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Starting from a minimal model for a two-dimensional nodal loop semimetal, we study the effect of chiral mass
gap terms. The resulting Dirac loop anomalous Hall insulator’s Chern number is the phase-winding number of
the mass gap terms on the loop. We provide simple lattice models, analyze the topological phases, and generalize
a previous index characterizing topological transitions. The responses of the Dirac loop anomalous Hall and
quantum spin Hall insulators to a magnetic field’s vector potential are also studied both in weak- and strong-field
regimes, as well as the edge states in a ribbon geometry.
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I. INTRODUCTION

The nontrivial topological properties of fermions, which
have attracted great attention recently, stem from their low-
energy Dirac-like band dispersion and its associated chiralities.
Differently from conventional physical phases, topological
phases are classified by discrete topological invariants of
occupied bands, rather than continuous order parameters [1,2].
Depending on its time-reversal, particle-hole, and chiral
symmetries, a gapped system, i.e., insulator or superconductor,
can be classified into ten topological classes, five of which
can support topologically nontrivial phases depending on the
dimension of the system [3]. In an insulating system, the bulk
gap contains nontrivial boundary states whose chirality or
helicity is determined by the topological invariants. In super-
conductors, the possibility of realizing Majorana fermions has
spurred intense research because of their potential application
in quantum computation [4].

In some three-dimensional systems, there may also be linear
band touching at discrete Dirac or Weyl points, or “nodes,”
in the Brillouin zone (BZ). Dirac and Weyl semimetals have
been the focus of intense research [5–9], as they are gapless
systems which can exhibit topological properties. A Dirac
semimetal enjoys both time-reversal and inversion symmetries.
When one of these symmetries is broken, Weyl nodes with
opposite chiralities separated in momentum space may appear
and the semimetal exhibits surface Fermi arcs and the chiral
anomaly [10]. Examples of Dirac semimetals are Na3Bi
and Cd3As2 [11–17]. The Weyl semimetal state has been
experimentally confirmed in the TaAs family [18–22].

More recently, a new class of three-dimensional semimetal
with nodal lines has attracted growing interest [23–25], follow-
ing the suggestion for its realization in the hyperhoneycomb
lattice [23]. In this case, the linear band touching occurs along
a closed loop in the BZ. The concept of nodal loop semimetal
is relatively new and awaits further investigation.

In addition to the above types of three-dimensional topo-
logical semimetals (Dirac, Weyl, and nodal line), a more recent
proposal for the concept of a two-dimensional nodal line
semimetal has emerged and a suggestion for its physical real-
ization in a new composite lattice composed of interpenetrating
kagome and honeycomb lattices has been presented [26].
Spin-orbit coupling can open a small gap at the node line,
resulting in a novel topological crystalline insulator.

Motivated by these recent developments, here we study the
nodal loop (NL) semimetal in two dimensions, for spinless
fermions. The introduction of mass gap terms may lead to
topological insulating phases. We derive an expression for the
Chern number of the resulting Dirac loop anomalous Hall
insulator (DLAHI). The Chern number is equivalent to the
winding number of the mass terms’ phase along the loop
and can be regarded as the loop’s chirality. We examine the
topological transitions that take place as model parameters
change and generalize a previous index that characterizes such
transitions. The effect of a magnetic field on a DLAHI is also
studied and compared to the case of Dirac point systems.

In Sec. II, we introduce the minimal model for a NL
semimetal, consider a mass gap, and study the topological
properties of the DLAHI. Section III is devoted to the study of
magnetic field effects. In Sec. IV, we summarize our results
and make some concluding remarks.

II. TOPOLOGICAL INSULATOR IN GENERALIZED 2D
NODAL LOOP SEMIMETAL

A. Minimal model and topological invariant

To model a nodal loop semimetal in two dimensions (2D),
it is necessary for the system to have at least two bands, and
the Hamiltonian can be written as

H = h(k) · τ , (1)

where τα (α = 1,2,3) are the Pauli matrices acting on
sublattice (“pseudospin”) space and the Bloch wave vector k =
(kx,ky) runs over the Brillouin zone (BZ). We first consider a
minimal Hamiltonian with a nodal circular loop [24],

h3 = �v0(k − k0). (2)

Here, k =
√

k2
x + k2

y and k0 is the loop radius. Equation (2)

is supposed to be a valid approximation in the region k ≈ k0

of the BZ. This Hamiltonian gives a NL semimetal where the
valence and conduction bands cross at k = k0 if h1 = h2 = 0.
In a doped system, the Fermi surface would be a ring with
radius k0, but we shall not consider doped systems below. h1

and h2 can be viewed as two independent mass terms. Nonzero
h1 and h2 may open a gap and turn the system into an insulator
if only the lower (valence) band is occupied. We take the band
gap �≡

√
h2

1+h2
2��v0k0. It may take on a constant value on the
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LINHU LI AND MIGUEL A. N. ARAÚJO PHYSICAL REVIEW B 94, 165117 (2016)

FIG. 1. (a) The dispersion relation of a NL semimetal. (b) The
gapped spectrum.

loop or have some k dependence. A plot of the dispersion is
shown in Fig. 1.

