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Electromagnetic origins of negative refraction in coupled plasmonic waveguide metamaterials
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A metamaterial composed of stacked plasmonic waveguides which support backward propagation along the
layers has been shown to exhibit a nearly spherical equifrequency contour (EFC) in which the Floquet-Bloch wave
vector kFB and Poynting vector S point in opposite directions everywhere on this surface. Experiments performed
on this structure have also shown that polarized light beams incident from free space refract to the same side
of normal over a wide range of incidence angles. Together, these observations have led researchers to describe
this structure as a homogeneous medium with three-dimensionally isotropic negative refractive index; however, a
close inspection of the fields throughout the structure as provided in this paper would suggest otherwise. Here, we
rigorously analyze the relationship between phase and power flow within the structure by introducing a method
to calculate the power flow of all Floquet-Bloch harmonics, information which cannot be obtained from either
conventional analysis of EFCs or effective medium theory. Access to power flow of all harmonics enables us to
demonstrate the origin of backward power (defined with respect to the direction of kFB), and in doing so, verify
the validity of the claimed three-dimensionally isotropic left-handed response and the validity of describing the
medium by a simple negative effective index of refraction n = −1. Knowledge regarding the distribution of
power flow across the harmonics can also be used to design highly efficient methods to couple light into and out
of these structures. As an example, we show that tailored wave excitation can achieve coupling efficiencies of up
to 96%, over 5 times greater than that achieved by normal-incidence plane-wave excitation.
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I. INTRODUCTION

Over four decades ago, Veselago proposed a hypothetical
homogeneous and isotropic medium with simultaneously
negative values of ε and μ that could sustain plane waves
in which the electric field, magnetic field, and wave vector
form a left-handed triad [1]. Plane waves in such an isotropic
left-handed (or double-negative) medium are backward waves
that propagate with antiparallel phase and group velocities—a
condition described by a negative refractive index. In contrast,
waves in an isotropic right-handed medium (described by
a positive refractive index) propagate with parallel phase
and group velocities. In other words, the equifrequency
contour (EFC) of the Veselago medium is a sphere whose
frequency gradient (the group velocity) points inwards rather
than outwards. Energy conservation and phase continuity at
a boundary imply that the group velocity (represented by
the Poynting vector) and the phase velocity (represented by
the wave vector) of a plane wave crossing the interface
between an isotropic left-handed medium and an isotropic
right-handed medium would refract to the same side of normal,
a phenomenon known as negative refraction. In a general
homogeneous medium where the condition of isotropy has
been relaxed (phase and power are no longer always collinear),
negative refraction of phase and negative refraction of power
can occur independently and must be treated as independent
phenomena. In this situation, the handedness is still defined
according to the relative orientations of the wave vector and
Poynting vector.

In an effort to mimic the properties of the Veselago medium
at optical frequencies, it has been shown that coupling plas-
monic waveguides made of metallic and dielectric layers which
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support backward propagation along the layers can produce a
roughly spherical EFC with a radius approximately equal to the
free-space wave number [2]. Similar to the Veselago medium,
the time-and-space-averaged Poynting vector S points inwards
(backwards) everywhere on this surface. Experimentally,
negative refraction of polarized light beams has been observed
along planes of incidence parallel (in plane) and perpendicular
(out of plane) to the layers [3]. Note that end-fire illumination
of a facet perpendicular to the layers can access both planes of
incidence, whereas broadside illumination of a facet parallel
to the layers can only access the latter (Fig. 1). Snell’s law
descriptions of measured refraction angles and the effective
constitutive parameters extracted by applying a parameter
retrieval technique to the simulated reflection and transmission
data have also been consistent with approximations of the
layered structure as a left-handed (double-negative) medium
describable by a three-dimensionally isotropic negative index
of refraction n = −1 [3]. The mechanism of in-plane negative
refraction has been attributed to the guidance of a backward
plasmonic mode with opposing phase and group velocities.
It is unclear whether out-of-plane negative refraction—where
there is the possibility of significant reflection and transmission
across layers—is also derived from left-handed modes or if
other mechanisms are present. Photonic crystals (with circular
EFCs) and indefinite media implemented as metal-dielectric
bilayers (with hyperbolic EFCs), for example, provide well-
studied cases of structures that exhibit negative refraction of
power without left-handed electromagnetic fields [4–6].

We examine the electromagnetic origins of in-plane and
out-of-plane negative refraction in a layered plasmonic meta-
material designed by Xu et al. that is composed of a
periodic repetition of five alternating thin layers of silver and
titanium dioxide [3]. This structure is of contemporary interest
because it provides the only known template for achieving
negative refraction and flat lensing in the ultraviolet, which
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FIG. 1. A diagram illustrating the layered MDMDM structure and
the planes of incidence for (a) end-fire in-plane refraction, (b) end-fire
out-of-plane refraction, and (c) broadside out-of-plane refraction. The
unit-cell periodicity is a.

may be useful for applications such as biological imaging
[7,8], photolithography [9,10], plasmonic nanolenses [11],
and optical cloaking [12]. The objective of this work is to
provide insight into the behavior of electromagnetic modes
propagating in the layered structure without making any
approximations to the fields. To address this objective from
first principles, the electric and magnetic fields inside the
medium are calculated from Maxwell’s equations, Fourier
transformed, and then paired to find the set of Floquet-Bloch
harmonics, each with a well-defined wave vector and Poynting
vector [13]. A similar expansion has been successfully used
to analyze the behavior of the Bloch modes and the origin
of negative refraction of power in photonic crystals [14] and
left-handedness in magnetodielectric metamaterials [15].

