary node, with
its variable “clamped” (or fixed) to one. Moreover, all the
variables in the graph are stochastic, comprising one major
difference between this model, called a restricted Boltzmann
machine, and regular neural networks. The full probability
distribution defined by the graph can be written as a Boltzmann
distribution

pλ(σ ,h) = 1

Zλ

e−Eλ(σ ,h), (3)

where the model parameters are λ = {W ,b,c} and the energy
is given by

Eλ(σ ,h) = −
∑
ij

Wijhiσj −
∑

j

bjσj −
∑

i

cihi . (4)

As now the joint distribution is defined over two sets of
nodes, the graph distribution over the spins is obtained by
marginalization

pλ(σ ) =
∑

h

pλ(σ ,h) = 1

Zλ

e−Eλ(σ ), (5)

where we introduced an effective visible energy

Eλ(σ ) = −
∑

j

bjσj −
∑

i

log(1 + e ci+
∑

j Wij σj ), (6)
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often called the “free energy” in literature on restricted
Boltzmann machines. This probabilistic graphical model has
a very important property used in the inference process of the
states of the two layers. Since the state of any node is sampled
from a nonlinear function of its inputs (its “activation”), and
the activations of nodes in the same layer are independent
from each other (Fig. 1), it is possible to sample one layer
at a time, exploiting fast linear algebra routines in numerical
simulations. Moreover, for a specific choice of λ, the states
of visible and hidden layers can be inferred exactly with the
posteriors pλ(σ | h) and pλ(h | σ ). Both of these probability
distributions factorize nicely over the corresponding set of
nodes and can be easily computed using Bayes’ theorem. For
instance, the activation probability of the spin σj is

pλ(σj = 1|h) = σ

( ∑
i

Wijhi + bj

)
(7)

with the function σ (x) = (1 + e−x)−1 called a “sigmoid” (a
similar expression is obtained for the conditional of the hidden
layer).

As we already mentioned, the training process consists of
tuning the machine parameters λ until the pλ(σ ) is close to
the target distribution pS(σ ). This is equivalent to solving
an optimization problem where the function to minimize is
the distance between the two distributions, defined by the
Kullbach-Leibler (KL) divergence

KL(pS ||pλ) ≡
∑

σ

pS(σ ) log
pS(σ )

pλ(σ )
� 0 (8)

with equality only if the two distributions are identical. The
network parameters are optimized using a stochastic version
of the gradient descent, which consists of updating all the
parameters with the rule

λj ← λj − η∇λj
KL(pS||pλ), (9)

where the size η of the gradient step is called the “learning
rate.” Details about the training algorithm are reported in the
Appendix.

We point out now that, although we are interested here in
the generation of visible spin states, it is straightforward to
extend this network for discriminative tasks. By adding a new
layer for the labels, the resulting three-layer neural network can
perform classification with competitive accuracies on common
benchmarks [13–16]. Restricted Boltzmann machines also
play a central role in deep learning, for instance in the greedy
layer-by-layer pretraining of deep belief networks [17,18] or
in their natural multilayer extension called deep Boltzmann
machine [19,20].

III. RESULTS

The classical spin system we choose to train the Boltzmann
machine on is the Ising Hamiltonian,

HS(σ ) = −J
∑
〈ij〉

σiσj , (10)

with ferromagnetic interactions J = 1 between nearest neigh-
bors. As an instructive example we begin by training one
machine on a one-dimensional chain with six spins. For

such a small system it is possible to compute the partition
function, and thus the full probability distribution, exactly.
We prepare a data set of configurations using the exact
probability distribution and then train a Boltzmann machine
using CD5 (see the Appendix). Because the partition function
of the Boltzmann machine is known, we can compute the KL
divergence for various sets λ, evaluating the performance of
the training. By plotting the KL divergence as a function of the
training steps [Fig. 2(a)] we see how the distribution generated
by the machine improves towards the data set distribution.
We also show the comparison between the true probability
distribution and the ones produced by the machine at two
different stages of the training [Fig. 2(b)].