The topological properties of this model can be character-
ized by the Chern number C of the occupied band, which is
defined as

C = 1

2π

∫
Vkdkxdky, (3)

Vk = ∂kx
Aky

− ∂ky
Akx

, (4)

where Vk is the Berry curvature and Aα = i〈ϕ(k)|∂α|ϕ(k)〉 is
the Berry connection [27], ϕ(k) is a Bloch eigenstate of the
occupied band, and the integral is over the two-dimensional
Brillouin zone. Equation (4) yields a well-defined result
provided that the loop is gapped.

We shall now show that a simple expression for C can be
obtained which involves only the circulation of the phase of
h1 − ih2 along the loop. For the two-band system described
by Eq. (1), the Berry curvature of the lower band takes on the
familiar form,

Vk = 1

2|h|3
∂h
∂kx

× ∂h
∂ky

· h, (5)

where |h|=
√

h2
1+h2

2+h2
3. Using polar coordinates in momentum

space, (k,θ ), we write (kx,ky) = k(cos θ, sin θ ). We rewrite
the Berry curvature in polar coordinates and, considering that
the contribution to the integral (3) comes from the vicinity of
the loop where Eq. (2) holds, we obtain

C = �v0

4π

∫
dkdθ

|h|3 (h2∂θh1 − h1∂θh2). (6)

The integration over k can be performed under the assumption
that the gap � � �v0k0. This allows us to extend the
integration limits of k to the whole real axis and obtain

C = sgn(v0)
∫ 2π

0

dθ

2π

h2∂θh1 − h1∂θh2

h2
1 + h2

2

, (7)

where the integration is performed on the loop h3 = 0. The
expression (7) is just the winding number for the phase of h1 −
ih2. The above derivation may be regarded as an extension
of the contribution from a single Dirac point to the Chern
number [28], which can be ±1/2. By analogy, Eq. (7) assigns
a chirality to the gapped loop. While a fermionic system must
have an even number of Dirac points [29], there may be only
one, or an arbitrary number of, NLs.
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FIG. 2. The torus in Eq. (9) in the parameter space (k,�η ≡
η − η0). The dashed line is the nodal loop when η0 = 0. The flux of
V though the torus surface gives the index Cl .

The above Chern number is ill defined when the gap
closes, h1 = h2 = 0, as the integrand of Eq. (7) diverges. At a
topological phase transition, the gap closes and a definition of
a Z index characterizing the transition can be achieved in the
extended three-dimensional parameter space, (k,η), where η

is a transition driving parameter [30]. We assume the system
to be an insulator for general η and the gap closes at η = η0.
If the gap closes at one or more discrete points in the BZ, a
topological number Cp can be calculated as the flux of the
Berry curvature through a sphere S enclosing each of these
points in the parameter space of (k,η),

Cp = 1

2π

∫
⊂⊃
∫

V · dS , (8)

where V = ∇ × i〈ϕ(k,η)|∇|ϕ(k,η)〉 is the Berry curvature
in the extended parameter space. The summation of Cp over
every gap closing point gives the change of the Chern number
C across the transition [30].

We can extend the above index to the case of a nodal
loop semimetal by defining a similar index, Cl , as the Berry
curvature flux through a torus enclosing the loop. In the
parameter space of k and η, this torus can be written as

kx = [k0 + r cos φ] cos θ,

ky = [k0 + r cos φ] sin θ, (9)

η = η0 + r sin φ,

where φ is a new angular parameter on the torus and r is the
tube radius, as shown in Fig. 2. We may recast the surface
integral in Eq. (8) using Eqs. (9) and θ,φ as integration
variables, as

Cl = 1

2π

∫∫
Vφ,θdφdθ,

Vφ,θ = ∂φAθ − ∂θAφ. (10)

The value of Cl is independent of r as long as no gap closing
point exists other than the nodal loop within the torus. This
index Cl can serve as a topological invariant, which gives the
change of Chern number C at a transition where η = η0.