In contrast to homogenization approximations and graphi-
cal EFC analyses, which map the properties of a metamaterial
onto a single plane-wave mode located in the first Brillouin
zone (BZ), our approach maps the properties of a metamaterial
onto a spectrum of Floquet-Bloch plane-wave harmonics with-
out loss of information regarding the detailed field variations
across each unit cell. In this mapping, we can observe that in
general, fields are composed of a mixture of Floquet-Bloch
harmonics in which the Poynting vector of each individual
harmonic is not aligned to the net power flow and can carry
significantly more power than the fundamental harmonic.
These facts demonstrate the importance of analyzing higher-
order harmonics when studying metamaterials and the need

for a method that goes beyond effective medium theory or
geometrical EFC analysis. By analyzing the relative directions
of phase and power flow of Floquet-Bloch harmonics and
finding their individual handedness as a function of prop-
agation direction, we show definitively that in the coupled
plasmonic waveguide metamaterial, in-plane backward power
arises from left-handed waveguide modes and out-of-plane
backward power arises from either left-handed waveguide
modes or right-handed scattering effects, depending on the
direction of propagation.

Since the fields for out-of-plane propagation contain non-
negligible harmonics whose phase velocity components in the
direction of propagation are not all identical, the concept
of phase refraction and handedness are undefined for the
total field (unlike the case of homogeneous media). The
average power flow is still clearly defined, however, since
it is calculated as the vector sum of all individual harmonic
Poynting vectors. Because of this, although there is no clear
phase refraction, there is no ambiguity in the all-angle negative
refraction of power (or light beams) that was reported in [3].
In this paper, we also rigorously analyze refraction for several
different wave incidence scenarios at the end-fire interface
to demonstrate the occurrence of both positive and negative
refraction of power. We also show that the efficiency of end-
fire illumination can be significantly enhanced by choosing
alternative excitation channels based on the distribution of
power flow across harmonics.

II. FLOQUET-BLOCH MODES IN COUPLED PLASMONIC
WAVEGUIDE METAMATERIALS

If we consider a layered metamaterial that is infinite and
periodic, the Floquet-Bloch theorem [16,17] states that the
field within the metamaterial can be represented as

H(r,t) = u(r)ei(kFB·r−ωt), (1)

where u(r) is a periodic function with the same periodicity as
the medium, ω is the frequency, and kFB is the complex fun-
damental Floquet-Bloch wave vector with kFB = k + iα. The
real part k is the propagating wave vector and the imaginary
part α is the attenuation vector. As attenuation is embedded
in the complex Floquet-Bloch wave vector, the function u(r)
represents the nonattenuating periodic component of H(r,t).
Here, we have considered the magnetic field to describe
the case of transverse-magnetic (TM) polarization, which is
applicable to most plasmonic systems. Substitution of Eq. (1)
into the Helmholtz equation yields

∇ ×
(

1

ε
∇ × u

)
+ ikFB ×

(
1

ε
∇ × u

)
+ i∇ ×

(
1

ε
kFB × u

)

+ kFB · kFB

ε
u − kFB

ε
(kFB · u) − μ

ω2

c2
u = 0, (2)

where μ is the relative permeability and ε is the relative
permittivity [18]. In order to solve this equation as an
eigenvalue problem at a given frequency, constraints must
be placed on the Floquet-Bloch wave vector kFB so that it
can be expressed in terms of a single complex eigenvalue
λ. Different constraints are used for different circumstances,
with the corresponding eigensolutions unique only to that
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constraint. In the case of the infinite layered structure studied in
Sec. III, we can define a direction of propagation by choosing
kFB = λk̂. Equation (2) can be solved for the complex
eigenvalue λ and its corresponding eigenmode u(r) in order to
compare the electromagnetic response in different directions of
propagation. In the case studied in Sec. IV of refraction across
an interface, however, continuity of phase at the interface
imposes the constraint on kFB and the directions of phase
propagation and field decay are no longer necessarily aligned.
In this work, both sets of eigenvalue problems are solved
using the COMSOL MULTIPHYSICS finite element software
package [19].

By convention, we define the equifrequency contour of
the metamaterial as the surface traced out by the wave
vector k located in the first Brillouin zone. The EFC and
its frequency gradient respectively define the wave vector
and group velocity of a plane wave that could be supported
by an equivalent homogeneous medium. Taking this analogy
further, the process of homogenization assumes that such a
homogeneous medium can be used as an effective “black-box”
description of the metamaterial.

