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Electron and phonon transport in shandite-structured Ni3Sn2S2
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The shandite family of solids, with hexagonal structure and composition A3M2X2 (A = Ni, Co, Rh, Pd; M =
Pb, In, Sn, Tl; X = S, Se), has attracted recent research attention due to promising applications as thermoelectric
materials. Herein we discuss the electron and phonon transport properties of shandite-structured Ni3Sn2S2, based
on a combination of density functional theory, Boltzmann transport theory, and experimental measurements.
Ni3Sn2S2 exhibits a metallic and nonmagnetic ground state with Ni0 oxidation state and very low charge on Sn
and S atoms. Seebeck coefficients obtained from theoretical calculations are in excellent agreement with those
measured experimentally between 100 and 600 K. From the calculation of the ratio σ/τ between the electronic
conductivity and relaxation time, and the experimental determination of electron conductivity, we extract the
variation of the scattering rate (1/τ ) with temperature between 300 and 600 K, which turns out to be almost
linear, thus implying that the dominant electron-scattering mechanism in this temperature range is via phonons.
The electronic thermal conductivity, which deviates only slightly from the Wiedemann-Franz law, provides the
main contribution to thermal transport. The small lattice contribution to the thermal conductivity is calculated
from the phonon structure and third-order force constants, and is only ∼2 W m−1 K−1 at 300 K (less than 10%
of the total thermal conductivity), which is confirmed by experimental measurements. Overall, Ni3Sn2S2 is a
poor thermoelectric material (ZT ∼ 0.01 at 300 K), principally due to the low absolute value of the Seebeck
coefficient. However, the understanding of its transport properties will be useful for the rationalization of the
thermoelectric behavior of other, more promising members of the shandite family.
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I. INTRODUCTION

Chalcogenides of general formula A3M2X2 (A = Ni,
Co, Rh, Pd; M = Pb, In, Sn, Tl, Bi; X = S, Se) ex-
hibit interesting electronic and magnetic properties includ-
ing superconductivity (Ni3Bi2S2) [1], half-metallic ferro-
magnetism (Co3Sn2S2) [2,3], and metal-insulator transitions
(Co3Sn2−xInxS2) [4]. The latter series has also been recently
investigated for its potential for thermoelectric applications
at high temperature [5,6]. In particular, the thermoelectric
figure of merit reported for this solid solution at 425 K, when
0.8 < x < 0.85, is among the highest reported for sulfide
phases in this temperature range, suggesting it may have
applications in low-grade waste heat recovery.

The shandite structure, adopted by the Co3Sn2−xInxS2

series at all compositions (as well as by most compounds with
A3M2X2 stoichiometry), consists of sheets of metal atoms
(both A and M) in the form of a Kagome-like hexagonal
network, capped above and below by X atoms, and stacked in
an ABC sequence. There is a second M site, located between
the Kagome sheets, with trigonal antiprismatic coordination to
the X atoms (Fig. 1). The distribution of Sn and In over the two
types of M site has been found to be an important factor in the
explanation of the electronic behavior of the Co3Sn2−xInxS2

solid solution [6].
The present study focuses on understanding the electron and

phonon transport properties of Ni3Sn2S2, as a representative
of the shandite family. Contrasting with the magnetic nature
of Co shandites, Ni3Sn2S2 has a nonmagnetic ground state,
which has been confirmed by band-structure calculations and
photoelectron spectroscopy [7], as well as by direct magnetic
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susceptibility measurements [8]. The presence of spin polar-
ization and magnetic excitations complicates the calculation
of transport coefficients, and also the theoretical description
of electron scattering, as electron-magnon interactions have
to be taken into account [9,10]. The absence of magnetism
in Ni3Sn2S2 thus makes this compound a convenient starting
point for a theoretical investigation of transport phenomena
and thermoelectric behavior in shandites.

In addition to the results of electronic and phonon structure
calculations, we present here theoretical predictions as well
as experimental measurements of all the transport coefficients
contributing to the thermoelectric figure of merit:

ZT = σS2T

κel + κlatt
, (1)

i.e, the Seebeck coefficient S, the electrical conductivity σ ,
and the electronic (κel) and lattice (κlatt) contributions to the
thermal conductivity. We will examine the variation with
temperature (T ) of each of the coefficients and discuss the
physical mechanisms responsible for the transport behavior.