B. Specific models

We now provide some specific lattice models to illustrate
the topological phases of a 2D nodal loop. Note that in a lattice
model, the nodal loop is not a perfect circle in the BZ, so the
loop radius k0 is actually a function of the polar coordinate
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θ , k0 = k0(θ ). Chern numbers for these lattice models are
calculated numerically with the method described in Ref. [31].
Following this technique, the parameter space (kx,ky), or (θ,φ)
for the calculation of Cl , is discretized and the circulations of
the Berry connection on small plaquettes are performed.

We first consider the following model for the vector h(k)
in Eq. (1):

h1(k) = λ sin ky + M,

h2(k) = −λ sin kx, (11)

h3(k) = μ − 2(cos kx + cos ky).

The condition h3 = 0 gives a nodal loop around the origin
for 0 < μ < 4, or around the point (π,π ) for −4 < μ < 0.
We shall take μ = 2 below. When M = 0, this model is also
known as the Qi-Wu-Zhang model for spin-1/2 systems [32].
The term M couples two pseudospin components at the same
lattice site.

Model (11), for 4 > μ > 0, has two different topological
phases with C = 0 or C = −1. In Fig. 3(a), we show the phase
diagram with μ = 2. The topological phase boundary is given
by |λ| = M , where the gap closes at a single point k = [0,

− sgn(λ · M)π/2], except in the case λ = M = 0, where the
system is a nodal loop semimetal. In Figs. 3(b)–3(g), we plot
[h1(θ ), − h2(θ )] for h3 = 0, with θ varying from 0 to 2π , for
different parameter choices. The Chern number C = −1 when
h1 − ih2 winds clockwise around the origin, in accordance
with Eq. (7).

We now study the topological transitions that take place as
the parameters λ and M change, either independently or along
a chosen curve in the (λ,M) plane. We start by examining two
cases where the spectral gap closes over the whole loop, at the
transition. A case where M = 0 and λ varies is plotted as a
red dashed line in Fig. 3(a). Going along such a trajectory, no
topological phase transition exists, as C = −1 always. Now
consider the case where M = λ(1 − λ), which is plotted as
the red curve in Fig. 3(a): a transition between C = 0 and
C = −1 phases occurs at M = λ = 0. We use Eq. (10) to
calculate the index Cl , where we identify the driving parameter
η with λ and take the torus inner radius r = 10−4 in Eq. (9).
Equation (10) then gives Cl = 0 and Cl = −1 for these two
cases, respectively, which indicates the change of C at the
transition point.

In Figs. 3(b)–3(d), we show how the winding path [h1(θ ),
− h2(θ )] evolves for a topological phase transition where the
gap closes at only one point on the loop, and the system evolves
from C = 0 to C = −1. For this case, Eq. (8) gives Cp =
−sgn(λ · M), as expected. Similarly, Figs. 3(e)–3(g) show the
winding paths of h1 − ih2 as the model evolves with −0.2 �
λ � 0.2 and M = λ(1 − λ). For this case, we obtain Cl = −1.
Note that Figs. 3(c) and 3(f) show winding paths for two
gapless spectra: Fig. 3(c) shows the situation where the gap
closes at only one point of the loop, and Fig. 3(f) depicts the
case where the gap vanishes over the whole loop.

In the above lattice model, the Chern number may only be
±1 or 0, as the winding path may go around the origin no
more than once. However, if the mass terms h1 and h2 contain
higher harmonics, the winding path will be more complicated
and the system may have higher Chern number phases. As an

λ λ=0.3, M=0.3 λ

λ λ=0, M=λ(1−λ) λ

(b) (c) (d)

(e) (f) (g)

=0.5, M=0.3

=0.2, M=λ(1−λ

=0.2, M=0.3

=−0.2, M=λ(1−λ) )

−2 −1 0 1 2
−2

−1

0

1

2

λ

C=-1

C=0

C=0

C=-1

C   =0l C   =-1l

M

(a)

FIG. 3. (a) The phase diagram of model (11). The red and dashed
lines are trajectories along which Cl is calculated, as explained in
the text. (b)–(g) Winding paths, [h1(θ ), − h2(θ )], as 0 � θ < 2π and
h3 = 0. The direction of the winding path is clockwise for each case,
yielding C = −1 when it encloses the origin, according to Eq. (7).

example, we can choose the vector h(k) as

h1(k) = λ sin(2ky) + M,

h2(k) = −λ sin(2kx), (12)

h3(k) = μ − 2(cos kx + cos ky).