For TM polarization, a periodic metal-dielectric layered
structure can be engineered so that its EFC mimics that of an
isotropic left-handed medium [2]. In particular, this has been
demonstrated for a unit cell consisting of a MDMDM layer
sequence in which the M, or metal, layer is silver (Ag), the
D, or dielectric, layer is titanium oxide (TiO2), and the layer
thicknesses are 33 nm, 28 nm, 30 nm, 28 nm, and 33 nm,
respectively, as designed by Xu et al. [3]. The resulting EFC
of the MDMDM unit cell at a free-space wavelength of 363.8
nm is roughly spherical with a radius approximately equal to
the free-space wave number and a frequency gradient pointing
toward the origin indicative of negative group velocity.1 These
features are consistent with the EFC of a left-handed Veselago
medium with three-dimensionally isotropic refractive index
n = −1. Effective constitutive parameters extracted from
reflection and transmission data and Snell’s law descriptions
of simulated and measured refraction angles have also been
shown to be consistent with this negative-refractive-index
model [3]. This has led to the proposal that this metamaterial
be characterized as a homogeneous medium with an isotropic
left-handed response, a claim that has yet to be fully validated
and will be thoroughly investigated in this paper.

Homogenization models have been successful in describing
the properties of bilayered media with local or nonlocal
dielectric tensors [6,20–23]. In such cases, the fundamental
harmonics of the Floquet-Bloch modes are the dominant
components and the modes resemble propagation in a ho-
mogeneous anisotropic dielectric medium. Therefore, the first
question that arises regarding the validity of modeling the
MDMDM structure with a single isotropic effective refractive
index n = −1 is whether or not the propagating Floquet-Bloch
modes can be described by single left-handed plane waves.
For example, Fig. 2 illustrates snapshots of the magnetic
field in the MDMDM unit cell at different points in time
for energy propagation both parallel and perpendicular to

1At this wavelength, the permittivities of the metamaterial layers
were εAg = −2.522 + i0.251 and εTiO2 = 7.835 + i0.392.
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FIG. 2. Eigenmode magnetic field plots at quarter-period inter-
vals over t1 < t2 < t3 < t4 for a wave propagating (a) parallel and
(b) perpendicular to the planes. Wave attenuation has been removed
for clarity. In (a), the net power flow is directed towards the right
(x̂) while the mode phase propagates to the left (−x̂). In (b), the net
power is directed downwards (−ẑ) while the Floquet-Bloch phase
propagates upwards (ẑ). Note that although both configurations yield
opposing Floquet-Bloch phase and power flow, the field distributions
are strikingly different and a consistent phase progression across the
mode can only be observed for the mode in (a).

the layers. Although the EFC of the unit cell suggests that
it behaves like an isotropic and left-handed Veselago medium,
the actual field distributions reveal complex wave dynamics
that undermine this approximation. For propagation along the
layers, the wave is a laterally confined mode that exhibits
phase advancement opposing the direction of power flow.
However, for propagation perpendicular to the layers, the
wave exhibits an intricate and seemingly random field pattern
from which a natural phase progression cannot be visually
extracted. Examination of the field patterns for these two
propagation directions suggests that the metamaterial may
possess a left-handed response, but this response is likely not
isotropic.

III. MAPPING THE POWER FLOW OF FLOQUET-BLOCH
HARMONICS

The limitation of effective medium theory and geometrical
EFC analysis methods is that they assign the fundamental
Floquet-Bloch wave vector as the wave vector of the global
field and relate the total power flow to this harmonic without
justification. In order to examine the validity of describing
the MDMDM medium by a single isotropic refractive index
n = −1, we propose instead a more complete description in
which the internal electric and magnetic fields are decomposed
into Floquet-Bloch harmonics [14,24,25] whose power flow is
mapped in the spatial-frequency domain. For a periodic layered
medium in which the layers are parallel to the xy plane, the
periodic function u(z) can be expanded into a set of harmonic
components distributed along a line parallel to the kz axis
with a spacing of 2π/a. This enables both the magnetic field
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eigenmode from Eq. (1) and its corresponding electric field to
be expressed in the spatial-frequency domain as the sum of
Floquet-Bloch harmonics,

H(r) =
∑
m

hmei 2πm
a

zeikFB·r, (3)

E(r) =
∑
m

emei 2πm
a

zeikFB·r, (4)

respectively, where a is the lattice constant of the layers
along the z direction and m is an integer. In this formulation,
hm and em are the respective spatial Fourier transforms
of the nonattenuating periodic components of the magnetic
and electric field vectors. The harmonic components of the
electric and magnetic fields each have a real wave vector
given by km = k + (2πm/a)ẑ and an attenuation vector given
by α = Im{kFB}, where k = Re{kFB} is the fundamental
Floquet-Bloch wave vector. Pairing corresponding electric and
magnetic field harmonics yields a spectrum of attenuating
plane waves located at discrete real km points in the spatial-
frequency domain (k space). We can find the bounded time-
averaged Poynting vector of each individual Floquet-Bloch
harmonic by considering only the nonattenuating components
of the electromagnetic fields according to

Sm = 1
2 Re{em × h∗

m}. (5)

These vectors indicate the distribution of power flow across all
harmonics, information which cannot be obtained from either
graphical EFC analysis or effective medium theory.