II. METHODOLOGY

A. Computational techniques

1. Density functional theory calculations

The crystal structure of Ni3Sn2S2 was optimized using
periodic density functional theory (DFT) calculations as
implemented in the Vienna Ab initio Simulation Package
(VASP) [11,12]. The projector augmented wave method was
used [13,14], with electron levels up to Ni 3p, Sn 4p, and S
2p kept frozen at their reference atomic state. The exchange-
correlation functional of Perdew-Burke-Ernzerhof (PBE) [15],
based on the generalized gradient approximation (GGA), was
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FIG. 1. Hexagonal (a) and rhombohedral (b) unit cell of shandite-
structured Ni3Sn2S2.

employed. The number of plane waves was determined using a
kinetic energy cutoff of 350 eV. Reciprocal space integrations
were performed on a �-centered grid of k points with the
smallest permitted spacing between them of 0.3 Å−1, which
corresponds to a 7 × 7 × 7 grid on the reciprocal lattice of
the primitive cell. Spin-polarized calculations were performed
with different initializations of the magnetic moments but the
calculations always converged to a nonmagnetic ground state,
as expected from previous research [7]. The ionic positions
were relaxed until the forces were less than 0.01 eV Å−1

on each atom. A Bader analysis [16] of the charge density
from VASP was performed using the code by Henkelman and
coworkers [17,18].

2. Electron transport calculations

As a starting point for the electronic transport calcula-
tions, we redetermined the band structure using the WIEN2K

code [19]. For this calculation, the Brillouin zone was
sampled with a fine k mesh of 50 × 50 × 50 points. For
the basis set expansions we used the cutoff parameters
lmax = 10 and RmtKmax = 7, while for the charge-density
Fourier expansion we used the cutoff Gmax = 12; all these
parameters were checked for convergence of the total energy.
The radii of the muffin-tin spheres were set at the default
values of 2.26, 2.50, and 1.85 bohrs for Ni, Sn, and S,
respectively. The transport coefficients were then obtained
from the bands by solving the linearized Boltzmann transport
equation using the BOLTZTRAP code [20], which interfaces
with the WIEN2K output. BOLTZTRAP uses the relaxation-time
approximation and a “rigid band” approach to obtain the
transport coefficients as functions of the electron chemical
potential and temperature. Both the electrical conductivity (σ )
and the electronic contribution to the thermal conductivity are
calculated relative to the relaxation time (τ ), which is assumed
to be isotropic and constant in the reciprocal space at each
temperature. The Seebeck coefficient can be calculated on an
absolute scale, i.e., it is independent of τ . The temperature
variation of τ is discussed based on the comparison with
experimental measurements of the electrical conductivity.
At each temperature, we use the equilibrium value of the
chemical potential corresponding to the undoped system,
which deviates only slightly from the Fermi level. However,

we also consider the effects of (dilute) doping by evaluating the
transport coefficients and ZT at different chemical potentials
corresponding different concentrations of electron excess or
deficiency.

3. Phonon transport calculations

In order to calculate the lattice contribution κlatt to the
thermal conductivity, we solved the phonon Boltzmann trans-
port equation using the method implemented in the SHENG-
BTE code [21,22], which goes beyond the relaxation-time
approximation to provide a full iterative solution. The method
requires the calculation of both second-order (harmonic) and
third-order (anharmonic) force constants, which were obtained
by the finite-displacement method, using energies from VASP

calculations in a 3 × 3 × 3 supercell of the primitive cell. The
phonon dispersion curves and heat capacity were obtained
from the second-order force constants using the PHONOPY

code [23]. For the efficient calculation of the anharmonic
force constants, harnessing the crystal symmetry, we use the
thirdorder.py script [24]. This required the evaluation of the
DFT energies of 364 configurations of atom displacements.
The SHENGBTE calculations were performed using a q-point
grid of 13 × 13 × 13, which was tested for convergence.