Next, we consider the more interesting case of a two-
dimensional system with N = L × L spins on a square lattice
with periodic boundaries. Contrary to the one-dimensional
case, this system undergoes a second order phase transition
[21,22] at Tc 
 2.269 from an ordered ferromagnetic phase
(T < Tc) to a disordered paramagnetic phase (T > Tc). We
prepare a data set DT with 105 binary spin configurations MC
sampled from pS(σ ,T ) for several temperatures in a range
centered around Tc. For each T we train a different machine
Mτ which generates a distribution pλτ

(σ ), where the subscript
τ refers to the physical temperature T . For each machine we

steps

σ

p(σ)

KL

Exact
10 steps
500 steps

(a)

(b)

FIG. 2. KL divergence as a function of training step (a) and
probability distributions (b) for a d = 1 Ising model with N = 6 spins.
We show the comparison between the exact probability distribution
(red) and the approximate distribution produced by the Boltzmann
machine after 10 (green) and 500 (blue) training steps for all of the
26 states σ .
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W

= 3.54
= 1.00

T
T

FIG. 3. Histogram of the relative frequency of appearance of the
weight amplitudes for two Boltzmann machines with nh = 32 hidden
nodes, trained at low and high T for the d = 2 Ising model with
N = 64 spins.

collect samples using a different number of hidden nodes while
adopting the same external hyperparameters (learning rate,
minibatch size, number of training steps, initial conditions,
etc.). We update the parameters with CD20 using stochastic gra-
dient descent with learning rate η = 0.01 and minibatch size
of 50 samples. We initialize the weights W from a uniform dis-
tribution around zero and width w ∝ √

1/(nH + N ). We note
that, although a larger value of contrastive divergence order k

(see the Appendix) is bound to improve the learning, it also
substantially slows down the time required to reach a solution.

It is natural to ask how the performance of each Boltzmann
machine is affected when the training samples are taken at high
or low temperature. Moreover, we are interested in whether
or not a Boltzmann machine is able to properly capture the
fluctuations that the system undergoes at criticality. Before
discussing the quantitative analysis of the thermodynamics,
we give an insight into the functioning of these machines by
showing the histogram of the matrix elements of W (Fig. 3)
after the training at low and high temperature. In these two
limits we know what the probability distribution pS(σ ,T )
looks like and we can thus obtain a qualitative understanding of
the training and sampling processes of the machines. At very
high temperature J/T 
 1 the spins are completely random,
so pS(σ ) 
 N/2. In this case the weights histogram of the
high-temperature machine (T = 3.54) displays a sharp peak
centered around zero. This means that the visible and hidden
layers are quasidecoupled, and the visible state is random since
the activation probability from Eq. (7) is pλ(σj |h) 
 1/2. On
the other hand, at low temperature the two polarized states
σ = 0,1 are most probable and this causes the histogram to be
wide and flat. When we start the sampling we initialize both
visible and hidden layers randomly. There is a spontaneous
symmetry breaking and the machine chooses one of the two
polarizations. If the machine chooses the visible state σ = 1
after equilibration, we find, by inspecting the hidden states
driving the spins, that the hidden layer is arranged such that
only the nodes connected to the positive weights are active (and
similarly for the opposite state). The activations will be in this
case large and positive and thus pλ(σ = 1|h) 
 1. Note that,

E

CV χ

TT

nh = 4
nh = 16
nh = 64

(b)(a)

M

(d)(c)

ξ/L

FIG. 4. Comparison of the observables generated with the Boltzmann machine with the exact values calculated from the data set (black)
for a d = 2 Ising system with N = 64 spins. The observables considered are energy (a), magnetization and correlation length (b), specific heat
(c), and magnetic susceptibility (d). We show the results for Boltzmann machines with hidden nodes nH = 4 (pink), nH = 16 (orange), and
nH = 64 (cyan).
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even though the data set is completely ergodic, once the visible
layer has equilibrated into one polarization state, it is unlikely
to switch to the other. This ergodicity issue is analogous to
that faced by local Metropolis updates in MC simulations of
the low-temperature ferromagnet.

We turn now to discuss performance on the full range
of temperatures. Since, for general spin Hamiltonians with
a large N , it is very challenging to compute the partition
function and thus the KL divergence, we instead characterize
the performance of the machine using Ising thermodynamics
observables. Given an observableO defined on the spin system
we can compare its average value computed on the spins in
the data set at temperature T ,

〈O(T )〉D = 1

|DT |
∑
σ∈DT

O(σ ), (11)

with that computed on the spin samples produced by the ma-
chine Mτ . After training, we can initialize this machine with a
random configuration and perform block Gibbs sampling until
equilibration. We can then build another spin data set Sτ with
these visible samples and compute the average as

〈O(τ )〉S = 1

Zλ,τ

∑
σ

O(σ )e−Eλ,τ (σ ) 
 1

|Sτ |
∑
σ∈Sτ

O(σ ). (12)

If the machine is properly trained we expect the deviations
δO = |〈O(T )〉D − 〈O(τ )〉S | to be small. In Fig. 4 we plot the
energy per spin E, the magnetization M = 〈∑i σi〉/N , the
specific heat CV = (〈E2〉 − 〈E〉2)/(NT 2), and the magnetic
susceptibility χ = (〈M2〉 − 〈M〉2)/(NT ). For the magnetiza-
tion, we find that even with a number of hidden nodes as
low as two (not shown), the machine is able to reproduce
the exact behavior within statistical error. This may be
expected as it is the spin state itself that the Boltzmann
machine is being trained on. One may therefore expect
a similar accuracy on, say, the correlation length ξ/L =