Due to orthogonality of the harmonics 1
a

∫
a

exp[ikm ·
r] exp[−ikp · r]dz = δmp, the Poynting vectors of each har-
monic are related to the Poynting vector of the nonattenuating
component of the total fields by

S = 1

v

∫
v

1

2
Re

{∑
m

emeikm·r ×
∑

p

h∗
pe−ikp ·r

}
dv

=
∑
m

Sm, (6)

where v is the volume of the unit cell. This confirms that the
time-and-space-averaged power flow S of the global fields used
in conventional modeling of the Floquet-Bloch mode with a
single plane wave is the vector addition of the Poynting vectors
of all the individual harmonics.

Mapping the harmonic Poynting vectors in k space pro-
vides an intuitive method to describe global field behavior
without loss of information regarding the details of spatial
field variations. Figure 3 illustrates the harmonic Poynting
vectors in an infinitely periodic MDMDM medium for energy
propagation parallel and perpendicular to the plane of the
layers (corresponding to the cases considered in Fig. 2). In
this analysis, the fields correspond to eigenmode solutions of
Eq. (2), where the complex eigenvalue constraint kFB = λk̂ has
been used to ensure a clearly defined direction of propagation
k̂. For both the parallel and perpendicular cases, the three-
dimensional distributions of the Poynting vectors are viewed
from the top (projected onto the kxky plane) and from the
side (projected onto the kxkz plane). The black curve is the
EFC of the layered metamaterial, the thick light-gray arrow
is the fundamental Floquet-Bloch wave vector k = Re{λ}k̂,
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FIG. 3. The eigenmode fields are plotted in k space over the
kxky plane (top panel) and over the kxkz plane (bottom panel) for
propagation parallel to the planes (a) and perpendicular to the planes
(b). Left-handed plane-wave components in k space are plotted with
red arrows, while right-handed components are plotted with blue
arrows. The thick light-gray arrow is the Floquet-Bloch wave vector,
and the thick dark-gray arrow is the Poynting vector of the total fields.
The equifrequency contours corresponding to the real and imaginary
parts of the calculated Floquet-Bloch wave vector are given by the
black curve and the green dashed curve in (a), respectively. The first
BZ is indicated by the light-gray dashed lines with the repeated EFCs
arising from the periodicity of the structure plotted as dotted curves
outside the first BZ. Note that the Sm vectors are not necessarily
normal to their corresponding EFCs.

and the thick dark-gray arrow is the space- and time-averaged
Poynting vector S of the global fields (S points in the direction
of the frequency gradient of the EFC at point k). The repeated
EFCs arising from the periodicity of the structure are also
plotted as dotted curves along the kz axis at intervals of
2π/a outside the first BZ. The attenuation contours traced
by the vector α = Im{λ}k̂ are also plotted by the dashed green
curves. These contours reveal an attenuation coefficient that is
roughly isotropic, falling within the range of 0.22k0 to 0.26k0

as the direction of propagation changes. It can be observed
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that the global fields generally consist of multiple plane-
wave components whose Poynting vectors are not necessarily
normal to their corresponding EFCs and that very little power
lies within the first BZ. This confirms that no single plane-wave
component (let alone the weak component lying in the first
BZ) can be assigned to the global field. This demonstrates the
importance of analyzing higher-order harmonics in the study
of metamaterials and confirms that the MDMDM medium
cannot be completely described by the repeated EFC diagrams
[26] or effective constitutive parameters [27].

For in-plane propagation parallel to the layers, shown in
Fig. 3(a), the fields decompose into a set of complementary
plane-wave component pairs distributed symmetrically about
the kxky plane. Each of these pairs can be interpreted as two
plane waves bouncing back and forth within a waveguide
formed by the unit cell. These “waveguide” modes form
a standing wave in the transverse direction (perpendicular
to the layers) and a propagating wave in the longitudinal
direction (parallel to the layers). Because the longitudinal
components of the Poynting vector and wave vector oppose
each other, they form backward waves in that direction. This
is consistent with the backward phase progression seen in
Fig. 2(a). For out-of-plane propagation perpendicular to the
layers, shown in Fig. 3(b), the fields decompose into a set
of plane-wave components that have uneven Poynting vector
magnitudes and are distributed at regular spatial-frequency
intervals along the axis of propagation. Unlike the previous
case of in-plane propagation, some plane-wave components
propagate in the forward direction while others propagate in
the backward direction. Interestingly, all components have
power pointing in the same direction as phase. The most
significant Floquet-Bloch harmonic is the higher-order m =
−1 harmonic, which carries power and phase in the backward
direction. The combination of all harmonics gives rise to the
highly heterogeneous field pattern seen in Fig. 2(b), whose
absence of discernible phase progression can now be explained
by the multiple Floquet-Bloch wave components propagating
in different directions.