B. Experimental techniques

1. Sample preparation

Ni3Sn2S2 was synthesized by the sealed tube method at
high temperatures. Mixtures of elemental nickel (Alfa, powder,
99.9%), tin (Aldrich, powder, 99%), and sulfur (Aldrich,
flakes, 99.99%) were ground using an agate pestle and
mortar. The resulting powders were sealed under vacuum
(between 10−3 and 10−4 mbar) into a fused silica tube, and
the mixture fired for two periods of 48 h at 500 and 700 ◦C
with an intermediate regrinding. A heating and cooling rate of
0.5 ◦C min−1 was used.

2. Powder x-ray diffraction

The structural characterization was carried out by pow-
der x-ray diffraction (XRD) using a Bruker D8 Advance
diffractometer (Ge-monochromated Cu Kα1, λ = 1.5406 Å,
and a LynxEye linear detector). Rietveld refinement of lattice,
atomic, thermal, and profile parameters was carried out using
the GSAS software package [25].

3. Measurement of transport properties

The densification of the powdered sample was carried out
using a hot press manufactured in house. After ball milling
at 350 rpm for 1 h, a sample with a mass of about 1.8 g
was loaded between two graphite dies in a graphite mold.
Hot pressing under a N2 atmosphere, at 60 bars and 995 K
for 25 min., led to a pellet with a density of 99.6% relative
to the bulk material. The density of the resulting pellets
was measured by the buoyancy method. Thermal diffusivity
measurements at high temperatures 300 � T(K) � 525 were
conducted using a Netzsch LFA 447 Nanoflash instrument,
and the determination of the specific heat was carried out
via the comparison method. Pyroceram 9606 was used as
the reference sample. The electrical resistivity and Seebeck
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coefficient were measured at high temperatures (300–670 K)
using a Linseis LSR3-800 instrument. Low-temperature (100–
300 K) Seebeck coefficient measurements were conducted
in 10 K steps using an in-house instrument equipped with
a close-cycle refrigerator.

III. RESULTS AND DISCUSSION

A. Crystal structure

The XRD analysis confirms that Ni3Sn2S2 crystallizes in
the rhombohedral space group R3̄m, as reported by Range
et al. [26]. The lattice parameters obtained from the DFT
optimization are in good agreement with experiment, and with
literature values [26] (Table I). The small overestimation of
the lattice parameters is typical of GGA-PBE calculations
of metallic systems [27]. Another source of discrepancy is
that the DFT results are obtained by minimization of the
total energy at zero temperature (or more precisely, without
considering vibrational effects, as zero-point effects were not
included either), while the reported experimental parameters
were measured near room temperature (293 K in this work
and 297 K in Ref. [26]). Still, the discrepancies are very small
(+1.4% for a and +0.15% for c).

B. Electronic structure

The electronic band structure between high-symmetry
points is shown in Fig. 2. Ni3Sn2S2 has a nonmagnetic metallic
ground state with a low density of states at the Fermi level. The
projection of the density of states on the Ni 3d orbitals shows
that these contributions are almost completely below the Fermi
level, which indicates a Ni0 formal oxidation state with a 3d10

configuration. The 4s orbitals are about 5 eV above the Fermi
level. The 3d10 configuration is typical of Ni0 in inorganic
molecular compounds like Ni(CO)4 [28,29]. The neutral state
of Ni is consistent with the Bader analysis which is shown in
Table II. The Ni0 valence state and the nature of the ground
state are also in agreement with the findings in Ref. [7].

The magnitudes of the charges associated with the Sn
and S atoms (±0.6–0.7) are also well below what would be
expected from formal oxidation states, but still significantly
different from zero: they are in between the values we obtain
for SnS (polar covalent compound) and SnSb (intermetallic
compound).

It is interesting to compare the electronic structure of
Ni3Sn2S2 with that of Co3Sn2S2. The latter has a ferromagnetic

TABLE I. Comparison of theoretical and experimentally de-
termined crystal parameters of Ni3Sn2S2. z[S] is the z fractional
coordinate of the S atom in special position 6c (0, 0, z) of space
group R3̄m.