In Fig. 4, we plot [h1(θ ), − h2(θ )] for different parameter
choices together with the corresponding Chern numbers.
Figures 4(a)– 4(c) illustrate how μ changes the shape of the
winding paths, and Figs. 4(d)– 4(f) show how M changes the
position of the winding path relative to the origin. λ will change
the size of the path (not shown in the figures).

In the recent proposal [26] for the realization of the 2D
nodal loop system in a kagome-honeycomb mixed lattice,
spin-orbit terms were shown to introduce mass gap terms
with dxy and dx2−y2 symmetry. The system considered is
time-reversal invariant and such terms yield C = ±2 in two
effectively decoupled subspaces.
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λ=0.5, M=0, μ=0.5 λ=0.5, M=0.4, μ=0.5 λ=0.5, M=0.6, μ=0.5

(d) (e) (f)

λ=0.5, M=0, μ=0.5 λ=0.5, M=0, μ=1.5 λ=0.5, M=0, μ=2.5

(a) (b) (c)

C=3 C=3 C=-1

C=3 C=2 C=0

FIG. 4. Winding paths [h1(θ ), − h2(θ )] for model (12) for dif-
ferent parameter choices. The direction of the winding path is
counterclockwise except in (c), where it is clockwise.

III. MAGNETIC FIELD

We now take the nodal loop Hamiltonian (1)–(13) as a
model for spinless fermions on a lattice and analyze the effect
of a magnetic field’s vector potential.

In the case of the anomalous Hall insulator with Dirac
points, it has been shown that a weak field turns the system
into a metal with half-filled Landau levels (LLs) [28,33–35],
while a topologically trivial insulator remains insulating under
the field.

In order to understand the effect of a weak magnetic field
on a NL, we follow the same procedure as in Ref. [28] and
introduce a vector potential A, which minimally couples to
the orbital degrees of freedom, −i�∇ → −i�∇ − eA, where
e < 0 denotes the electron charge. It is convenient to replace
Eq. (2) with

h3 = �
2 k2 − k2

0

2m
, (13)

which, when linearized, yields Eq. (2). We rewrite (13) in real
space as

h3 = −�
2
∂2
x + ∂2

y + k2
0

2m
. (14)

If we further choose constant h1(2) with
√

h2
1+h2

2≡�� �
2k2

0
2m

, then
the NL becomes gapped and is a topologically trivial insulator
at half filling. We write A = B(0,x,0) and the wave functions
as

ψκ,n = eiκyφn

(
x − �κ

eB

)
·
(

α

β

)
. (15)

Here, n = 0,1, . . . denotes the LL index, ωc = |eB|/m denotes
the cyclotron frequency, and φn(x) is a harmonic-oscillator
wave function. The column vector (α,β)T solves the

eigenproblem,{[(
n + 1

2

)
�ωc − (�k0)2

2m

]
τ3 + h1τ1 + h2τ2

}(
α

β

)

= En

(
α

β

)
, (16)

and the energy levels are given by

En = ±
√[(

n + 1

2

)
�ωc − (�k0)2

2m

]2

+ �2. (17)

The lowest LL (n = 0) is far from the Fermi level if
�ωc � (�k0)2/(2m). At half filling, the lower-branch LLs are
fully occupied and the ones close to the Fermi level have high
index n = N such that (N + 1/2)�ωc ≈ (�k0)2/(2m).

The charge Hall conductance σyx takes on quantized values
between the LLs. Each filled LL contributes e2/h to σyx . In
the loop gap, σyx = 0.

Because high-order LLs are close to the Fermi level, one
may consider the semiclassical dynamics in the magnetic field.
The semiclassical motion is determined by the equations

�k̇ = evk × B, ṙ = vk, (18)

where the group velocity vk in the upper/lower band obeys
�vk = ±∂|h|/∂k. Within this approach, the electrons follow
orbits in the (kx,ky) plane determined by the Bohr-Sommerfeld
quantization rule. Equations (18) cannot be directly applied to
the gapped loop Hamiltonian, however. Instead, they may be
applied to either branch of the massless loop in Eq. (14) with
h1 = h2 = 0. If we take B > 0, for instance, then the electron
orbits in k space go counterclockwise for the lower branch,
while they go clockwise in the upper branch. The mass terms
h1(2) cause quantum mixing of the orbits of both branches,
as Eq. (16) explicitly shows. As we go up in energy, we lose
clockwise and gain counterclockwise orbits, hence the Hall
conductance increases.