1
2π

√
S(q = 0)/S(q = 2π/L) − 1 where S(q) is the structure

factor, i.e., the Fourier transform of the spin-spin correlation
function Cij = 〈σiσj 〉. As shown in the inset of Fig. 4(b), the
accuracy for the correlation length is indeed very high—only
slightly worse than the magnetization for a small number of
hidden nodes. In contrast, in the case of the energy, even though
we are computing its value using Eq. (10) applied to the visible
nodes, information about the local energy constraints is not
directly included in the training data set. This results in a
larger discrepancy between the physical value of the energy
and that generated with the Boltzmann machine.

Most interestingly, it appears that for a given physical
system size N , the Boltzmann machine with a fixed nh learns
best away from criticality. In Fig. 5(a) we plot the scaling of the
specific heat with the number of hidden nodes in the machine
for five different temperatures. When the system is in an
ordered or a disordered state, the machines trained on the spins
of the corresponding data sets are able to reproduce the exact
values within statistical error, irrespective to nh. This is consis-
tent with the weight histograms in Fig. 3. At high temperature
this follows from the two layers being quasidecoupled. For
low temperatures we have seen that only the hidden nodes that
connect to positive weights (or negative weights, depending
on the polarization of the visible layer) are set to 1; increasing

L = 4
L = 6
L = 8
L = 10

CV

T = 1.000
T = 1.762
T = 2.269
T = 2.778
T = 3.540

T

T

CV

n−1
H

L = 8

T = 2.269

(a)

(b)

FIG. 5. Scaling of the specific heat CV with the number of hidden
nodes nH . In (a) we show scaling at different temperatures T , when
the system is ordered (blue and cyan), disordered (red and pink), and
critical (green). In (b) we show the scaling at criticality for different
system sizes L. Dotted lines represent the exact value computed on
the spin configurations of the training data set.

the number of hidden nodes will not affect the activation of
the visible nodes. Finally, when the system is at criticality,
it is still possible to obtain an accurate approximation of the
physical distribution; however, a clear dependency on the finite
number of hidden nodes appears. As illustrated in Fig. 5(a),
in order to converge the specific heat at the critical point,
the required nh is significantly larger than for T far above
or below the transition. We also note that the same scaling
plot for the magnetization (not reported here) shows no clear
dependencies on nh. Finally, we show in Fig. 5(b) the scaling
curves at criticality for different system sizes. As expected, the
threshold in the number of hidden nodes required for faithful
learning of the specific heat grows with increasing N .

IV. CONCLUSIONS

We have trained a generative neural network called a
restricted Boltzmann machine to produce a stochastic model
of a thermodynamic probability distribution. The physical
distributions were produced by Monte Carlo importance
sampling the spin configurations of a d-dimensional Ising
system at different temperatures. For a small system in d = 1,
we confirm through an exact calculation that the Boltzmann
machine converges to the physical probability distribution with
sufficient training steps.
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For the more difficult problem of the Ising model in d = 2,
where exact calculations are impossible, we compare ther-
modynamic observables produced by the Boltzmann machine
to those calculated directly by Monte Carlo. Spin samples
produced by Monte Carlo were used to train different machines
at distinct temperatures above, below, and at Ising criticality Tc.
Once trained, we evaluated different thermodynamic estima-
tors on the samples generated by the Boltzmann machines and
show that they faithfully reproduce those calculated directly
from the Monte Carlo samples. For all training instances we
fixed the values of the hyperparameters, and varied the number
of hidden nodes. We showed that for T > Tc and T < Tc, the
Boltzmann machine is able to capture the thermodynamics
with only a few hidden nodes. However, near T = Tc, the
number of hidden nodes required to reproduce the specific
heat becomes large, reflecting the increase of fluctuations at
criticality. This growth of hidden nodes required at criticality
is reminiscent of the connection between deep learning and
the renormalization group suggested previously [12].

Our results demonstrate that Boltzmann machines may
serve as a basic research tool for condensed matter and
statistical mechanics, when coupled together with standard
Monte Carlo sampling techniques. One application may be to
use the approximate configurations produced by the trained
machine to calculate thermodynamic estimators that may have
been overlooked during the original Monte Carlo sampling
(since such configurations are typically discarded). Similarly,
estimator calculation could be completely transferred to the
machine, in order to redistribute these tasks away from the
Monte Carlo procedure. Conversely, we have demonstrated
that the performance of a Boltzmann machine may be
evaluated using a comparison of thermodynamic observables
calculated from both the physical and modeled distribution.
The conceptual elimination of reliance on the KL divergence
may suggest alternatives to evaluating the performance of such
machines in other applications.