As a single wave vector cannot generally be assigned to the
global field, the handedness of the medium cannot be defined
through the conventional practice of evaluating the sign of k ·
S. On the other hand, each individual Floquet-Bloch harmonic
has a well-defined wave vector and Poynting vector and can be
classified as right or left-handed by first defining a reference
axis in k space. This axis provides a consistent vector against
which we can compare the directions of phase and power flow
for each plane-wave component. The most meaningful way to
establish this reference axis is to orient it to the fundamental
Floquet-Bloch wave vector (whose direction is given by k̂),
a vector which points from the origin to a spatial-frequency
coordinate that is unique to the global fields. [This is also the
direction in which Eq. (2) is initially solved.] The handedness
of each plane-wave component can then be determined by the
relative orientations of the Poynting vector and wave vector
projected along this reference axis. When they oppose each
other, the harmonic is classified as left-handed and indicated
by a red arrow. When they are aligned with each other, the
harmonic is classified as right-handed and indicated by a blue
arrow. According to this scheme, the dominant plane-wave
components for in-plane propagation are left-handed and the

−1 0 1

−5

−4

−3

−2

−1

0

1

2

3

4

5

1stBZ

S1

S−1

k

S

kx/k0

(a)

k
z
/
k
0

−1 0 1

k

S

S1

S−1

θ

kx/k0

(b)

−1 0 1

k

S

S1

S−1

kx/k0

(c)

FIG. 4. The eigenmode fields are mapped to k space for modes
propagating out of plane at an angle of (a) θ = 20◦, (b) θ = 45◦,
and (c) θ = 70◦ with respect to the plane of the layers. Left-handed
plane-wave components are plotted with red arrows, right-handed
plane-wave components are plotted with blue arrows, the Floquet-
Bloch wave vector is indicated by the thick light-gray arrow, and
the total power flow is indicated by the thick dark-gray arrow. As θ

increases, dominant contributors to power flow shift from left-handed
to right-handed plane-wave components.

components for out-of-plane propagation perpendicular to the
layers are right-handed, as shown in Fig. 3.

Figure 4 illustrates how wave propagation in the metamate-
rial smoothly evolves from resembling a backward waveguide
mode for in-plane propagation to scattering with a dominant
right-handed higher-order harmonic for out-of-plane propaga-
tion perpendicular to the layers. Power maps and dispersion
diagrams are depicted for propagation angles of θ = 20◦, 45◦,
and 70◦, where θ is defined as the angle between the reference
axis (k̂) and the plane of the layers. Again, we observe that
there is no significant power residing in the first BZ for all
angles. The evolution of the harmonic Poynting vectors as
a function of propagation angle is complicated. Whereas the
Poynting vector S rotates with the propagation angle about
the origin, the harmonic Poynting vectors rotate by smaller
amounts, each in differing directions. The locations of the
harmonic Poynting vectors are roughly anchored in k space,
shifting by only small amounts versus propagation angle.
Due to this property and the rotation of the reference axis,
the plane-wave components change from being left-handed
to right-handed as the direction of propagation goes from in
plane to perpendicular out of plane. The changes in magnitude
and direction of the harmonic Poynting vectors are consistent
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propagation angle θ . The dark gray trace plots the total power and
is directly proportional to the group velocity, the red trace plots
the power in the left-handed plane-wave components, and the blue
trace plots the power in the right-handed plane-wave components.
Propagation along the in-plane orientation (θ = 0◦) is primarily
left-handed and propagation along the out-of-plane perpendicular
orientation (θ = 90◦) is primarily right-handed.

with the evolution from waveguide modes with symmetric
power maps (arising from transverse standing waves) for
in-plane propagation, to asymmetric right-handed scattering
for out-of-plane propagation in which power flows in the
negative z direction.

Figure 5 compares the power-flow contributions along
the reference axis from all left-handed components SLH and
all right-handed components SRH as the propagation axis is
tilted from in plane (θ = 0◦) to perpendicular out of plane
(θ = 90◦). The field amplitudes have been normalized to
achieve a constant energy density in the unit cell with respect
to propagation direction. The summation of SRH and SLH yields
the total power flow along the reference axis, which, due to the
normalization process, is also proportional to the group veloc-
ity along the reference axis [28]. The negative value of the total
power flow for all angles indicates all-angle negative group
velocity, but here we see that it can arise from right-handed
or left-handed plane-wave components. It can also be seen
that the group velocity magnitude decreases for larger angles,
which is consistent with the increasing presence of standing
waves made of counterpropagating plane-wave components.
This provides further evidence of the general electromagnetic
anisotropy of this structure. For a given propagation direction,
the relative contributions of SLH and SRH can be used to
determine the origin of backward power (with respect to
kFB) and consequently distinguish between backward power
flow and left-handedness. The origin of backward power and
negative refraction of power is predominantly left-handed for
small angles and right-handed for large angles. The sharp
threshold between the left-handed and right-handed regimes
arises because the dominant plane-wave components switch
between left-handed and right-handed classifications at similar
angles.