Considering now the case of a topological system, we take
h1 = �vky,h2 = −�vkx , and h3 from Eq. (14). Then the gap
on the loop is � = �vk0 � (�k0)2/(2m). The Chern number
of the lower band is C = −1. It is convenient to define the
operator Ô = ipx + �κ − eBx, which obeys the commutation
relation [Ô,Ô†] = −2�eB. The Hamiltonian now takes the
form

Ĥ =
(

Ô†Ô−�eB−(�k0)2

2m
vÔ

vÔ† − Ô†Ô−�eB−(�k0)2

2m

)
. (19)

The eigenstates for B > 0 involve the same set of harmonic-
oscillator functions φn above,

ψκ,n = eiκy

(
αφn

βφn+1

)
, n � 0, (20)

with energy

En = −�ωc

2

±
√[(

n + 1

2

)
�ωc − (�k0)2

2m

]2

+ 2(n + 1)�ωcmv2.

(21)
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Additionally, there is also the “0-LL” state,

ψ0 = eiκy

(
0
φ0

)
, (22)

Ē0 = (�k0)2

2m
− �ωc

2
. (23)

This eigenstate lies high above the Fermi level and is, therefore,
empty.

We thus find that the spectrum contains an odd number of
LLs: the Fermi level for the half-filled system is a half-filled
LL with high index n = N that minimizes the square root in
Eq. (21) and with energy above the loop gap,

EN ≈ −�ωc

2
+ �, (24)

and α ≈ β in expression (20).
Had we chosen a Hamiltonian with opposite chirality, hence

C = 1, the 0-LL state would live on the other sublattice and
have energy symmetric to that in Eq. (23). So, it would be
occupied. The Fermi level would sit below the loop gap, EN ≈
�ωc

2 − �, which would be half filled. Therefore, the position
of the Fermi LL with respect to the gap is the same as in the
single Dirac cone problem [28],

EN ≈
(

�ωc

2
− �

)
sgn(C · B). (25)

However, unlike the Dirac cone problem, where one has to
consider at least two cones because of the fermion doubling
theorem [29], here we may have only one nodal loop in the
BZ and get an odd number of LLs.

As before, each filled LL contributes e2/h to the charge
Hall conductance, σyx . The existence of the 0-LL either above
or below the loop gap, depending on the nodal loop’s chirality,
determines the Hall conductance in the gap. If C = ±1, the
0-LL lies below/above and σyx = ±e2/h in the gap.

Endowing the electrons with spin, the simplest topological
insulator [36] with a Dirac loop gap and conserved sz could
have a C = 1 Hamiltonian for up-spin electron and C = −1
for down spin. The Chern matrix [37] would be diagonal with
C↑ = −C↓ = 1. The spin Chern number [37] Csc = C↑ −
C↓ = 2C, with ν = (Cscmod4)/2 [38,39]. The magnetic field
breaks time-reversal symmetry (TRS), restoring theZ index C,
which counts the number of edge states for each spin projection
running in a given edge. In thermal equilibrium, the electrons
migrate to the EN level sitting below the gap, given by Eq. (23),
so the system becomes spin polarized with spin density
|eB|/h. This is because the spin-↑ electrons fill up their 0-LL,
while the spin-↓ electrons have it empty. This spin density
is half of that for two Dirac points, discussed in Ref. [28].
Note that the spin polarization is achieved without considering
the Zeeman coupling to spin. The charge Hall conductance
σyx = 0 because the two subsystems’ contributions cancel.
The spin Hall conductance σ z

yx = e/(2π ), however. Such a
state is a spin Hall insulator with magnetization and it is
stable against potential disorder, but unstable against spin-flip
perturbations, in which case it would become a trivial insulator.

At stronger magnetic field, the magnetic length becomes
comparable to the lattice spacing and the energy spec-
trum exhibits the fractal structure known as the Hofstadter
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FIG. 5. Weyl loop Hofstadter spectrum of model (11), which has
C = −1 at zero field. The flux per lattice cell is expressed in units
of the flux quantum, φ0 = h/|e|. The occupied states for half filling
are colored in blue. The Hall conductance values (in units of e2/h)
in some of the gaps are shown in red.

butterfly [40]. A calculation of Hofstadter butterfly spectra
for Weyl nodes in 3D systems has recently been done [41].
Figure 5 shows the Hofstadter spectrum for the model (11)
with μ = 2, λ = −0.1, and M = 0, at half filling. The Fermi
energy lies above the gap, for small flux, as the model’s Chern
number C = −1, in agreement with the above discussion.
Quantized Hall conductances (in units of e2/h) are also shown
in some of the Hofstadter gaps. Although the half-filled system
is metallic for small field, it may become an insulator with zero
Hall conductance at higher flux values.