Among the many possible future applications, it would
be particularly interesting to train a Boltzmann machine
on configurations produced in various bases by quantum
Monte Carlo [23]. One may ask if a standard restricted
machine like that studied in the present paper is sufficient
to capture quantum correlations, or if a quantum version of the
machine is required [24]. It would also be interesting to under-
stand the relationship between the sign problem in calculations
of estimators directly in quantum Monte Carlo versus their
approximation by suitably trained Boltzmann machines.
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APPENDIX: TRAINING WITH CONTRASTIVE
DIVERGENCE

We have seen in Sec. II that the training of a Boltzmann
machine consists in solving an optimization problem where
the function to minimize is the KL divergence between the
model probability and the target probability. In practice, we
build a data set D = {σ (1), . . . ,σ (|D|)} by drawing samples σ

from the Ising pS(σ ) with Markov chain MC sampling at
temperature T . The probability distribution underlying the data
set is pdata(σ ) = 1

|D|
∑

σ ′ δ(σ ,σ ′) and, if the data set size |D| is
large enough, pdata(σ ) is then a good approximation of pS(σ ).
We can then write the KL divergence as

KL (pdata||pλ) = − 1

|D|
∑
σ∈D

log pλ(σ ) − H(pdata) (A1)

where the first term is called negative log-likelihood and
H(pdata) = −∑

σ pdata(σ ) log pdata(σ ) is the entropy of the
data set. The optimization problem is solved by stochastic
gradient descent. We choose an initial point λ(0) in the full
configuration space with zero external fields and weights
Wij randomly drawn from a uniform distribution centered
around zero. The increments in the parameters are obtained
by averaging the gradient of the KL divergence over the entire
data setD. However, since the data set is usually redundant, the
updates can be evaluated on a minibatch of samples instead,
resulting in a larger number of updates for each data set
sweep. This optimization procedure, called stochastic gradient
descent, substantially speeds up the learning, especially when
the data set contains a very large number of samples. On the
other hand, for data sets with moderate number of samples, a
common issue in the training of neural networks is overfitting
the training data set. Different techniques have been proposed
to regularize the networks and overcome the overfitting, such
as introducing a weight decay term in the KL divergence
cost function [25], or randomly removing some hidden nodes
in the network (called “dropout” [26]). However, producing
training data is not an issue for the cases studied here, where
MC sampling is fast and efficient. Thus, we build a data set
sufficiently large to avoid using regularization. However, one
could envision other cases where MC samples are expensive,
so that regularization would be required.

To obtain an update rule for the gradient descent we need
to take the derivative of the KL divergence in Eq. (9), which
reduces to the derivative of the log-likelihood,

∇λj
log pλ(σ ) = −∇λj

Eλ(σ ) +
∑

σ

pλ(σ )∇λj
Eλ(σ ). (A2)

If we consider, for instance, the case of λ = W , the derivative
of the visible energy is

∇WEλ(σ ) = −
∑

h

pλ(h|σ )σ h�. (A3)

Plugging this back into Eq. (A2), we obtain

∇WKL (pdata||pλ) = −〈σ h�〉pλ(h|σ ) + 〈σ h�〉pλ(σ ,h). (A4)

The first average of the correlation matrix σ h� can be easily
computed by clamping the spin variables σ to the sample
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from the data set, and inferring the state h of the hidden
variables from the conditional distribution pλ(h|σ ). In the
second term, however, the correlation matrix is averaged over
the full model distribution pλ(σ ,h), which involves knowledge
of the partition function Zλ. To overcome this issue, we instead
run a MC for k Markov steps

σ (0) → h(0) → σ (1) → h(1) → · · · → σ (k) → h(k) (A5)

by sampling each layer using the exact conditional distribu-
tions. The updates of the stochastic gradient descent are then
obtained by taking the average of Eq. (A4) over a minibatch

D[b] of samples

λj ← λj − η

|D[b]|
∑

σ∈D[b]

∇λj
KL(pdata||pλ), (A6)

with b = 1, . . . ,|D|/|D[b]|. This training algorithm is called
contrastive divergence [27] (CDk) and is the most effective
known tool for the training of restricted Boltzmann machines.
Note that since the initial state of the chain is a sample from the
data set and thus it already belongs to the distribution, there
is no need for a long equilibration time. Hence the order k

of the chain can be very low, resulting in a very fast learning
procedure. In some cases, only one step (CD1) is sufficient to
reconstruct the visible states with low error.
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