IV. ANALYSIS OF REFRACTION ACROSS
AIR-METAMATERIAL INTERFACES

As previously discussed, the EFC of the layered plasmonic
metamaterial is roughly spherical with a radius equal to the
wave number in free space in which power flow opposes
the fundamental Floquet-Bloch wave vector for all angles
of propagation. The conventional conclusion would therefore
be that this metamaterial can be modeled as an effective
homogeneous left-handed medium with a three-dimensionally
isotropic effective refractive index n = −1. Based on con-
ventional EFC analysis, refraction into that medium from
a homogeneous medium would be graphically described by
drawing the EFCs at the working frequency and invoking
continuity of the tangential wave-vector components across
the interface [26]. Using this graphical procedure, or using
Snell’s law with the effective index n = −1, we would predict
that waves incident from air onto a metamaterial facet of any
orientation would undergo negative refraction of both power
and phase for all angles of incidence. In other words, the
Poynting and wave vectors would refract to the same side of
the interface normal with an angle roughly equal to the angle
of the incident wave. This refraction analysis, however, is valid
only if the Floquet-Bloch mode propagating in the MDMDM
can be described by a single plane wave located at the first BZ.

In order to achieve insight into the refractive behavior
at the interface of the MDMDM medium, we expand the
conventional analysis method by considering the power flow of
all harmonic components of the Floquet-Bloch mode excited
by the incident wave. The mode excited in the MDMDM
structure is found by solving Eq. (2) while enforcing the
continuity of the tangential wave vector at the interface.
The Floquet-Bloch wave vector is written in terms of the
eigenvalue λ as kFB = kt + λk̂n, where kt is the tangential
component of the incident wave vector and k̂n is the unit
normal. Figure 6 illustrates examples of refraction in three
unique configurations: in-plane refraction at end-fire [across
a planar interface perpendicular to the layers, as shown in
Fig. 1(a)] with kt = kyŷ and k̂n = x̂, out-of-plane refraction at
end-fire [Fig. 1(b)] with kt = kzẑ and k̂n = x̂, and out-of-plane
refraction at broadside [across a planar interface parallel to
the layers, as shown in Fig. 1(c)] with kt = kxx̂ and k̂n = ẑ.
The real and imaginary parts of the eigenvalue correspond
to the normal component of the wave vector kn = Re{λ}
and the attenuation coefficient α = Im{λ}, respectively. The
direction of phase propagation is determined by the wave-
vector components kt and kn, and the direction of attenuation
is normal to the interface. The real and imaginary parts of the
fundamental wave vector kFB are plotted in Fig. 6 for various
interfaces as a function of kt using black and green contours,
respectively. Note that for incidence angles close to normal,
there is very good agreement between these contours and the
quasispherical EFCs from the infinite medium plotted in Fig. 3.

For each interface depicted in Fig. 6, the spatial-frequency
maps of power flow are displayed for the mode corresponding
to a plane wave incident from air at an angle of 20◦ with respect
to the interface normal (i.e., the mode with kt = k0 sin 20◦).
The real part of the fundamental Floquet-Bloch wave vector
k = kt + kn is refracted at an angle of approximately 20◦
to the same side of normal as the incident wave vector.

165133-6



ELECTROMAGNETIC ORIGINS OF NEGATIVE . . . PHYSICAL REVIEW B 94, 165133 (2016)

−1 0 1

−1

0

1

Air

ki

Si

kx/k0

k
y
/
k
0

−1 0 1

k

S

MDMDM

S1 , S−1

kx/k0, αx/k0

(a)

−1 0 1

−5

−4

−3

−2

−1

0

1

2

3

4

5

ki

Si

Air

kx/k0

k
z
/
k
0

−1 0 1

k

S

S1

S−1

MDMDM

kx/k0, αx/k0

−1

0

1

ki

Si

Air

k
z
/
k
0

−1 0 1

−4

−3

−2

−1

0

1

2

3

4

k

S

MDMDM

S0

S1

S−1

kx/k0

k
z
/
k
0
,
α

z
/
k
0

)c()b(

FIG. 6. Description of wave refraction from free space into the
layered MDMDM structure based on the k-space components of
the eigenmodes in the metamaterial and conservation of tangential
wave vectors along the interface for (a) end-fire in-plane refraction,
(b) end-fire out-of-plane refraction, and (c) broadside (out-of-plane)
refraction. The wave number kn and attenuation coefficient α of the
fundamental wave vector kFB in the direction normal to the interface
are plotted with respect to the tangential wave number kt using
black and green (dashed) contours, respectively. Continuity of the
tangential wave-vector components can be visualized through the
black dashed lines. In the case of out-of-plane refraction at end-fire,
the tangential wave-vector components of the higher-order harmonics
appear outside the first BZ and only the fundamental component of
the MDMDM wave is phase matched to the incident wave.

The average power flows away from the interface into the
metamaterial with the averaged Poynting vector S pointing
directly opposite to k. Since conventional EFC analysis uses
only k and S to model the power and phase behavior of the
eigenmodes, it would predict negative refraction of both power
and phase at the interfaces. Including the Poynting vector
of each individual Floquet-Bloch harmonic projected onto
the plane of incidence, however, indicates that the nature of

refraction at an air-metamaterial interface is highly dependent
on the orientations of the facet and plane of incidence. Negative
phase and power refraction is unambiguously achieved only
under in-plane end-fire illumination [Fig. 6(a)]. For out-of-
plane refraction either by end-fire [Fig. 6(b)] or broadside
[Fig. 6(c)] illumination, the refracted wave consists of multiple
plane-wave components in which the dominant components
are outside the first BZ. Vector summation of the harmonic
Poynting vectors for both out-of-plane cases is consistent with
negative power refraction, but phase refraction is ambiguous
due to the presence of multiple plane-wave components.
Figure 6(c) demonstrates that both the negative refraction
of power observed experimentally and the double-negative
parameters extracted from reflection and transmission data
at the broadside interface of an MDMDM metamaterial slab
[3] originates from refraction of higher-order right-handed
m = −1 components, not from left-handedness.