The spectrum for a ribbon geometry is shown in Fig. 6
for the same model, for a small magnetic flux. Figure 6
confirms the presence of edge states crossing the gap with
the predicted chirality. An interesting difference between such
a ribbon spectrum for a loop and that of a Hamiltonian with

0 0.5 1
k/π

-0.2

-0.1

0

0.1

0.2

En
er
gy

FIG. 6. Spectrum of model (11) for a ribbon geometry under a
weak magnetic field flux φ/φ0 = 1/400 vs longitudinal momentum.
The edge states are highlighted in red.
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two Dirac points [28] is readily apparent. In the latter, the LL’s
dispersion with longitudinal momentum is easily recognizable
as plateaus, while in Fig. 6, such LL plateaus are not seen.
The reason for this difference lies in the fact that LLs near
the loop gap have high order, so that the wave functions
φn in Eq. (15) contain high-order Hermite polynomials. The
edge states, therefore, decay fairly slowly into the bulk, and
finite-size effects (the ribbon’s width) are relatively strong.

IV. CONCLUSION

We studied a minimal Dirac ring Hamiltonian with mass
gap terms, for two-dimensional fermions, as a model for a
Dirac loop anomalous Hall insulator. We derived an expression
for the Chern number which assigns a chirality to the gapped
loop through the phase winding of the mass gap terms. The
change in the Chern number at a topological transition can

also be calculated from a previously introduced index that we
generalized to the Dirac loop case.

The Landau-level spectrum in a weak magnetic field was
shown to depend on the loop’s chirality. The Fermi level has
a high LL index. In the case of an anomalous Hall insulator, a
weak magnetic field turns the system into a metal, although it
may become a trivial insulator at higher fields. In the spinful
case of a topological insulator where spin sz is conserved, the
weak magnetic field’s gauge field turns the system into a spin
Hall insulator with finite magnetization.

We also studied the Hofstadter butterfly spectrum for
arbitrary field, as well as the edge states in a ribbon geometry.
The latter decay more slowly into the bulk and are therefore
more sensitive to finite-size effects in the Dirac loop case when
compared to the case of Dirac nodes.

A proposal for the realization of a Dirac loop semimetal
in two dimensions has appeared recently [26]. We also expect
that the models introduced above are suitable for realization
in optical lattices.
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[28] M. A. N. Araújo and E. V. Castro, J. Phys. Condens. Matter 26,

075501 (2014).
[29] H. B. Nielsen and M. Ninomiya, Nucl. Phys. B 185, 20

(1981).
[30] L. Li and S. Chen, Phys. Rev. B 92, 085118 (2015).
[31] T. Fukui, Y. Hatsugai, and H. Suzuki, J. Phys. Soc. Jpn. 74, 1674

(2005).
[32] X. L. Qi, Y.-S. Wu, and S.-C. Zhang, Phys. Rev. B 74, 085308

(2006).
[33] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).