This work Ref. [26]

Parameter DFT Experiment
Experiment

a (Å) 5.540 5.46771(7) 5.4606(2)
c (Å) 13.208 13.1922(2) 13.188(1)

V (Å
3
) 351.06 341.55 340.56

z[S] 0.2792 0.2820(2) 0.2820(2)

FIG. 2. (a) First Brillouin zone of Ni3Sn2S2 (rhombohedral set-
ting), showing the high-symmetry k points � (0,0,0), Z (0.5,0.5,0.5),
F (0,0.5,0.5), and L (0,0.5,0) used to plot the band structure.
(b) Calculated band structure along high-symmetry paths and the
corresponding density of states (both total and projected on the Ni 3d

states).

ground state with half-metallic character, exhibiting a gap
of approximately 0.3 eV for the minority-spin channel [30].
Despite that fundamental difference, the total charge-density
distribution over the atoms is very similar for both compounds.
In Co3Sn2S2, Co is found to be zero valent, while the atomic
charges for Sn and S are also very close to those found for
Ni3Sn2S2 [6].

C. Seebeck coefficient

Within the constant relaxation-time approximation [τ (k) =
τ ] in Boltzmann’s transport theory, the Seebeck coefficient
can be fully predicted from the DFT band structure, without
introducing any empirical parameters. Therefore the Seebeck
coefficient constitutes a good test to the quality of the
theoretical model.

TABLE II. Bader charges for Ni3Sn2S2 and two reference
compounds (SnS and SnSb).

Atom Ni Sn S Sb

Ni3Sn2S2 +0.05 +0.64 −0.71
SnS +0.96 −0.96
SnSb +0.36 −0.36
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The calculations provide the components of the Seebeck
coefficient tensor, but we find very little anisotropy (e.g.,
Szz/Sxx = 0.992 at 300 K). Since the crystal structure of
shandites is clearly anisotropic, this result might seem a
bit surprising, but we note that nearly isotropic Seebeck
coefficients have been reported for other anisotropic crystals
including Bi2Te3 [31] and SnSe2 [32], at specific ranges of
temperatures and doping levels. This behavior probably results
from cancellations of different contributions to the anisotropy.
It is worth noting here that in our calculations we have
assumed that the relaxation time is fully isotropic. However,
in some cases, the differences in scattering rates in different
directions may be an additional source of anisotropy [33],
which we have ignored. Since there are no experimental
data on single crystals to confirm the presence/absence of
anisotropy, we will focus here on the calculated spherical
average of the Seebeck coefficient, which can be compared to
the experimental measurements in the polycrystalline material.

The comparison between experimental and theoretical
results is shown in Fig. 3. Two sets of experimental results are
reported, which were obtained using two different instruments
(one for measurements below and the other for measurements
above room temperature). The discontinuity at room tempera-
ture arises from the use of different instruments, and not from
physical effects. For the whole range of temperatures there is
excellent agreement between theory and experiment.

Analogous to the Co shandite, Ni3Sn2S2 exhibits a negative
Seebeck coefficient with the absolute value increasing almost
linearly with temperature. However, at room temperature,
the Seebeck coefficient of the Ni shandite is three to four
times smaller than that of the Co analog (approximately
−50 μV/K [6]). This can be explained by the difference
in the electronic structure of the two compounds. It is well
known that semiconductors generally exhibit much higher
Seebeck coefficients than metals [34]. For half-metals, the
Seebeck coefficient is approximately given by the two-current
model [35,36], i.e., the conductivity-weighted average of the
Seebeck coefficients of the two spin channels. Therefore,
half-metallic Co3Sn2S2 can be expected to have a higher

FIG. 3. Experimental and theoretical Seebeck coefficients as
functions of temperature.

Seebeck coefficient than fully metallic Ni3Sn2S2, as we have
observed.

D. Electronic conductivity and scattering rates

In contrast to the Seebeck coefficient, the electronic
conductivity can only be predicted per unit of relaxation time,
i.e., at this level of theory we can only calculate the ratio σ/τ .
There have been some recent methodological developments
for the calculation of electron-phonon relaxation times from
first principles [37,38], but the algorithms are not very mature
yet and quite computationally demanding. We have therefore
chosen to combine our calculations with experimental mea-
surements of electronic conductivity, in order to analyze the
behavior of the effective isotropic relaxation time as a function
of temperature.