V. MODE EXCITATION EFFICIENCY FOR
OUT-OF-PLANE END-FIRE INCIDENCE

Our spatial-frequency maps suggest that it is possible to
significantly enhance coupling into the metamaterial by wave-
vector matching to the high-order harmonics. For end-fire
illumination, the Floquet-Bloch harmonics of the eigenmode
in the metamaterial have tangential wave-vector components
given by

km,z = km · ẑ = k · ẑ + 2πm

a
. (7)

These components are harmonics with a fundamental spacing
given by the periodicity of the medium. Conservation of the
tangential wave vector would imply that the metamaterial
could be excited by an incident plane wave through any
combination of these harmonics. It must also be noticed that
the existence of such higher-order excitation channels is related
to the periodicity of the MDMDM structure, and so they
can also be predicted by conventional methods through the
geometrical repetition of EFCs outside the first BZ [dotted
EFCs at Fig. 6(b)]. However, the spatial-frequency power-flow
maps further demonstrate that each channel corresponds to a
particular harmonic with a specific contribution to the total
power flow of the excited mode. Channels can therefore have
different coupling efficiencies which cannot be determined
by the simple geometrical repetition of EFCs in conventional
methods [26]. Take, for example, the k-space map in Fig. 3(a)
for an in-plane MDMDM mode (corresponding to θ = 0◦,
or equivalently, kt = 0), which shows that the two first-order
harmonics (m = ±1) carry 78% of the total mapped x-directed
power, whereas the fundamental harmonic (m = 0) carries less
than 1%. A normally incident plane wave phase matched to
the fundamental generally should yield low coupling efficiency
into the structure, an observation that has been noted by others
and has been attributed to impedance mismatch at the interface
[2]. On the other hand, an incident plane wave matched to
the m = ±1 components should yield significantly greater
coupling efficiency. Note that power is conserved through the
total power flow, regardless of the direction of the individual
harmonic Poynting vector associated with a given excitation
channel.
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FIG. 7. The incident and transmitted magnetic field is plotted
to show the coupling efficiency e for two different end-fire wave
excitations of the normal in-plane MDMDM mode (kt = 0). In (a),
a normally incident plane-wave targets the m = 0 component of the
MDMDM mode, while in (b), two oblique plane waves with incidence
angles of ±53.2◦ are superposed in order to simultaneously target the
m = ±1 components of the MDMDM mode. The white arrows show
the direction of the time-and-space-averaged power flow in both the
incidence dielectric medium (n = 4) and the layered medium. It is
shown that coupling to the higher-order harmonics (the dominant
k-space components) has increased the coupling efficiency by 505%.

Our analysis suggests that the low coupling efficiency is
related to field pattern mismatch at the interface, rather than
impedance mismatch. To test this hypothesis, we consider
the case of a dielectric-metamaterial interface under end-fire
illumination in which the refractive index of the dielectric
medium is sufficiently high (n = 4) to enable an incident
plane wave to phase match to the first-order harmonics of
the eigenmode. Changing the angle of incidence enables an
incident plane wave to phase match to either the fundamental
(m = 0) harmonic or one (or both) of the first-order (m =
±1) harmonics of the eigenmode. Using a combination of
multiple incident plane waves, multiple harmonics can be
phase matched simultaneously. To quantify the coupling effi-
ciency of different excitation channels, we carry out full-wave
simulations of wave incidence from a dielectric half space onto
an MDMDM half space using COMSOL MULTIPHYSICS. The
coupling efficiency is determined by the ratio of the transmitted
power to the incident power in the direction normal to the
interface.

Figure 7 plots the magnetic field distributions for end-fire
normal illumination of the in-plane MDMDM mode (corre-
sponding to kt = 0) using two different excitation channels:
one using a normally incident plane wave phase matched to
the m = 0 component and another using two oblique plane
waves phase matched to the m = ±1 components. The left
half of each panel plots the incident fields, and the right half
of each panel plots the transmitted fields. The direction of the
time-and-space-averaged power flow is shown by the white
arrows and the reflected fields have been omitted for clarity.
Both excitation methods couple to the same eigenmode, which
carries power and phase in opposing directions. The spatial
field distribution of the transmitted mode for both cases is
consistent with that of the in-plane eigenmode plotted in
Fig. 2(a), except that the mode is now launched from an inter-
face and attenuates heavily into the lossy MDMDM medium.
The coupling efficiency for normal incidence excitation is

e = 77%

−1
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−1

0

1
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(c)

FIG. 8. The incident and transmitted magnetic field is plotted
to show the coupling efficiency e for three different end-fire wave
excitations of the out-of-plane MDMDM mode with kt = k0 sin 20◦.
In each plot, a plane wave is incident from a dielectric medium
of index n = 4 with an angle (a) −43.1◦, (b) −4.9◦, and (c) 30.9◦

in order to target the m = +1, m = 0, and m = −1 component of
the MDMDM mode, respectively. The coupling efficiency is shown
to have increased by 326%–335% by coupling to the higher-order
harmonics. The direction of power flow indicated by the white arrows
demonstrates negative refraction of power at the interface for (a) and
(b), and positive refraction of power for (c).