165117-6

http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/PhysRevB.55.1142
http://dx.doi.org/10.1103/PhysRevB.55.1142
http://dx.doi.org/10.1103/PhysRevB.55.1142
http://dx.doi.org/10.1103/PhysRevB.55.1142
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1088/0034-4885/75/7/076501
http://dx.doi.org/10.1088/0034-4885/75/7/076501
http://dx.doi.org/10.1088/0034-4885/75/7/076501
http://dx.doi.org/10.1088/0034-4885/75/7/076501
http://dx.doi.org/10.1103/PhysRevB.83.205101
http://dx.doi.org/10.1103/PhysRevB.83.205101
http://dx.doi.org/10.1103/PhysRevB.83.205101
http://dx.doi.org/10.1103/PhysRevB.83.205101
http://dx.doi.org/10.1209/0295-5075/97/67004
http://dx.doi.org/10.1209/0295-5075/97/67004
http://dx.doi.org/10.1209/0295-5075/97/67004
http://dx.doi.org/10.1209/0295-5075/97/67004
http://dx.doi.org/10.1103/PhysRevLett.111.130403
http://dx.doi.org/10.1103/PhysRevLett.111.130403
http://dx.doi.org/10.1103/PhysRevLett.111.130403
http://dx.doi.org/10.1103/PhysRevLett.111.130403
http://dx.doi.org/10.1103/PhysRevLett.115.126803
http://dx.doi.org/10.1103/PhysRevLett.115.126803
http://dx.doi.org/10.1103/PhysRevLett.115.126803
http://dx.doi.org/10.1103/PhysRevLett.115.126803
http://dx.doi.org/10.1103/PhysRevB.91.125438
http://dx.doi.org/10.1103/PhysRevB.91.125438
http://dx.doi.org/10.1103/PhysRevB.91.125438
http://dx.doi.org/10.1103/PhysRevB.91.125438
http://dx.doi.org/10.1016/0370-2693(83)91529-0
http://dx.doi.org/10.1016/0370-2693(83)91529-0
http://dx.doi.org/10.1016/0370-2693(83)91529-0
http://dx.doi.org/10.1016/0370-2693(83)91529-0
http://dx.doi.org/10.1103/PhysRevB.85.195320
http://dx.doi.org/10.1103/PhysRevB.85.195320
http://dx.doi.org/10.1103/PhysRevB.85.195320
http://dx.doi.org/10.1103/PhysRevB.85.195320
http://arxiv.org/abs/arXiv:1312.7624
http://dx.doi.org/10.1126/science.1245085
http://dx.doi.org/10.1126/science.1245085
http://dx.doi.org/10.1126/science.1245085
http://dx.doi.org/10.1126/science.1245085
http://dx.doi.org/10.1103/PhysRevB.88.125427
http://dx.doi.org/10.1103/PhysRevB.88.125427
http://dx.doi.org/10.1103/PhysRevB.88.125427
http://dx.doi.org/10.1103/PhysRevB.88.125427
http://dx.doi.org/10.1038/nmat3990
http://dx.doi.org/10.1038/nmat3990
http://dx.doi.org/10.1038/nmat3990
http://dx.doi.org/10.1038/nmat3990
http://dx.doi.org/10.1038/ncomms4786
http://dx.doi.org/10.1038/ncomms4786
http://dx.doi.org/10.1038/ncomms4786
http://dx.doi.org/10.1038/ncomms4786
http://dx.doi.org/10.1103/PhysRevLett.113.027603
http://dx.doi.org/10.1103/PhysRevLett.113.027603
http://dx.doi.org/10.1103/PhysRevLett.113.027603
http://dx.doi.org/10.1103/PhysRevLett.113.027603
http://dx.doi.org/10.1103/PhysRevX.5.011029
http://dx.doi.org/10.1103/PhysRevX.5.011029
http://dx.doi.org/10.1103/PhysRevX.5.011029
http://dx.doi.org/10.1103/PhysRevX.5.011029
http://dx.doi.org/10.1038/ncomms8373
http://dx.doi.org/10.1038/ncomms8373
http://dx.doi.org/10.1038/ncomms8373
http://dx.doi.org/10.1038/ncomms8373
http://dx.doi.org/10.1126/science.aaa9297
http://dx.doi.org/10.1126/science.aaa9297
http://dx.doi.org/10.1126/science.aaa9297
http://dx.doi.org/10.1126/science.aaa9297
http://dx.doi.org/10.1103/PhysRevX.5.031013
http://dx.doi.org/10.1103/PhysRevX.5.031013
http://dx.doi.org/10.1103/PhysRevX.5.031013
http://dx.doi.org/10.1103/PhysRevX.5.031013
http://dx.doi.org/10.1038/nphys3425
http://dx.doi.org/10.1038/nphys3425
http://dx.doi.org/10.1038/nphys3425
http://dx.doi.org/10.1038/nphys3425
http://dx.doi.org/10.1103/PhysRevLett.115.026403
http://dx.doi.org/10.1103/PhysRevLett.115.026403
http://dx.doi.org/10.1103/PhysRevLett.115.026403
http://dx.doi.org/10.1103/PhysRevLett.115.026403
http://dx.doi.org/10.1103/PhysRevB.93.020506
http://dx.doi.org/10.1103/PhysRevB.93.020506
http://dx.doi.org/10.1103/PhysRevB.93.020506
http://dx.doi.org/10.1103/PhysRevB.93.020506
http://dx.doi.org/10.1103/PhysRevLett.117.087402
http://dx.doi.org/10.1103/PhysRevLett.117.087402
http://dx.doi.org/10.1103/PhysRevLett.117.087402
http://dx.doi.org/10.1103/PhysRevLett.117.087402
http://arxiv.org/abs/arXiv:1603.04596
http://dx.doi.org/10.1098/rspa.1984.0023
http://dx.doi.org/10.1098/rspa.1984.0023
http://dx.doi.org/10.1098/rspa.1984.0023
http://dx.doi.org/10.1098/rspa.1984.0023
http://dx.doi.org/10.1088/0953-8984/26/7/075501
http://dx.doi.org/10.1088/0953-8984/26/7/075501
http://dx.doi.org/10.1088/0953-8984/26/7/075501
http://dx.doi.org/10.1088/0953-8984/26/7/075501
http://dx.doi.org/10.1016/0550-3213(81)90361-8
http://dx.doi.org/10.1016/0550-3213(81)90361-8
http://dx.doi.org/10.1016/0550-3213(81)90361-8
http://dx.doi.org/10.1016/0550-3213(81)90361-8
http://dx.doi.org/10.1103/PhysRevB.92.085118
http://dx.doi.org/10.1103/PhysRevB.92.085118
http://dx.doi.org/10.1103/PhysRevB.92.085118
http://dx.doi.org/10.1103/PhysRevB.92.085118
http://dx.doi.org/10.1143/JPSJ.74.1674
http://dx.doi.org/10.1143/JPSJ.74.1674
http://dx.doi.org/10.1143/JPSJ.74.1674
http://dx.doi.org/10.1143/JPSJ.74.1674
http://dx.doi.org/10.1103/PhysRevB.74.085308
http://dx.doi.org/10.1103/PhysRevB.74.085308
http://dx.doi.org/10.1103/PhysRevB.74.085308
http://dx.doi.org/10.1103/PhysRevB.74.085308
http://dx.doi.org/10.1103/PhysRevLett.61.2015
http://dx.doi.org/10.1103/PhysRevLett.61.2015
http://dx.doi.org/10.1103/PhysRevLett.61.2015
http://dx.doi.org/10.1103/PhysRevLett.61.2015