The σ/τ ratio has only a weak temperature dependence
[Fig. 4(a)]. For example, increasing the temperature from
400 to 500 K leads to an increase of less than 3% in the
value of σ/τ . In Fig. 4(b) we show the scattering rates (1/τ )

FIG. 4. (a) Calculated electronic conductivity per unit of relax-
ation time (σ/τ ). (b) Electron-phonon scattering rates obtained using
the experimentally determined σ and the theoretically obtained σ/τ ,
and linear fitting of its temperature dependence. (c) Experimental
electronic conductivity data and calculated values using fitted τ (T ).
The inset shows the ratio between the zz and xx components of the
conductivity tensor.
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required to exactly match the experimental conductivities as a
function of temperature [Fig. 4(c)]. The experimental value of
σ at room temperature is 2.4 × 106 S m−1 and decreases with
temperature as expected for a metallic system.

The scattering rates determined in this way increase linearly
with temperature. This result can be interpreted in terms of
Matthiessen’s rule, according to which the total scattering rate
is the sum of contributions from electron-electron scattering
(proportional to T 2), from electron-phonon scattering (pro-
portional to T above the Debye temperature of the material),
and from impurity scattering (approximately independent of
T ) [39]. In our case, given the linearity of the dependence it
is clear that the electron-electron term can be omitted and the
variation can be well fitted with the linear equation

1

τ
= a0 + a1T , (2)

for which we obtain a0 = 9.82 × 1011 s−1 and a1 = 2.19 ×
1011 s−1 K−1. The electron-phonon term dominates at the
temperatures of interest here. For example, at 300 K the
impurity contribution represents less than 1.5% of the total
scattering rate, and this reduces to 0.7% at 600 K. The
calculated relaxation time of 1.5 × 10−14 s at 300 K is
reasonable and of the same order as values obtained by the
same procedure in other materials (e.g., for Bi2Te3 [40]).

The linear dependence of the electron-phonon scattering
rate with temperature is as expected for temperatures of the
order of and above the Debye temperature of the material [39].
In Sec. III F we provide an estimation of the Debye temperature
of Ni3Sn2S2 based on phonon calculations, and we obtain
TD = 278 K, which is consistent with the present analysis.
For temperatures above TD and in the absence of significant
impurity contributions, both σ and τ are roughly inversely
proportional to temperature, which makes the ratio σ/τ almost
constant, as seen in Fig. 4(a).

Finally we note that our calculations also provide access to
individual components of the electronic conductivity tensor.
On the assumption of isotropic relaxation time, we can obtain
the ratio σzz/σxx as a function of temperature. The inset of
Fig. 4(c) shows that there is significant anisotropy in this case,
with the conductivity within the Kagome plane (σxx) being
around twice the conductivity in the perpendicular direction
(σzz). This is expected since the Kagome plane contains a two-
dimensional network of zero-valent metal (Ni) atoms which
locally increases the density of electronic states.

E. Electronic thermal conductivity

We discuss here only the theoretical calculation of the
electronic contribution to the thermal conductivity (κel) (and its
connection to the electronic conductivity σ ), because in exper-
iment only the total (electronic + lattice) thermal conductivity
is measured. The discussion of the experimental total thermal
conductivity will be presented below (Sec. III.9), together with
results of the lattice thermal conductivity calculations.

The κel values can also be obtained from the Boltzmann
transport equation, but as in the case of σ only the values
relative to the relaxation time (i.e., κel/τ ) can be determined.
The relaxation time for electronic heat transport is not
necessarily the same as the relaxation time considered above

FIG. 5. Ratio between the electronic contribution to the thermal
conductivity (κel) and the electrical conductivity (σ ) as a func-
tion of temperature, in comparison with the expectation from the
Wiedemann-Franz law.

for the electronic conductivity, but for metals in the regime
of temperatures of interest here (similar to or above the
Debye temperature) the two relaxation times can be considered
approximately equal [39]. In this case, it is expected that the
ratio σ/τ follows the Wiedemann-Franz law, i.e., it is simply
proportional to temperature, with the proportionality constant
being the Lorenz number (L0 = 2.44 × 10−8 W � K−2).
Figure 5 shows that the calculated transport coefficients follow
the Wiedemann-Franz law to a good approximation, although
there are some deviations at higher temperatures, where the
effective Lorenz number becomes somewhat higher than L0