19%, whereas the coupling efficiency for oblique excitation
is 96%. This corresponds to a transmittance increase of 505%
and a reflectance reduction of more than 95%. The dramatic
improvement in coupling efficiency confirms that the relative
power maps are visceral and, in addition to clarifying the
spatial-frequency distribution of power, can be used as means
to obtain highly efficient excitation channels across interfaces.

The presence of multiple excitation channels means that it
is possible for different plane waves to excite the same eigen-
mode. Figure 8 illustrates three different incident plane waves
that excite the same kt = k0 sin 20◦ mode within the MDMDM,
albeit with different efficiencies. The angles of incidence are
selected to be −43.1◦, −4.9◦, and 30.9◦ to achieve phase
matching to the m = +1, m = 0, and m = −1 components,
respectively, where a positive angle of incidence is measured
in the clockwise direction from the interface normal (−x axis).
Illumination tailored to the m = 0 harmonic yields only 23%
coupling efficiency into the medium. Illumination tailored
to the m = +1 and m = −1 harmonics, on the other hand,
yields coupling efficiencies of 77% and 75%, respectively.
This corresponds to a transmittance increase of 326%–335%
and a reflectance decrease of 68%–70%. Again, this result
is consistent with the dominant power flow of the two first
higher-order harmonics in the kt = k0 sin 20◦ eigenmode given
in Fig. 6(b).

Interestingly, the possibility of multiple excitation channels
challenges the notion that refraction angles across a metama-
terial interface can be uniquely defined. As shown by the
white refracted arrows in Fig. 8, an incident wave that is
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inclined at either positive or negative angles can excite the
same eigenmode. Illumination phase matched to the m = 0
and m = +1 harmonics results in negative refraction of power,
but with different angles of incidence. On the other hand,
illumination phase matched to the m = −1 harmonic results in
positive refraction of power. Clearly, such refractive behavior
cannot be accurately described by assigning a single refractive
index value to the metamaterial and invoking Snell’s law.

VI. CONCLUSION

We have shown the importance of analyzing higher-order
Floquet-Bloch harmonics when studying metamaterials and
the need for a method that goes beyond effective medium
theory or conventional geometrical EFC analysis.

Based on power-flow maps of Floquet-Bloch harmonics in
k space, we have observed that a coupled plasmonic waveguide
metamaterial with a spherical EFC that resembles the Veselago
medium and can achieve quasi-isotropic negative refraction
of power does not have a three-dimensionally isotropic left-
handed response. The material achieves backward power flow
for all angles, but the origin of this power flow depends on the
propagation direction, evolving from left-handed for in-plane
propagation to right-handed for out-of-plane propagation
perpendicular to the layers. Negative refraction of both power
and phase occurs only for in-plane propagation. Negative
refraction of power occurs for out-of-plane propagation, but
the absence of consistent phase progression implies that phase
refraction cannot be defined in this configuration. Furthermore,
both the negative refraction of power (and flat lensing)
observed experimentally and the double-negative extracted pa-
rameters at broadside incidence were shown to originate from
right-handed higher-order components. We can conclude from
this that despite the existence of backward plasmonic modes
along the layers, spherical EFCs, double-negative extracted
effective parameters, and experimentally observed all-angle
negative refraction of light beams, a sufficient condition for

considering the layered structure as the realization of the
homogeneous and isotropic left-handed Veselago medium has
still not been met.

Due to existence of higher-order harmonics in the direction
perpendicular to the layers, several excitation channels exist
for end-fire illumination of the layered metamaterial. The
efficiency of an excitation channel can be roughly predicted by
the relative power residing in the corresponding harmonic. For
example, we have shown that plane-wave coupling to the domi-
nant first-order harmonics as opposed to the weak fundamental
harmonic yields excitation efficiency enhancements of up to
505% for the in-plane MDMDM eigenmode. The presence of
different excitation channels also means that it is possible for
multiple incident waves to excite the same eigenmode, casting
doubt on the practice of uniquely characterizing refraction
angles across a metamaterial interface and then invoking
Snell’s law approximations.

In summary, mapping the power flow of Floquet-Bloch
harmonics in k space provides a powerful tool to study
the electromagnetic behavior of propagating modes within
metamaterials. We have also shown that by quantifying the
distribution of power across all harmonics, these power maps
can provide a platform to engineer new ways to couple
electromagnetic power into and out of metamaterial structures
with high efficiency. These techniques have the potential to
be applied to a range of electromagnetic problems, from the
optimization of nanolenses for imaging and lithography to the
design of novel structures for asymmetric power transmission.
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