TOPOLOGICAL INSULATING PHASES FROM TWO- . . . PHYSICAL REVIEW B 94, 165117 (2016)

[34] N. Goldman, W. Beugeling, and C. Morais Smith, Europhys.
Lett. 97, 23003 (2012); Phys. Rev. B 86, 075118 (2012).

[35] C. J. Tabert and E. J. Nicol, Phys. Rev. Lett. 110, 197402
(2013).

[36] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).
[37] D. N. Sheng, Z. Y. Weng, L. Sheng, and F. D. M. Haldane, Phys.

Rev. Lett. 97, 036808 (2006).

[38] Xiao-Liang Qi, Yong-Shi Wu, and Shou-Cheng Zhang, Phys.
Rev. B 74, 045125 (2006).

[39] M. Onoda, Y. Avishai, and N. Nagaosa, Phys. Rev. Lett. 98,
076802 (2007).

[40] D. R. Hofstadter, Phys. Rev. B 14, 2239 (1976).
[41] S. Roy, M. Kolodrubetz, J. Moore, and A. Grushin,

arXiv:1605.08445.

165117-7

http://dx.doi.org/10.1209/0295-5075/97/23003
http://dx.doi.org/10.1209/0295-5075/97/23003
http://dx.doi.org/10.1209/0295-5075/97/23003
http://dx.doi.org/10.1209/0295-5075/97/23003
http://dx.doi.org/10.1103/PhysRevB.86.075118
http://dx.doi.org/10.1103/PhysRevB.86.075118
http://dx.doi.org/10.1103/PhysRevB.86.075118
http://dx.doi.org/10.1103/PhysRevB.86.075118
http://dx.doi.org/10.1103/PhysRevLett.110.197402
http://dx.doi.org/10.1103/PhysRevLett.110.197402
http://dx.doi.org/10.1103/PhysRevLett.110.197402
http://dx.doi.org/10.1103/PhysRevLett.110.197402
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://dx.doi.org/10.1103/PhysRevLett.97.036808
http://dx.doi.org/10.1103/PhysRevLett.97.036808
http://dx.doi.org/10.1103/PhysRevLett.97.036808
http://dx.doi.org/10.1103/PhysRevLett.97.036808
http://dx.doi.org/10.1103/PhysRevB.74.045125
http://dx.doi.org/10.1103/PhysRevB.74.045125
http://dx.doi.org/10.1103/PhysRevB.74.045125
http://dx.doi.org/10.1103/PhysRevB.74.045125
http://dx.doi.org/10.1103/PhysRevLett.98.076802
http://dx.doi.org/10.1103/PhysRevLett.98.076802
http://dx.doi.org/10.1103/PhysRevLett.98.076802
http://dx.doi.org/10.1103/PhysRevLett.98.076802
http://dx.doi.org/10.1103/PhysRevB.14.2239
http://dx.doi.org/10.1103/PhysRevB.14.2239
http://dx.doi.org/10.1103/PhysRevB.14.2239
http://dx.doi.org/10.1103/PhysRevB.14.2239
http://arxiv.org/abs/arXiv:1605.08445