(by up to 10% at 600 K).
The predicted absolute value for the electronic thermal

conductivity (using the relaxation time determined from the
experimental σ ) does not vary strongly with temperature.
This is expected from the Wiedemann-Franz law and the
result in the previous section showing that σ is roughly
inversely proportional to temperature. We obtain κel values of
20.8 W m−1 K−1 at 300 K and 22.3 W m−1 K−1 at 600 K. The
anisotropy of the electronic thermal conductivity tensor was
found to follow a very similar pattern as that of the electronic
conductivity tensor.

F. Phonon structure and lattice thermal conductivity

We now discuss the phonon behavior in Ni3Sn2S2, as a
starting point for the discussion of the lattice contribution to
the thermal conductivity, but also to provide an estimation of
the Debye temperature of the material. The phonon dispersion
curves along the high-symmetry directions in the Brillouin
zone are shown in Fig. 6. Consistent with the primitive cell of
7 atoms there are 21 phonon modes: 3 acoustic and 18 optical
branches. The vibrational density of states is divided in two
groups; the lower one comprises 15 branches and the upper one
comprises 6 branches, with a gap of about 10 meV between
the two groups.

From the phonon structure we can extract the specific-heat
capacity of the solid as a function of temperature (ignoring
for the moment anharmonic contributions), which is shown in
Fig. 7. In the low-temperature limit, Cv is proportional to T 3
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FIG. 6. Phonon dispersion curves of Ni3Sn2S2 along high-
symmetry paths in the Brillouin zone, and the corresponding phonon
density of states.

[41]:

Cv ≈ 12π4

5
NkB

(
T

TD

)3

, (3)

from which we can calculate the Debye temperature TD =
278 K (inset of Fig. 7).

From the anharmonic displacements we can then calculate
the lattice thermal conductivity κlatt, which is shown in Fig. 8(a)
as a function of temperature. At 300 K it is approximately
2 W m−1 K−1 and it slowly decreases with temperature down
to 1 W m−1 K−1 at 600 K. These values are very low, well
below typical values for crystalline solids, and similar to
what is found for disordered materials like amorphous silicon
dioxide [42]. The origin of the low κlatt is the very anharmonic
nature of the vibrations in Ni3Sn2S2. This is reflected in a high

FIG. 7. Specific-heat capacity of Ni3Sn2S2 per mole of formula
units. The limiting value at high temperature is 3NR where N = 7 is
the number of atoms per formula unit and R is the gas constant. The
fitting of the low-temperature values of the heat capacity to a Debye
model (inset) is used to obtain the Debye temperature.

FIG. 8. (a) Total thermal conductivities from experiment and
theory, and calculated electronic (κel) and lattice (κlatt) contributions
vs temperature. (b) κlatt at 300 K as a function of the maximum mean
free path.

Grüneisen parameter obtained from our calculations, γ = 1.55
(in the high-temperature limit), which is about three times that
of Si [43].

Our lattice thermal conductivity calculations provide fur-
ther useful information, including directional (tensorial) com-
ponents as well as the contributions from different phonon
mean free paths. The κlatt tensor showed negligible anisotropy
at all temperatures above 300 K. On the other hand, from
the mean-free-path analysis we find that nanostructuring is
not a viable strategy for reducing thermal conductivity as this
would require particle sizes below ∼20 nm to achieve any
significant effect [Fig. 8(b)]. In any case, from a point of view
of thermoelectric applications, it does not make sense to focus
on reducing the lattice thermal conductivity, because the most
important contribution to heat transport comes from electrons.

The total calculated thermal conductivity, as well as the
electronic and lattice contributions, are shown in Fig. 8(a),
in comparison with experimental measurements (only for
the total thermal conductivity). κlatt contributes just ∼10%
of the total thermal conductivity, with the remaining 90%
resulting from electronic transport. The experimental total
thermal conductivities are in excellent agreement with the
theoretical values. However, it should be noted that the
calculation of the electronic contribution κel involved the use of
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a fitted relaxation-time curve τ (T ) to reproduce the electronic
conductivity σ (T ). Because of the Wiedemann-Franz law,
such fitting also guarantees a good theoretical value for κel.
However, it is still remarkable that the calculated values of
κlatt, which were obtained without any fitting parameters,
bring the total theoretical values of thermal conductivity
to perfect agreement with experiment. Thus, our theoretical
lattice thermal conductivity predictions are confirmed by the
experimental measurements.

G. Thermoelectric figure of merit ZT

In order to summarize the thermoelectric behavior of
Ni3Sn2S2, we have calculated the thermoelectric figure of
merit ZT of the material as a a function of temperature,
using both theoretical and experimental data [Fig. 9(a)]. Two
theoretical ZT curves are given, one excluding and the other
including the lattice thermal conductivity term. In the former
case, the prediction is fully ab initio, because the relaxation

(a)

(b)

FIG. 9. (a) Thermoelectric figure of merit (ZT ) of Ni3Sn2S2

from experimental and from theoretical data. (b) Effect of dilute
doping on ZT (the inset shows the correspondence between the
doping charge density and the chemical potential within the rigid
band approximation).

time cancels out, and Eq. (1) becomes

ZT ≈ σS2T

κel
≈ S2

L0
. (4)

In fact, since κlatt contributes only around 10% to the total
thermal conductivity, its effect on ZT is very small, as can be
seen in Fig. 9(a). The calculation of ZT taking into account the
lattice contribution to κ is not fully predictive, as it involved
fitting of the relaxation times. In any case, the theoretical
prediction agrees well with experiment, showing an increase
with temperature that is approximately quadratic (because S

has an approximately linear variation with temperature).
The values of ZT in Ni3Sn2S2 are too small for thermo-

electric applications, which, as Eq. (4) indicates, is mainly
due to the low Seebeck coefficient. A possible strategy to
improve the Seebeck coefficient and ZT is via doping. We
therefore consider here the response of ZT to dilute doping,
with either excess or deficiency of electrons, within a rigid
band approach. Figure 9(b) shows the dependence of ZT on the
concentration of doped charge carriers, which can be studied
by varying the chemical potential, as shown in the figure
inset. ZT is predicted to increase with small concentrations
of electron doping (negative doping charge density), although
the magnitude of the increase is still modest. Clearly, a wider
range of doping concentrations must be considered in trying to
achieve a significant increase in ZT . However, the theoretical
investigation of heavily doped Ni3Sn2S2 is beyond the scope
of the present study, as it cannot be rigorously done within the
rigid band approach; it would instead require us to include the
dopant atoms explicitly in the supercell (e.g., [44,45]).

IV. CONCLUSIONS

We have reported a full theoretical and experimental study
of the electronic phonon structure and transport behavior of the
shandite-type Ni3Sn2S2. The theoretical results, in particular
the Seebeck coefficient and lattice thermal conductivities,
which are predicted without any fitting parameters, are in
excellent agreement with experiment. The dominant electron-
scattering mechanism is via phonons, and from the comparison
of theoretical and experimental results we have obtained the
temperature dependence of the electron-scattering rate.

Pure Ni3Sn2S2 is not a good thermoelectric material, as it
has a very low thermoelectric figure of merit (ZT ∼ 10−2 at
room temperature). Its lattice thermal conductivity is very low
and contributes only ∼10% of the total thermal conductivity.
Therefore, for this material very little can be gained by
nanostructuring or other strategies aimed at reducing heat
transport by phonons. In fact, for this metallic shandite, ZT

is mainly a function of the Seebeck coefficient. In order to
improve ZT , a dramatic change in the Seebeck coefficient
would be needed, which we show cannot be achieved by dilute
doping. The effort in finding thermoelectric shandites should
clearly focus on the half-metallic or semiconductor systems,
where the Seebeck coefficients can be engineered to much
higher values.
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R. Pöttgen, F. Pielnhofer, and R. Weihrich, Phys. Rev. B 88,
144404 (2013).

[31] C. V. Manzano, B. Abad, M. Muñoz Rojo, Y. R. Koh, S. L.
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